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1. The Loop–Tree Duality at two-loops

The loop–tree duality (LTD) [1, 2, 3] transforms any loop integral or loop scattering amplitude
into a sum of tree-level like objects that are constructed by setting on-shell a number of internal
propagators equal to the number of loops. Explicitly, LTD is realised by modifying the ı0 prescrip-
tion of the Feynman propagators that remain off-shell

GF(q j) =
1

q2
j −m2

j + ı0
→ GD(qi;q j) =

1
q2

j −m2
j − ı0ηk ji

∣∣∣∣∣
GF (qi) on−shell

, (1.1)

with k ji = q j−qi, and ηµ an arbitrary future-like vector. The most convenient choice is ηµ =(1,0),
which is equivalent to integrate out the loop energy components of the loop momenta through
the Cauchy residue theorem. The left-over integration is then restricted to the Euclidean space
of the loop three-momenta. The dual prescription (indeed, only the sign matters) can hence be
either −ı0ηk ji = −ı0 for some dual propagators or −ı0ηk ji = +ı0 for the others, and encodes
in a compact and elegant way the contribution of the multiple cuts that are introduced by the
Feynman tree theorem [4]. The on-shell condition is given by δ̃ (qi) = ı2π θ(qi,0)δ (q2

i −m2
i ),

and determines that the loop integration is restricted to the positive energy modes, qi,0 > 0, of
the on-shell hyperboloids (light-cones for massless particles) of the internal propagators. We also
introduce the short-hand notation for the loop integration measure

∫
`i

•=−ı
∫ dd`i

(2π)d • . (1.2)

In order to generalise LTD to higher orders [2], we need to introduce the following functions

GF(αk) = ∏
i∈αk

GF(qi) , GD(αk) = ∑
i∈αk

δ̃ (qi) ∏
j∈αk
j 6=i

GD(qi;q j) , (1.3)

where αk labels all the propagators, Feynman or dual, of a given subset. An interesting identity
fulfilled by these functions is the following

GD(αi∪α j) = GD(αi)GD(α j)+GD(αi)GF(α j)+GF(αi)GD(α j) , (1.4)

involving the union of two subsets αi and α j. These are all the ingredients necessary to itera-
tively extend LTD to two loops and beyond. For example, at one loop, the Feynman and the dual
representations of a N-leg scattering amplitude are

A
(1)

N =
∫
`1

N (`1,{pi}N)GF(α1) =−
∫
`1

N (`1,{pi}N) ⊗ GD(α1) , (1.5)

respectively, where N (`1,{pi}N) is the numerator that depends on the loop momentum `1 and the
four-momenta of the N external partons {pi}N . In the absence of multiple powers of the Feynman
propagators, the numerator is not altered by the application of the Cauchy theorem. However,
the calculation of the residues of multiple poles to obtain the corresponding LTD representation
requires the participation of the numerator. This is represented in Eq. (1.5) by the symbol ⊗.
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At two loops all the internal propagators can be classified into three different subsets (e.g.
those depending on `1, `2 and their sum `1 + `2, as shown in Fig. 1). Starting from the Feynman
representation of a two-loop scattering amplitude

A
(2)

N =
∫
`1

∫
`2

N (`1, `2,{pi}N)GF(α1∪α2∪α3) , (1.6)

we obtain in a first step by applying LTD to one of the loops (Eq. (1.5)):

A
(2)

N =−
∫
`1

∫
`2

N (`1, `2,{pi}N)GF(α1)GD(α2∪α3) . (1.7)

Before applying LTD to the second loop, it is necessary to use Eq. (1.4) to express the dual function
GD(α2∪α3) in a suitable form. The identity in Eq. (1.4) splits the dual integrand into a first term
that contains two dual functions, and therefore two internal lines on-shell, and two more terms with
a single dual function and Feynman propagators involving the other two sets of propagators, to
which we can recursively apply LTD. The final dual representation of the two-loop amplitude in
Eq. (1.6) is

A
(2)

N =
∫
`1

∫
`2

N (`1, `2,{pi}N) ⊗
{

GD(α2)GD(α1∪α3)

+ GD(−α2∪α1)GD(α3)−GF(α1)GD(α2)GD(α3)

}
. (1.8)

In Eq. (1.8), it is necessary to take into account that the momentum flow in the loop formed by
the union of α1 and α2 occurs in opposite directions. Therefore, it is compulsory to change the
direction of the momentum flow in one of the two sets. This is represented by adding a sign in
front of e.g. α2, namely, we have written∫

`1

∫
`2

GF(α1)GF(α2) =−
∫
`1

∫
`2

GD(−α2∪α1) . (1.9)

Changing the momentum flow is equivalent to select the negative energy modes. For the internal
momenta in the set α2, this means

δ̃ (−q j) =
ıπ

q(+)
j,0

δ (q j,0 +q(+)
j,0 ) , j ∈ α2 . (1.10)

The dual representation gets its simplest form if the Feynman representation contains only sin-
gle powers of the Feynman propagators. This restriction cannot be avoided anymore at two-loops
where, for example, selfenergy insertions in internal lines lead automatically to double powers of
one propagator. However, all the double poles can be included with a clever labelling of the internal
momenta in the set α1, exclusively, which is not integrated in the first instance. Therefore, we have
assumed that the numerator in Eq. (1.7) is not affected by the application of LTD. The final dual
representation in Eq. (1.8) depends, in general, on the explicit form of the numerator. Again, this
is represented by the symbol ⊗.

The number of independent double cuts in Eq. (1.8) per Feynman diagram is

N(α2× (α1 +α3)+(α1 +α2)×α3) . (1.11)

2



P
o
S
(
L
L
2
0
1
8
)
0
3
1

Loop–tree duality at two loops Germán Rodrigo

α1 α2 α3

ℓ1 ℓ2

ℓ1 + ℓ2

Figure 1: Momentum flow of a two-loop Feynman diagram. An arbitrary number of external legs (not
shown) are attached to each loop line αi.

Therefore, it is convenient to have α2 as the set with the smallest number of propagators. For planar
diagrams, the set α2 will contain one single propagator.

It is interesting to note that although the integration over the loop three-momenta is unre-
stricted, after analysing the singular behaviour of the loop integrand one realises that thanks to a
partial cancellation of singularities among different dual components, all the physical threshold and
IR singularities remain confined to a compact region of the loop three-momentum [5, 6]. This rele-
vant fact allows to construct mappings between the virtual and real kinematics, which are based on
the factorisation properties of QCD, to implement the summation over degenerate soft and collinear
states for physical observables in the four-dimensional unsubtraction (FDU) scheme, as explained
in Section 2.

2. Four-Dimensional Unsubtraction

An alternative approach to the subtraction methods [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19] is introduced by the four-dimensional unsubtraction (FDU) [20, 21, 22], which is based
in the loop–tree duality (LTD). The idea behind FDU is to exploit suitable mappings of momenta
between the virtual and real kinematics in such a way that the summation over the degenerate
soft and collinear quantum states is performed locally at integrand level without the necessity to
introduce infrared (IR) subtractions. Suitable counter-terms are used to cancel, also locally, the
UV singularities, in such a way that calculations can be performed without altering the dimensions
of the space-time. The method should improve the efficiency of Monte Carlo event generators
because it is designed for integrating simultaneously the real and virtual contributions.

As usual, the NLO cross-section is constructed in FDU from the one-loop virtual correction
with N external partons and the exclusive real cross-section with N +1 partons

σ
NLO =

∫
N

dσ
(1,R)
V +

∫
N+1

dσ
(1)
R , (2.1)

integrated over the corresponding phase-space,
∫

N and
∫

N+1 respectively. The virtual contribution
is obtained from its LTD representation∫

N
dσ

(1,R)
V =

∫
N

∫
~̀1

2Re〈M (0)
N |
(

∑
i

M
(1)
N (δ̃ (qi))

)
−M

(1)
UV(δ̃ (qUV))〉Ô({pk}N) . (2.2)

3



P
o
S
(
L
L
2
0
1
8
)
0
3
1

Loop–tree duality at two loops Germán Rodrigo

In Eq. (2.2), M
(0)
N is the N-leg scattering amplitude at LO, and M

(1)
N (δ̃ (qi)) is the dual repre-

sentation of the unrenormalised one-loop scattering amplitude with the internal momentum qi set
on-shell. The integral is weighted with the function Ô({pk}N) that defines a given observable,
for example the jet cross-section in the kT -algorithm. The expression (2.2) includes appropriate
counter-terms, M

(1)
UV(δ̃ (qUV)), that implement renormalization by subtracting the UV singularities

locally, as discussed in Ref. [21], including UV singularities of degree higher than logarithmic that
integrate to zero.

By means of appropriate mappings between the real and virtual kinematics[22, 21]:

{p′j}N+1→ (qi,{pk}N) , (2.3)

the real phase-space is rewritten in terms of the virtual phase-space and the loop three-momentum∫
N+1

=
∫

N

∫
~̀1

∑
i

Ji(qi)Ri({p′j}N+1) , (2.4)

where Ji(qi) is the Jacobian of the transformation with qi on-shell, and Ri({p′j}N+1) defines a
complete partition of the real phase-space

∑
i

Ri({p′j}N+1) = 1 . (2.5)

In this way, the NLO cross-section can be cast into a single integral in the Born/virtual phase-space
and the loop three momentum

σ
NLO =

∫
N

∫
~̀1

[
2Re〈M (0)

N |
(

∑
i

M
(1)
N (δ̃ (qi))

)
−M

(1)
UV(δ̃ (qUV))〉Ô({pk}N)

+ ∑
i

Ji(qi)Ri({p′j}N+1) |M (0)
N+1({p′j}N+1)|2 Ô({p′j}N+1)

]
. (2.6)

The NLO cross-section defined in Eq. (2.6) has a smooth four-dimensional limit and can be evalu-
ated directly in four space-time dimensions. DREG is only necessary to fix the UV renormalisation
counter-terms in order to define the cross-section in e.g. the MS scheme, the rest of the calculation
is feasible directly at d = 4. The Eq. (2.6) exhibits also an smooth massless limit for massive par-
tons if the mappings in Eq. (2.3) map conveniently the quasicollinear configurations [21]. This is
another advantage of the formalism because it allows to describe with a single implementation the
same process with either massless or massive partons.

Once we have obtained the dual representation of the two-loop scattering amplitude, we can
outline how to extend FDU at NNLO and higher orders. Analogously to the NLO case, the total
cross-section at NNLO consists of three contributions

σ
NNLO =

∫
N

dσ
(2)
VV +

∫
N+1

dσ
(2)
VR +

∫
N+2

dσ
(2)
RR , (2.7)

where the double virtual cross-section dσ
(2)
VV receives contributions from the interference of the

two-loop with the Born scattering amplitudes, and the square of the one-loop scattering ampli-
tude with N external partons, the virtual-real cross-section dσ

(2)
VR includes the contributions from

the interference of one-loop and tree-level scattering amplitudes with one extra external particle,
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and the double real cross-section dσ
(2)
RR are tree-level contributions with emission of two extra par-

ticles. The LTD representation of the two-loop scattering amplitude is obtained by setting two
internal lines on-shell [2], as described in Section 1. It leads to the two-loop dual components
〈M (0)

N |M
(2)
N (δ̃ (qi,q j))〉, while the two-loop momenta of the squared one-loop amplitude are in-

dependent and generate dual contributions of the type 〈M (1)
N (δ̃ (qi))|M (1)

N (δ̃ (q j))〉. In both cases,
there are two independent loop three-momenta and N external momenta, from where we can re-
construct the kinematics of the tree-level corrections entering dσ

(2)
RR and the one-loop corrections

in dσ
(2)
VR:

{p′′r }N+2→ (qi,q j,{pk}N) , (q′l,{p′s}N+1)→ (qi,q j,{pk}N) . (2.8)

3. Applications and outline

We showed in a recent paper [23] that the amplitudes of the Higgs boson production through
gluon fusion and the Higgs boson decay to two photons exhibit remarkable properties in the LTD
representation. The dual contributions obtained for different internal particles – charged elec-
troweak gauge bosons, top quarks or charged scalars – featured the exact same functional form,
and could be written in an universal way by using flavour dependent scalar parameters depending
only on the space-time dimension d and the scales and masses of the particles involved in the pro-
cess. We also achieved a pure four-dimensional (d = 4) representation of the loop amplitude by
introducing a local renormalization of the UV singularities of the integrand. Therefore, it is natural
to extend the analysis at two-loops as benchmark calculation in LTD [24]. It is worth to stress that
the classical approach of integration-by-parts (IBP) [25] and reduction to master integrals is not
suitable in this framework as it would alter the local IR and UV behaviour.

Preliminary results for the two-loop H → γγ amplitude show that the dual representation can
be written in terms of order 20 flavour dependent parameters. The integrand expressions of the
dual amplitudes are therefore quite compact and are obtained by aplying an algebraic reduction
of the dual amplitudes to dual integrals that involve both positive and negative powers of dual
propagator denominators. We also proof that, as it happens at one-loop, there is partial cancellation
of the integrand singularities in such a way that the numerical integration remains stable with less
contour deformations. These results will soon be published [24].

4. Conclusions

The bottleneck in higher order perturbative calculations for scattering processes at high en-
ergies is not only the evaluation of multi-loop Feynman diagrams, but also the gathering of all
the quantum corrections from different loop orders (and thus different number of final-state par-
tons). In order to match the expected experimental accuracy at the LHC, particularly in the high
luminosity phase, and at future colliders new theoretical efforts are still needed to overcome the
current precision frontier. The LTD/FDU formalism offers an alternative approach with potential
advantages. New interesting results within this framework will be published soon.
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