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1. Introduction

We consider the Lagrangian of Quantum Electrodynamics

L =−1
4

FµνFµν +ψ
(
i/∂ − e/A−m

)
ψ, (1.1)

where F denotes the field-strength tensors of the gauge field, ψ is the fermionic field that interacts
through the covariant derivative with the gauge field. It should be remarked that the diagrammatic
techniques that will be introduced in the following apply to the massive as well to the massless
fermion case. However, in the following explicit evaluations of Feynman graphs, we will always
consider the massless case for the sake of simplicity. Perturbation theory requires the introduction
of a gauge fixing and due to renormalizability the gauge fixing introduces a gauge parameter that is
renormalized in straight analogy to the coupling paramater α . In the scope of this article, we will
restrict ourselves to the linear covariant gauge

LGF =− 1
2ξ

(
∂µAµ

)2
, (1.2)

and denote the gauge parameter by ξ . Such a gauge fixing breaks gauge invariance and therefore
off-shell Green’s functions are generally gauge dependent objects. In our case, this means that
Green’s functions depend on the gauge parameter in a non-trivial way. Although, these terms
are expected to be non-physical and eventually vanish in the physical on-shell limit they enter
perturbative computations and the renormalization process at any stage and potentially limit our
ability to perform high loop computations in their full generality.

On the other hand, a non-perturbative investigation of the gauge dependence has been con-
ducted by Landau, Khalatnikov [1], Fradkin [2], and Sonoda [3]. This approach is known as
Landau–Khalatnikov–Fradkin transform (LKFT) and allows for a characterization of the gauge
dependence of the full Green’s function that should be valid to all orders when perturbatively ex-
panded.

The goals of this paper is to clarify how the LKFT is compatible with perturbation theory
and Feynman graphs in particular. The key observation is that the sum of all connected Feynman
graphs can be partitioned in a way such that various cancellations apply and the gauge dependent
contributions eventually only couple to the external legs in the remaining graphs. Conclusively,
the gauge dependent terms are characterized by a Dyson–Schwinger type equation (4.2), which
matches the LKF formula when transformed into position space.

This purely perturbative characterization of the gauge dependence determines all terms which
depend on the gauge parameter in the epsilon expansion of a unrenormalized Green’s function.
Further, a similar result is obtained for renormalized Green’s functions. In the latter case, we will
point out that the gauge dependent terms can be factorized into an exponential. This conclusion
is one of the main observations in the LKFT approach and has been exploited by Grozin [4], for
example, to show that the anomalous dimension of the electron depends on the gauge parameter at
the first loop order only. Here, this statement is independently derived by arguments purely based
on perturbation theory.
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2. The Landau–Khalatnikov–Fradkin transform

A non-perturbative investigation of the gauge dependence has been conducted by Landau and
Khalatnikov [1] and Fradkin [2] a long time ago. Their discussion can mainly be summarized as
follows. Let S be electron propagator in some specific gauge. The gauge of S can be altered by
applying a gauge transformation

Aµ(x) 7→ Aµ(x)+∂µω(x)

ψ(x) 7→ e−ieω(x)
ψ(x)

ψ(x) 7→ ψ(x)eieω(x)

 (2.1)

to its external legs. Recall that a general gauge transformation is parametrized by a scalar field
ω . In the next step, this scalar field is quantized and identified with the longitudinal part of the
photon propagator. This establishes the following relation between the propagator S and its gauge-
transformed equivalent

S′(x− y) = S(x− y)exp [ieM(x− y)− ieM(0)] . (2.2)

Here, the function M absorbed the dynamics of the scalar field ω and hence provides a complete
characterization of how the electron propagator changes under the considered change of gauge.
Closed expressions of the function M for different gauge transitions have been derived by Zumino
[5] including the transition from the Landau to the general linear covariant gauge

M(x) = ξ

∫ dDp
(2π)D

e−ip·x

(p2)2 . (2.3)

It should be remarked that the transition from the Feynman gauge to the general linear covariant
gauge is similarly described by shifting the gauge parameter in the above expression by −1. Now,
equation (2.2) implies that the electron propagator in the general covariant gauge can be factor-
ized into its Landau gauge (or Feynman gauge) equivalent and a part that depends on the gauge
parameter. Crucially, we observe that the ξ terms can be factorized into an exponential.

3. A perturbative check of the gauge exponentiation

This section provides a first perturbative check on the factorization and exponentiation of the
gauge parameter which is predicted by the Landau-Khalatnikov-Fradkin transform (2.2). For this
purpose, we examine the quenched massless self-energy of the electron to fourth order in perturba-
tion theory. We use QGRAF [6], FORM [7, 8], and data of the MINCER [9, 10] and FORCER [11, 12]
packages and follow the program of Hopf-algebraic renormalization as described in [13]. M̃OM is
utilized as renormalization scheme, that is to say counterterms are constructed in such a way that
all quantum corrections to the propagator vanish when its external momentum is evaluated at the
renormalization point −µ2 and the same applies to the vertex if the external photon momentum
vanishes.

Σ(α,ξ ,L)//p = ξ L
(

α

4π

)
+

(
−1

2
ξ

2L2− 3
2

L
)(

α

4π

)2
+

(
1
6

ξ
3L3 +

3
2

ξ L2 +
3
2

L
)(

α

4π

)3

+

(
− 1

24
ξ

4L4− 3
4

ξ
2L3−

[
3
2

ξ +
9
8

]
L2−

[
1027

8
+400ζ (3)−640ζ (5)

]
L
)(

α

4π

)4
(3.1)
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Here, the dependence on the external momentum p is parametrized by the kinematic variable L =

ln
(
−p2/µ2

)
and α and ξ respectively denote the M̃OM renormalized coupling and gauge parameter.

Further it is reasonable to remark that our result reproduces the anomalous dimension previously
derived in [14].

From this renormalized result, it transpires that the ξ dependent terms in the self-energy up to
the fourth order can be factorized

Σ(α,ξ ,L)|
α4 = Σ(α,0,L)exp

(
−ξ L

α

4π

)∣∣∣
α4

(3.2)

yielding the expected exponential dependence where the minus in the exponent is due to the fact
that we have considered the self-energy, which basically is the inverse of the connected electron
propagator. Finally, we like to remark that the same pattern emerges in the MS scheme. However,
it is more difficult to recognize due to the non-vanishing constant-L terms in that scheme.

4. Diagrammatic characterization of the ξ dependence

In the preceding sections, it transpired that the non-perturbative nature of the LKFT approach
manifests itself in the fact that the gauge transformation only applies to the external legs of the elec-
tron propagator. However, in perturbation theory, high order Feynman graphs usually incorporate
subgraphs with gauge dependent terms. As was demonstrated in [15], this discrepancy is resolved
by systematically constructing and exploiting cancellations between the gauge dependent parts of
dimensionally regularized Feynman graphs at d = 4− 2ε dimensions. This section contains our
main result which is a simple diagrammatic expression that characterizes the ξ dependence to all
orders in perturbation theory.

First, we restrict ourselves to connected Green’s functions with a single external fermion line
whereas the number of external photon is arbitrary. Also, we will always amputate external prop-
agators of photon legs. Thanks to this minor change, adding further external photon legs does not
induce new terms in our diagrammatic formula which is contrary to the LKFT approach.

Then, we expand this Green’s function as a series in the gauge parameter

Gc(ε,α,ξ ) = g0(ε,α)+g1(ε,α)ξ +g2(ε,α)ξ 2 + . . . (4.1)

and denote the coefficient of ξ n by gn, which is a Laurent series in the dimensional regulator ε . The
coefficient g0 denotes the ε expansion of Gc in the Landau gauge and we shortly give a method to
compute all higher coefficients gn with n > 1. Here, it should be remarked that the method allows
to expand Gc around other points than the origin ξ = 0 and hence can be equally applied to the
Feynman (ξ = 1) or other specific gauges. For the sake of simplicity, we will expand around the
Landau gauge in the following.

On the diagrammatic level, an expansion in the gauge parameter can be understood as a de-
composition of the photon propagator into the Landau gauge part and a longitudinal part that de-
pends on the gauge parameter – both parts are treated as separate propagators. If the number of
longitudinal propagators is fixed to be n and all connected diagrams are taken into account, then
the coefficient gn is derived. Further, considering all possibilities to replace one propagator in the
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Landau gauge by a longitudinal propagator results in the coefficient gn+1. As shown in [16], can-
cellations between diagrams of various topologies can be exploited to derive a closed diagrammatic
expression that relates both coefficients

gn+1 =− 1
n+1

gn . (4.2)

Here, we have introduced following set of auxiliary Feynman rules

ji
= ieδi j = iξ (4.3)

p
ji = i

(
/p−m

/p−m

)
i j

= iδi j
p

=
1
p2 . (4.4)

By iteration, equation (4.2) determines the higher-order coefficients in terms of the Landau gauge
result g0(ε,α) – it is a perturbative version of the LKFT naturally derived in momentum space. We
have explicitly confirmed that an iteration of the epsilon expansion in the Feynman and the Landau
gauge through equation (4.2) yields the correct gauge dependence up to fourth loop order.

Three remarks are in order.

1. Our characterization of the gauge dependence (4.2) implies that (after considering all cancel-
lations) longitudinal photons effectively couple to external electron legs only. This explains
why internal photons are protected from applying a gauge transform in the LKFT approach.

2. We like to emphasize that our approach holds for massless as well for massive fermions –
the diagrammatics is completely the same, only the Feynman rule of the fermion propagator
is adjusted for the fermionic mass m.

3. Our diagrammatic characterization immediately reveals that the on-shell limit does not de-
pend on the gauge parameter ξ : application of the fermionic on-shell projectors to the right-
hand side of (4.2) vanishes as the external propagators are amputated.

5. Higher dimensional QED

In this section, we report on a first application of the structural result (4.2) in a state of the art
computation that has been conducted by Gracey [17] studying gauge theories in higher dimensions.

These enquiries are motivated due to the underlying universality that establishes relations be-
tween different gauge theories across different dimensions. In [17], Gracey constructed the follow-
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ing six and eight dimensional Lagrangians

Ld=6 =−
1
4
(∂µFνρ)(∂

µFνρ)− 1
2ξ

(∂µ∂
νAν)(∂

µ
∂

ρAρ)+ iψ /Dψ

Ld=8 =−
1
4
(∂µ∂νFρσ )(∂

µ
∂

νFρσ )− 1
2ξ

(∂µ∂ν∂
ρAρ)(∂

µ
∂

ν
∂

σ Aσ )+ iψ /Dψ

+
g2

2
32

(FµνFµν)(Fρσ Fρσ )+
g2

3
8

FµνFνρFρσ Fσ µ

and showed that they lie in same universality class as the as four-dimensional Quantum Electrody-
namics.

As the photon propagator in these higher dimensional field theories also decomposes into a
physical transversal part and a gauge dependent longitudinal part, similar diagrammatic cancella-
tions apply in these theories. In eight dimensions, quartic terms in the field-strength tensor yield
quartic photon interactions. Of course, these terms potentially disturb the characterization of the
gauge dependence (4.2). However, we proved that a contracted product of field-strength tensors
always yields a transversal interaction in [16]. These transversal interactions decouple from the
longitudinal part of the photon propagator. Therefore, the quartic photon vertices do not interfere
in our derivation the gauge dependence and after a dimensional adjustment the characterization
(4.2) also applies to the higher dimensional versions of Quantum Electrodynamics and reproduces
the anomalous dimensions in d = 6 and d = 8 derived by Gracey.

6. The massless electron propagator

We observed that the gauge dependence in the renormalized electron propagator can be fac-
torized into an exponential up to four loops. The characterization of the gauge dependence (4.2)
explains this observation and generalizes to an arbitrary loop number. Furthermore, this proves
that the anomalous dimension of the electron depends on the gauge parameter at the first loop order
only.

First, we strip off a Lorentz factor from the electron propagator S̃ = /qS. With this convention,
the characterization of the gauge dependence (4.2) can be conveyed into momentum space

∂ S̃
∂ξ

(
ln

q2

µ2 ,ξ

)
= ie2

∫ dD p
(2π)D S̃

(
ln
(q+ p)2

µ2 ,ξ

)
Tr
[
/q(/q+ /p)

]
[p2]2 (q+ p)2

. (6.1)

The factor (p2)2 in the momentum integration gives rise to an infrared divergence. In order to obtain
a similar differential equation for the renormalized electron propagator, it is necessary to specify
a boundary condition and subtract a counterterm which renders the infrared divergence finite and
implements the boundary condition. The construction of such a counterterm for the M̃OM scheme
has been discussed in detail in [16]. Here, we only give the resulting differential equation for the
renormalized massless electron propagator

∂ S̃
∂ξ

(
ln
−q2

µ2 ,ξ

)
= ln

(
−q2

µ2

)
α

4π
S̃
(

ln
−q2

µ2 ,ξ

)
, (6.2)
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which allows for the previously observed exponential solution

S̃(L,ξ ) = S̃(L,0)exp
[
ξ L

α

4π

]
. (6.3)

Finally, we exploit the fact that both the electron propagator in the general covariant gauge and the
Landau gauge have to fulfil the renormalization group equation. Further, recall that the renormal-
ization group functions of the coupling and the gauge parameter are equal up to a sign β = −δ .
This implies that the anomalous dimension in the general covariant gauge and the Landau gauge
just differ by the one-loop contribution

γ(α,ξ )− γ(α,0) =−ξ
α

4π
. (6.4)

This proves the statement that the anomalous dimension in M̃OM scheme depends on the gauge
parameter only at first loop order; see [16] for the MS scheme.

7. Conclusion

For Quantum Electrodynamics in the linear covariant gauge, we verified cancellation between
Feynman graphs and showed that the expansion in the gauge parameter of the sum over all con-
nected graphs allows for a closed diagrammatic recurrence. This recurrence is described through a
simple insertion into a one-loop graph and its iteration allows for the reconstruction of the general
covariant gauge from a specific gauge (such as the Feynman or Landau gauge). We have explicitly
checked that in the case of the massless electron propagator.

Based on this diagrammatic recurrence, we derived a differential equation for the renormalized
massless electron propagator. Its solution features an exponential behaviour in the gauge parameter
as observed in perturbative computations to four-loop order. Further, this proves the folklore state-
ment that the anomalous dimension of the electron depends on the gauge parameter at first order in
perturbation theory only.

It should be stressed that our approach is entirely based on the analysis of Feynman graphs
– it is of purely perturbative nature. Also, we have been able to derive results well-known from
the LKFT. Therefore, the characterization (4.2) of the gauge dependence can be considered as a
perturbative version of the LKFT in momentum space.

It is an ongoing project to work out similar recurrences for non-abelian gauge theories. Due
to the increased number of gauge boson interactions, one has to expect that a recurrence is not
described by a single skeleton but by an infinite sum over such like skeletons.

The ’t Hooft–Veltman gauge can be considered as a stepping stone towards a generalization
of our results towards the non-abelian case. This is a non-linear gauge fixing for Quantum Electro-
dynamics and enhances the linear covariant gauge fixing by tri- and tetravalent photon interactions
and a ghost sector. This non-linear gauge diagrammatically matches a non-abelian gauge theory
but still allows for simple cancellations.
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