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1. Introduction

The increasing accuracy of experimental data coming from the LHC is in many cases superior
to that of theoretical predictions. If it comes to corrections from Quantum Chromodynamics, the
state of the art for most processes of interest has recently changed from NLO to NNLO. Some gaps
still need to be filled, however, and additional work is required to fully test the NNLO results and
implement them in efficient public codes such that they can benefit experimental analyses. At the
same time, the calculation of the N3LO cross section for the Higgs boson production from gluon
fusion [1] has marked the first step on the way towards pushing the accuracy of QCD predictions
to the next level.

One of the most important class of measurements studied at the LHC are processes which
involve production of the top quark. And, in particular, top-anti-top production, which is relevant
both in studies of properties of the Standard Model, as well as in searches for new physics, as it
forms significant backgrounds to many signatures. The cross section for this process is currently
known up to NNLO [2, 3, 4, 5, 6, 7].

In this proceedings, we present the calculation of the complete, small-qT NNLO soft function
for top quark pair production. This result, together with the framework and tools developed to
obtain it, form key elements of an alternative calculation of the complete NNLO cross section for
that process.

The motivation behind our work is two-fold. On one hand, it will lead to a second, independent
result for the NNLO top pair production cross section, which, given the complexity of the calcu-
lation, is highly desirable. At the same time, our work forms a stepping stone towards developing
a general framework for calculations of N3LO QCD corrections to a wide range of processes of
relevance for hadron colliders.

2. Theoretical framework

The approach for achieving NNLO accuracy for the top pair production, presented in this
proceedings, is part of a wider strategy for calculating NmLO contributions to processes of the type

h1 +h2→ F (qT )+X , (2.1)

where two hadrons, h1 and h2, collide and produce an object F , which is registered in a detector,
together with an undetected QCD radiation X . Our framework is suitable both when F , whose
transverse momentum is denoted by qT , is a colour-neutral object (single EW boson, pair of EW
bosons, the Higgs), as well as when it carries colour, like in the case of the top quark pair.

If we choose to use the qT -slicing method, we are able to write the cross section as a sum of
two components [8, 9]

σF
NmLO
dΦ

=
∫ qT cut

0
dqT

dσF
NmLO

dΦdqT
+
∫

∞

qT cut

dqT
dσ

F+jet
Nm−1LO

dΦdqT
, (2.2)

each of which is separately finite. The advantage of this approach is that the second term in the
above equation, which represents resolved emissions, is required only at the Nm−1LO accuracy,
and it is already known in most relevant cases. On the contrary, the first term in Eq. (2.2), which
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combines virtual and unresolved real corrections, is usually unknown. However it is needed only
in the small-qT approximation.

In order to calculate the latter we use the Soft Collinear Effective Theory (SCET) [10], in
which the cross section factorizes at small qT according to the formula

dσF
NmLO

dΦdqT
=BNmLO

1 ⊗BNmLO
2 ⊗HNmLO⊗SNmLO +O

(
q2

T

q2

)
, (2.3)

where q2 is the invariant mass of the object F . The functions appearing in the above equation
account for contributions coming from different phase space regions of X . Specifically, the beam
functions Bi sum up emissions of collinear and anti-collinear partons, the hard functions, H, ac-
counts for hard radiation, and the soft function, S, sums emissions from soft, real gluons. The
calculation of each of these functions is considerably simpler than the calculation of the complete
cross section. In addition, some of the functions are already available from the literature.

In the case of the top quark pair production, the beam functions are known up to NNLO [11,
12] and the NNLO hard function can be extracted from Refs. [13, 14]. However, the small-qT soft
function is only known up to NLO [15, 16]. Hence, in order to achieve the NNLO accuracy of the tt̄
cross section, one needs to calculate the missing NNLO correction to the soft function appearing in
Eq. (2.3) (We note that such calculation shares many features with that of the NNLO soft function
for top pair production in the threshold limit [17, 18]. However, the result for the latter is not of
direct use in our context.)

The soft function for our process of interest can be schematically defined with the following
equation

Sbare(qT ,β ,θ) = ∑ δ (qT −|∑i ki⊥|)∏i δ+(k2
i ) . (2.4)

To this end, we focus on the qq̄→ tt̄ subprocess and introduce the following notation for the 4-
momenta: pq = mtn, pq̄ = mt n̄ and pt = mtv3 + l3, pt̄ = mtv4 + l4, where n = (1,0,0,1), n̄ =

(1,0,0,−1). We see that in the definition (2.4), the transverse momenta of real emissions are
restricted to sum up to a fixed value of qT . Because the gluons are soft, li�mtvi, and the velocities
satisfy Born kinematics, n+ n̄= v3+v4, at each perturbative order. Apart from qT , the soft function
of Eq. (2.4) depends on β =

√
1−4m2

t /q2 and θ , where the latter is the scattering angle of the top
quark in the tt̄ rest frame.

The NNLO soft function corresponds to a sum of all O
(
α2

s
)

contributions from Eq. (2.4).
They take forms of 2d-dimensional integrals which exhibit soft and rapidity singularities. The latter
arise when the light-cone components of the gluon 4-momenta become very small or very large,
and are not removed by dimensional regularization. In our calculation, we adopt the prescription
of Ref. [19] which turns the above divergences into poles in a new regulator α . Even though the
individual integrals suffer from rapidity divergences, their complete sum, hence the soft function,
is finite in the limit α → 0 [15, 19].
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Each function defined on the right hand side of Eq. (2.3), when calculated directly from dia-
grammatic definitions, like the one given in Eq. (2.4) for the soft function, is separately divergent.
These divergencies correspond to soft and collinear limits and they must cancel between the hard,
soft and beam functions, as the entire cross section has to be finite.

It turns out to be useful to remove divergences also at the level of the functions entering the fac-
torization formula (2.3). This can be achieved by the procedure of multiplicative renormalization.
For example, the renormalized soft function is given by

SSS(µ) = ZZZ†
s (µ,ε)SSS

bare(ε)ZZZs(µ,ε) , (2.5)

where the coefficient ZZZs(µ,ε) absorbs all soft divergences such that SSS(µ) is finite.
As usual in the procedure of renormalization, the renormalized object acquires dependence on

an arbitrary parameter µ , which has to vanish at the level of the cross section. This implies that the
renormalized soft function of small-qT factorization must satisfy the following RGE equation [20]

d
d ln µ

SSSiī(µ) =−γγγ
s†
iī SSSiī(µ)−SSSiī(µ)γγγ

s
iī , (2.6)

where
γγγ

s
iī = γγγ

h
iī−2γ

i111 , (2.7)

and γγγh
iī is defined as a non-Γcusp part of the full anomalous dimension matrix ΓΓΓ [21], while γ i is the

massless-particle anomalous dimension (and enters RGE equations for beam functions in Drell-
Yan and Higgs production [22, 23]). The soft anomalous dimension matrix γγγs is related to the soft
renormalization factor (also a matrix in colour space), ZZZs, as follows

γγγ
s =−ZZZ−1

s
dZZZs

d ln µ
. (2.8)

Each quantity in Eq. (2.5) has a perturbative expansion in the strong coupling αs. This allows
one to relate the bare and renormalized objects order by order. At NNLO, the renormalized soft
function is given by

SSS(2)ren = ZZZ†(2)
s SSS(0)bare +SSS(0)bareZZZ(2)

s +ZZZ†(1)
s SSS(0)bareZZZ(1)

s +ZZZ†(1)
s SSS(1)bare +SSS(1)bareZZZ(1)

s +SSS(2)bare−
β0

ε
SSS(1)bare . (2.9)

The quantity on the left hand side is finite, while the objects on the right hand side exhibit diver-
gencies in the soft limit. These divergencies are dimensionally regularized (in the MS scheme) and
they correspond to poles in ε . The first three terms on the right hand side of Eq. (2.9) contain the
pole part only, while other terms have both finite and pole parts. The poles of the bare soft func-
tion, SSS(2)bare, which we obtain through direct calculation following the definition of Eq. (2.4), should
match the poles from the other terms on the right hand side of Eq. (2.9), which can be determined
from the renormalization group. The cancellation of ε poles provides a strong cross check which
we will use as part of the validation of our framework.

3. NNLO soft function: methods of calculation

The soft function at NNLO receives contributions from several classes of diagrams. The com-
plete formula can be schematically written as

S(2)bare = S2-cut, qq̄ +S2-cut, gg +S1-cut +S0-cut . (3.1)
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Figure 1: Example diagrams contributing to the NNLO soft function for top pair production.

Example diagrams are given in Fig. 1. They include quark bubble, gluon bubble, abelian and non-
abelian graphs. We also notice that gluons can connect different numbers of distinct Wilson lines:
two, three or four.

We apply different methods of calculation to different classes of integrals. The bubble dia-
grams, as well as parts of the non-abelian, three-Wilson line, double-cut graphs, which we call
“tadpole”, are calculated almost entirely analytically with help of the method of differential equa-
tions. Single-cut integrals are calculated directly by a combination of analytic and numerical meth-
ods. The remaining integrals, namely those coming from double-cut, non-tadpole diagrams, are
computed with the method of sector decomposition, adapted to our specific problem. This set of
integrals poses the most difficult challenge in our calculation.

With an exception of the propagators introduced to regularize rapidity divergences, the bubble
diagrams depend only on the momenta k and k+ l. This feature allows one to first integrate them
over k+ l, a generalization of the standard vacuum polarization tensor calculation, and then solve
the integral over k with the method of differential equations.

Since the gluons connected to the Wilson lines are not cut in the bubble diagrams, the integrals
involve a function of θ(k2). In our calculation we trade it for the Dirac delta function at the cost of
introducing an extra integral over the mass by applying the identity 1 =

∫
∞

0 dm2δ (k2−m2). This
allows us then to use reverse unitarity and turn all delta functions into propagators. We obtain a
topology which consists of six propagators. All the integrals needed for the bubble diagrams can
be reduced to five master integrals for which we then derive a set of differential equations with
respect to the variable β . For reduction, we used our private C++ implementation of the Laporta
algorithm [24], which depends on FORM [25] and Fermat [26]. The structure of the set differential
equations is such that the general solutions for masters can be obtained iteratively as a series in α

and ε .
To calculate the double-cut contributions to the NNLO soft function, we designed the fol-

lowing integration strategy. We start from analytically integrating 3 out of 2d dimensions. Then,
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we map the remaining momenta into a unit hypercube (splitting the integral if necessary) and ap-
ply sector decomposition [27, 28] to disentangle overlapping singularities. Finally, we expand the
result in α and ε and numerically integrate the coefficients with help of the CUBA library [29].

4. NNLO soft function: results

The bare NNLO soft function has the following structure

S(2)bare(L⊥,β ,θ) =
1
ε2 S(2,−2)(L⊥)+

1
ε

S(2,−1)(L⊥)+S(2,0)(L⊥) , (4.1)

where L⊥ = ln
(
x2

T µ2/4e−2γE
)

and xT is a coordinate-space variable related to qT through Fourier
transform.

All the pole terms, as well as the L⊥-dependent part of the finite term in Eq. (4.1) can be
predicted from the renormalization group. The only contributions that has to be obtained through
direct calculation is the L⊥-independent part of S(2,0)(L⊥). Nevertheless, we calculate all terms,
singular, finite, L⊥-dependent and L⊥-independent, and use the redundant ones for cross checks
against the renormalization group predictions.

Even though the NNLO soft function exhibits at most 1/ε2 singularity, higher-order ε poles,
as well as α poles, appear in contributions from individual diagrams. We checked that all α poles,
including ε/α , as well as the 1/ε4 pole cancel within each colour structure. For example, the
coefficient in front of 1/ε4 in the complete NNLO soft function for the qq̄ channel reads(

0.003Nc−0.003Nc
−1 0.003Nc

−2 +0.0008N2
c −0.004

0.003Nc
−2 +0.0008N2

c −0.004 −0.002Nc
−3 +0.003Nc

−1 +0.0005N3
c −0.001Nc

)
, (4.2)

where we used some specific values of β = 0.4 and θ = 0.5. We see that the above result is
compatible with zero. We note that only double cut diagrams contribute to this pole.

Unlike the 1/ε4, and all the α poles, the 1/ε3 pole does not cancel within individual con-
tributions defined in Eq. (3.1). It cancels however between the 1-cut and 2-cut parts whose sum
reads(

0.0002Nc
−1−0.0001N3

c −0.0001Nc −0.0003Nc
−2 +0.000N2

c +0.0001
−0.0003Nc

−2 +0.0002N2
c +0.0001 0.0002Nc

−3−0.0001Nc
−1−0.0003N3

c +0.0001Nc

)
,

(4.3)
where, again, we used the values of β = 0.4 and θ = 0.5.

The double and single poles do not vanish, but, as mentioned earlier, they have to match
predictions from the RGE. And indeed, we see that[

S(2,−2)
direct +S(2,−2)

RGE

]
β=0.4,θ=0.5

= (4.4)(
−0.008Nc

−1−0.00006N3
c +0.008Nc 0.007Nc

−2 +0.001N2
c −0.009

0.007Nc
−2 +0.001N2

c −0.009 −0.005Nc
−3 +0.007Nc

−1 +0.0005N3
c −0.002Nc

)
,
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Figure 2: Comparison of numeric and analytic results for example graphs contributing to the n f part of the
NNLO soft function.

for the double pole, and[
S(2,−1)

direct +S(2,−1)
RGE

]
β=0.4,θ=0.5

= (4.5)(
0.002Nc

−1−0.0003N3
c −0.002Nc −0.002Nc

−2−0.0008N2
c +0.003

−0.002Nc
−2−0.0008N2

c +0.003 0.002Nc
−3−0.003Nc

−1−0.0001N3
c +0.001Nc

)
,

for the single pole.
The results from Eqs. (4.4) and (4.5) correspond to the real part of the NNLO soft function.

At this order, the soft function contains also an imaginary part, which originates from single-cut
diagrams. We have checked that our direct calculation perfectly reproduces the imaginary part of
the coefficients of the 1/ε2 and 1/ε poles predicted by renormalization group.

The above results provide strong checks of our framework. We were, however, able to validate
it further by comparing the numerical results for combinations of quark-bubble graphs, obtained
with the sector decomposition-based method, and the analytic results from the method of differen-
tial equations. An example comparison is presented in Fig. 2 where the points (lines) correspond
to numeric (analytic) coefficients of different powers in the expansion in α and ε . We observe
per-mille-level agreement for this and all the remaining graphs that contribute to the n f part of the
NNLO soft function.

Having done all the validations and cross checks, we are now in a position to calculate the
finite, L⊥-independent part of the bare NNLO soft function. By combining it with appropriate
contributions coming from SSS(1)bare, following Eq. (2.9), we obtain the renormalized soft function,
which, in the qq̄ channel and for a specific phase-space point, reads

S(2),ren
qq̄

(
β =

2
5
,θ =

π

4

)
=

(
198.682 −8.73644
−8.73644 211.739

)
+ i

(
0 23.0178

23.0178 0

)
. (4.6)

For more results, we refer the reader to Ref. [30].
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5. Conclusions

We presented the calculation of the complete, small-qT soft function for top pair production
at NNLO. In order to evaluate the most difficult divergent integrals, originating from non-bubble,
double cut diagrams, we developed a framework based on sector decomposition. Other integrals
were calculated either directly, like in the case of single-cut diagrams, or by the method of differen-
tial equations, which was applied to bubble integrals. We performed a three-step validation of our
results: by verifying that rapidity singularities, and higher-order ε poles cancel, by cross-checking
that our direct calculation reproduces all terms predicted by the renormalization group and, fi-
nally, by finding a perfect agreement between numeric results from the sector decomposition-based
framework and analytic results, for the graphs involving gauge, ghost or quark bubble. The NNLO,
small-qT soft function can now be used to obtain full tt̄ cross section at NNLO by means of the
qT -slicing method, as well as for small-qT resummation at NNLL’.
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