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1. Euler-Heisenberg Lagrangian and photon amplitudes

In 1936 Heisenberg and Euler [1] calculated what nowadays is called the one-loop QED ef-
fective Lagrangian in a constant field (“ Euler-Heisenberg Lagrangian” = EHL), obtaining the fol-
lowing well-known integral representation:

L (1)(a,b) = − 1
8π2

∫
∞

0

dT
T 3 e−m2T

[
(eaT )(ebT )

tanh(eaT ) tan(ebT )
− e2

3
(a2−b2)T 2−1

]
.

Here a,b are the two invariants of the Maxwell field, related to E, B by a2−b2 = B2−E2, ab =

E ·B. The superscript (1) stands for one-loop. A similar representation was obtained shortly later
for scalar QED by Weisskopf [2].

The EHL holds the information on the N - photon amplitudes in the low energy limit, where
all photon energies are small compared to the electron mass, ωi � m . Diagrammatically, this
corresponds to Fig. 1

This formula (called ‘AAM formula’ in the following) is highly remark-
able for various reasons. Despite of its simplicity it is a true all-loop result;
the rhs receives contributions from an infinite set of Feynman diagrams of
arbitrary loop order, as sketched in fig. 1.
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Figure 1: Diagrams contributing to ImL(all−loop)
scal (E) in the weak-field limit.

1

Figure 1: Sum of diagrams equivalent to the one-loop EHL

In [3] it was shown how to construct these amplitudes explicitly from the weak field expansion
coefficients ckl , defined by

L (1)(a,b) = ∑
k,l

ckl a2kb2l . (1.1)

In particularly, there it was shown that, for each N and each given helicity assignment, the depen-
dence on the momentum and polarization vectors can be absorbed into a single invariant χN .

2. Imaginary part and Sauter-Schwinger pair creation

If the field has an electric component (b 6= 0) then there are poles on the integration contour at
ebT = kπ which create an imaginary part. For the purely electric case one gets [4]

ImL (1)(E) =
m4

8π3 β
2

∞

∑
k=1

1
k2 exp

[
−πk

β

]
(2.1)

(β = eE/m2). Physically, in this decomposition the kth term relates to coherent creation of k
pairs in one Compton volume. In the following we will consider only the weak-field limit β � 1,
where only the leading k = 1 is relevant. Note that ImL (1)(E) depends on E non-perturbatively
(nonanalytically), which is consistent with the interpretation of pair creation as vacuum tunneling,
originally due to Sauter, where a virtual electron-positron pair turns real by extracting their rest
mass energies from the external field (Fig. 2).
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FIG. 1: Pair production as the separation of a virtual vacuum dipole pair under the influence of an external electric field.

building on earlier work of Sauter [18]. This result sets a basic scale of a critical field strength and intensity near
which we expect to observe such nonperturbative effects:

Ec =
m2c3

e h̄
≈ 1016 V/cm

Ic =
c

8π
E2

c ≈ 4 × 1029 W/cm2 (1.4)

As a useful guiding analogy, recall Oppenheimer’s computation [19] of the probability of ionization of an atom of
binding energy Eb in such a uniform electric field:

Pionization ∼ exp

[
−4

3

√
2mE

3/2
b

eEh̄

]
. (1.5)

Taking as a representative atomic energy scale the binding energy of hydrogen, Eb = me4

2h̄2 ≈ 13.6 eV, we find

P hydrogen ∼ exp

[
−2

3

m2 e5

E h̄4

]
. (1.6)

This result sets a basic scale of field strength and intensity near which we expect to observe such nonperturbative
ionization effects in atomic systems:

E ionization
c =

m2e5

h̄4 = α3Ec ≈ 4 × 109 V/cm

I ionization
c = α6Ic ≈ 6 × 1016 W/cm2 (1.7)

These, indeed, are the familiar scales of atomic ionization experiments. Note that E ionization
c differs from Ec by a factor

of α3 ∼ 4 × 10−7. These simple estimates explain why vacuum pair production has not yet been observed – it is an
astonishingly weak effect with conventional lasers [20, 21]. This is because it is primarily a non-perturbative effect,
that depends exponentially on the (inverse) electric field strength, and there is a factor of ∼ 107 difference between
the critical field scales in the atomic regime and in the vacuum pair production regime. Thus, with standard lasers
that can routinely probe ionization, there is no hope to see vacuum pair production. However, recent technological
advances in laser science, and also in theoretical refinements of the Heisenberg-Euler computation, suggest that lasers
such as those planned for ELI may be able to reach this elusive nonperturbative regime. This has the potential to open
up an entirely new domain of experiments, with the prospect of fundamental discoveries and practical applications,
as are described in many talks in this conference.

II. THE QED EFFECTIVE ACTION

In quantum field theory, the key object that encodes vacuum polarization corrections to classical Maxwell electro-
dynamics is the ”effective action” Γ[A], which is a functional of the applied classical gauge field Aµ(x) [22, 23, 24].
The effective action is the relativistic quantum field theory analogue of the grand potential of statistical physics, in
the sense that it contains a wealth of information about the quantum system: here, the nonlinear properties of the

quantum vacuum. For example, the polarization tensor Πµν = δ2Γ
δAµδAν

contains the electric permittivity εij and the

magnetic permeability µij of the quantum vacuum, and is obtained by varying the effective action Γ[A] with respect

Figure 2: Pair creation by an external field.

This connection between the effective action and the pair creation rate is based on the Optical
Theorem, which relates the imaginary part of the diagrams shown in Fig. 1 to the “ cut diagrams ”
shown in Fig. 3.

+ + · · ·

1

Figure 3: “Cut” diagrams describing Schwinger pair creation.

However, the latter individually all vanish for a constant field, which can emit only zero-energy
photons. Thus for a constant field we cannot use dispersion relations for individual diagrams; what
counts is rather the asymptotic behaviour of the diagrams for a large number of photons. The
appropriate generalization is then a Borel dispersion relation. This works in the following way [5]:
define the weak field expansion coefficients of the EHL by

L (1)(E) =
∞

∑
n=2

c(n)
(eE

m2

)2n
. (2.2)

It can be shown that their leading large - n behavior is

c(n) n→∞∼ c∞Γ[2n−2] . (2.3)

The Borel dispersion relation relates this leading behavior to the leading weak-field behavior of the
imaginary part of the Lagrangian:

ImL (1)(E)
β→0∼ c∞ e−

πm2
eE . (2.4)

Thus we have rederived the leading Schwinger exponential of (2.1) in a way that might seem
rather indirect and complicated. However, this approach turns out to be very useful for higher-loop
considerations.

3. Beyond one loop

The two-loop (one-photon exchange) correction to the EHL corresponds to the set of diagrams
shown in Fig. 4 (there is also a one-particle reducible contribution [6], but for our present purposes
it can be discarded).
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This formula (called ‘AAM formula’ in the following) is highly remark-
able for various reasons. Despite of its simplicity it is a true all-loop result;
the rhs receives contributions from an infinite set of Feynman diagrams of
arbitrary loop order, as sketched in fig. 1.

Number of external legs

Number of loops 4 6 8 · · ·

1

+ + + · · ·

2

+ + · · ·

· · · · · ·

3 · · · . . .
...

...
...

. . .
. . .

...

Figure 1: Diagrams contributing to ImL(all−loop)
scal (E) in the weak-field limit.

1

Figure 4: Feynman diagrams correposnding to the 2-loop EHL.

+ + · · ·

1

Figure 5: Feynman diagrams contributing to 2-loop Schwinger pair creation.

The corresponding corrections to the tree-level pair creation diagrams of Fig. 3 are shown in
Fig. 5.

Even at the two-loop level, the study of the EHL has already a quite substantial history [7, 8,
9, 10]. Unfortunately, it leads to a type of rather intractable two-parameter integrals. However, the
imaginary part ImL (2)(E) admits a decomposition similar to Schwinger’s one-loop one, eq. (2.1),
and in the weak-field limit it becomes a simple addition to it [8]:

ImL (1)(E)+ ImL (2)(E)
β→0∼ m4β 2

8π3

(
1+απ

)
e−

π

β .

In [8], Lebedev and Ritus further noted that, if one assumed that higher orders will lead to expo-
nentiation,

ImL (1)(E)+ ImL (2)(E)+ ImL (3)(E)+ . . .
β→0∼ m4β 2

8π3 exp
[
−π

β
+απ

]
= ImL (1)(E) eαπ

then the result could be interpreted in the tunneling picture as the corrections to the Schwinger pair
creation rate due to the pair being created with a negative Coulomb interaction energy. This lowers
the energy that has to be drawn from the field, and can be interpreted as a mass shift

m(E)≈ m+δm(E), δm(E) =−α

2
eE
m

where δm(E) is just the “Ritus mass shift”, originally derived from the crossed process of one-loop
electron propagation in the field [11].

Unbeknownst to those authors, for scalar QED the corresponding exponentiation had been
conjectured already two years earlier by Affleck, Alvarez and Manton [12]:

∞

∑
l=1

ImL
(l)

scal(E)
β→0∼ −m4β 2

16π3 exp
[
−π

β
+απ

]
= ImL

(1)
scal(E) eαπ .

However, they arrived at this conjecture in a very different way, namely using Feynman’s worldline
path integral formalism in a semi-classical approximation ( “worldline instanton”).
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Number of external legs

Number of loops 4 6 8 · · ·
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Figure 1: Diagrams contributing to ImL(all−loop)
scal (E) in the weak-field limit.

Moreover, the mass appearing in (1.15) is argued to be still the physical
renormalized mass, which means that the above figure should strictly speak-
ing include also the mass renormalization counter diagrams which appear in
EHL calculations starting from two loops.

The derivation given in [33] is very simple, if formal. Based on a station-
ary path approximation of Feynman’s worldline path integral representation
[34] of Lscal(E), it actually uses only a one-loop semiclassical trajectory, and
arguments that this trajectory remains valid in the presence of virtual pho-
ton insertions. This also implies that non-quenched diagrams do not con-
tribute in the limit (1.15), which is why we have shown only the quenched
ones in fig. 1.

Although the derivation of (1.15) in [33] cannot be considered rigorous,
an independent heuristic derivation of (1.15), as well as extension to the
spinor QED case (with the same factor of eαπ) was given by Lebedev and
Ritus [31] through the consideration of higher-order corrections to the pair
creation energy in the vacuum tunneling picture. At the two-loop level,
(1.15) and its spinor QED extension state that

6

Figure 6: Feynman diagrams contributing to the AAM formula.

Thus, although neither derivation is rigorous, there is much that speaks for the exponentiation
conjecture. If true, it would constitute a unique example of a double summation of an infinite set
of Feynman diagrams, involving any number of loops and legs, depicted in Fig. 6.

Here it is understood that the “horizontal” summation is performed using the leading large n
approximation for the weak-field expansion coefficients, which at each fixed loop order produces
the same leading Schwinger exponential e−

π

β . The “vertical” summation over an increasing num-
ber of internal photon insertions produces the Affleck-Alvarez-Manton/Lebedev-Ritus factor eαπ .
Note that diagrams with more than one electron loop are nor included, since they get suppressed
in the weak-field/large n limit. On the other hand, the counterdiagrams from mass renormaliza-
tion, although not shown here, have to be included. What is very surprising about the “vertical”
exponentiation is, that it has produced the analytic factor eαπ ! This is counter-intuitive, since the
growth in the number of diagrams caused by the insertion of an increasing number of photons into
an electron loop would lead one to expect a vanishing radius of convergence in α .

Let us mention also that, using Borel analysis, this factor can be transferred from the imaginary
part of the effective Lagrangian to the large - N limit of the N - photon amplitudes with all “+”
polarizations [13]:

limN→∞

Γ(all−loop)[k1,ε
+
1 ; . . . ;kN ,ε

+
N ]

Γ(1)[k1,ε
+
1 ; . . . ;kN ,ε

+
N ]

= eαπ .

Here an essential ingredient is the above-mentioned fact that, independently of the loop order, the
complete dependence of the N - photon amplitudes for a fixed helicity assignment can be absorbed
into a single invariant.

4. The EHL in 1+1 dimensional QED

The exponentiation conjecture has been verified at the two-loop order by explicit computation
in both scalar and spinor QED. A three-loop check is in order, but calculating the three-loop EHL
in D = 4 seems presently technically out of reach. In 2005, Krasnansky [14] studied the EHL for
scalar QED in various spacetime dimensions. In 1+1 dimensions, he found the following explicit
result for this Lagrangian:

4
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L
(2)(2D)

scal (κ) = − e2

32π2

(
ξ

2
2D−4κξ

′
2D
)
,

where ξ2D =−
(

ψ(κ + 1
2)− ln(κ)

)
, ψ(x) = Γ′(x)/Γ(x), κ = m2/(2e f ), f 2 = 1

4 FµνFµν .
This is simpler than in four dimensions, but still non-trivial (in fact very similar in structure

to the EHL in four dimensions for a self-dual field [16]), which suggests to use 1+1 dimensional
QED as a toy model for testing the exponentiation conjecture. In [17] two of the authors and G.
McKeon used the method of [12] to generalize the exponentiation conjecture to the 2D case, in the
following form:

ImL
(all−loop)

2D ∼ e−
m2π

eE +α̃π2κ2
(4.1)

where α̃ = 2e2

πm2 is our definition of the fine-structure constant in 2D. There we also calculated the
one- and two-loop contributions to the 2D EHL, obtaining (dropping now the subscript ‘2D’)

L (1)(κ) = −m2

4π

1
κ

[
lnΓ(κ)−κ(lnκ−1)+

1
2

ln
( κ

2π

)]
,

L (2)(κ) =
m2

4π

α̃

4

[
ψ̃(κ)+κψ̃

′(κ)+ ln(λ0m2)+ γ +2
]
,

where ψ̃(x)≡ ψ(x)− lnx+ 1
2x . This allowed us to obtain explicit formulas not only for c(1)(n) but

also for c(2)(n):

c(1)(n) = (−1)n+1 B2n

4n(2n−1)
,

c(2)(n) = (−1)n+1 α̃

8
2n−1

2n
B2n .

Using properties of the Bernoulli numbers Bn, it was then easy to verify the following prediction
made by the exponentiation conjecture for the ratio between the two-loop and the one-loop expan-
sion coefficients:

lim
n→∞

c(2)(n)
c(1)(n+1)

= α̃π
2

(the relative shift in the argument of the coefficients is due to the fact that, unlike the four-dimensional
case, in two dimensions the term involving α̃ in the exponent in (4.1) also involves the external
field). The convergence of c(2)(n) to the asymptotic prediction is rather fast (Fig. 7):
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Figure 7: Convergence of the two-loop coefficients to the asymptotic prediction.

α

p_

µ

p’

k

q
p = p ^ p

ν

β

The only contribution from the double trace within (5) will be (odd powers of m never appear by parity,
Euclidean QED so the amplitude is real) the real and even (in m) part of:

ΨA =
e4

16π6

∫ ∞

0
dzdz̄dẑdz γ̄γ′

∫
d2q d2k d2p

k4q4
ϕϕ̄ϕ̂ϕ′tr(gk/p̄/ k/ĝq/ p/ ′q/ ) (6)

the terms in the trace that contribute are two, namely, mass dependent and mass independent:

(1) = m2tr(eσ3(z−ẑ)k/p̄/ k/q/ p/ ′q/ )

(2) = −γγ̂tr(p/ k/p̄/ k/p/ q/ p/ ′q/ ) (7)

Also, we write the p-dependent part of the argument of the exponential by defining

ϕϕ̄ϕ̂ϕ′ := Ωe−ap2+p·βe−(t̄k2+t′q2), (8)

where we abbreviate t ≡ tanh z/ef , t′ ≡ tanh z′/ef , etc., defined

a = t + t̄ + t̂ + t′, Ω =
γγ̂γ̄γ′

(ef)4
e−2κ(z+ẑ+z̄+z′), and the vector β = −2(t̄k + t′q). (9)

The amplitude is then given by

ΨA =
e4

16π6

∫
dz γ̄γ′Ω

∫
d2k d2q

k4q4
e−(t̄k2+t′q2)

∫
d2p e−ap2+p·β [(1) + (2)] (10)

where
∫

dz is an obvious shorthand. We find both contributions separately

2.1 Term (1) p-integral

We decompose further

(1) = m2tr(eσ3(z−ẑ)[k/p/ k/q/ p/ q/ + q2k/p/ k/q/ + k2k/q/ p/ q/ + k2q2k/q/ ]) := (1)a + (1)b + (1)c + (1)d (11)

A straightforward calculation gives after some work

2

4 Final result for  A

Adding up both contributions and taking prefactors into account gives finally the integral representation:

 A =
e4

8⇡3(ef)4

Z 1

0
dzdz̄dẑdz0

e�2(z+ẑ+z̄+z0)

a2 cosh z cosh ẑ(cosh z̄ cosh z0)2

⇥
"
m2 cosh(z � ẑ) � 2

a cosh z cosh ẑ

#
(32)

=
e4

4⇡3ef

Z 1

0
dzdz̄dẑdz0

e�2(z+ẑ+z̄+z0)

A2 cosh z cosh ẑ(cosh z̄ cosh z0)2

(33)

⇥
"
 cosh(z � ẑ) � 1

A cosh z cosh ẑ

#
(34)

where
A = tanh z + tanh z0 + tanh ẑ + tanh z̄

5 Diagram B

α

ν

β

p
_

p

p

p’
 ^

q

k

µ

We will use k, q, and p as the independent variables. The remaining variables are expressed in terms of them
as

p0 = p + q

p̄ = p + k

p̂ = p + q + k

(35)

With these conventions, the contribution of this diagram is written as

5

A B

Figure 8: Single electron-loop contributions to the three-loop EHL.

5. The three-loop EHL in 1 + 1 dimensional QED

At the three-loop level, the calculation of the EHL becomes challenging even in the two-
dimensional case. There are five different topologies of diagrams, but for the exponentiation con-
jecture only the diagrams with a single electron loop are relevant, depicted in Fig. 8.

We note that, due to the super-renormalizability of two-dimensional QED, at three loops the
EHL is already UV finite. There are spurious IR - divergences, but we found that they can be
removed by going to the “traceless” or “anti-Feynman” gauge ξ = −1. Although this gauge is
known to have some special properties (see [15] and A. Kataev’s talk at this workshop) it is not
clear to us why this is the case. Both diagrams lead to four-parameter integrals with a trigonometric
integrand. The one for diagram A is simple:

L 3A( f ) =
α̃2m2

32π

∫
∞

0
dwdw′dŵdw̄ IA e−a ,

IA =
ρ3

A2 coshρwcoshρŵ(coshρw̄coshρw′)2

[
coshρ(w− ŵ)

2ρ
− 1

Acoshρwcoshρŵ

]
,

where ρ = e f
m2 ,a = w+w′+ ŵ+ w̄,A = tanhρw+ tanhρw′+ tanhρŵ+ tanhρw̄. The calculation

of its contribution to the weak-field expansion coefficients c(3)A(n) = α̃2

64 ΓA
n is straightforward, and

yields rational numbers. The first few are

Γ
A
0 =−1

3
,ΓA

1 =− 1
30

,ΓA
2 =

17
63

,ΓA
3 =

251
99

, . . . (5.1)

(so far we have obtained 13 coefficients). As one would expect, the nonplanar diagram B leads to
a more complicated integrand:

6
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L 3B( f ) =
α̃2m2

128π

∫
∞

0
dwdw′dŵdw̄ IB e−a ,

IB =
ρ3

cosh2
ρwcosh2

ρw′ cosh2
ρŵcosh2

ρw̄
B

A3C

−ρ
cosh(ρw̃)

coshρwcoshρw′ coshρŵcoshρw̄

[ 1
A
− C

G2 ln
(

1+
G2

AC

)]
,

B = (tanh2z+ tanh2ẑ)(tanhz′+ tanhz̄)+(tanh2z′+ tanh2z̄)(tanhz+ tanhẑ) ,

C = tanhz tanhz′ tanh ẑ+ tanhz tanhz′ tanhz̄+ tanhz tanhẑ tanhz̄+ tanhz′ tanhẑ tanhz̄ ,

G = tanhz tanhẑ− tanhz′ tanhz̄

(z = ρw etc.). For diagram B, the calculation of the weak-field expansion coefficients turned out
to be much more difficult than for A. This is not only because the integrals are of a more difficult
structure, and this time produce also ζ3 values, but also because the expansion in the external field
creates huge numerator polynomials in the Feynman parameters. In a first attempt using numerical
integration [18] we obtained only six coefficients, which is much too few for our purposes. In a
forthcoming paper, we show how to use the high symmetry of diagram B to solve both problems.
For obtaining a first integral, we introduce the operator

d̃ ≡ ∂

∂w
− ∂

∂w′
+

∂

∂ ŵ
− ∂

∂ w̄

which acts simply on the trigonometric building blocks of the integrand. Integrating by parts with
this operator, it is possible to write the integrand of the n-th coefficient βn as a total derivative
βn = d̃θn. Then, using again the symmetries of diagram B,

∫
∞

0
dwdw′dŵdw̄ e−a

βn =
∫

∞

0
dwdw̄dŵdw′d̃ e−(w+w′+ŵ+w̄)

θn = 4
∫

∞

0
dwdw′dŵ e−(w+w′+ŵ)

θn|w̄=0 .

The remaining integrals are already of a standard type. In this way we obtained the first two
coefficients:

Γ
B
0 = −3

2
+

7
4

ζ3, Γ
B
1 =−251

120
+

35
16

ζ3 . (5.2)

We can also predict that all coefficients will be of the form r1 + r2ζ3 with rational numbers r1,r2.
For the purpose of obtaining more compact Feynman numerator polynomials, we note that

Diagram B has the symmetries

w ↔ ŵ

w′ ↔ w̄

(w, ŵ) ↔ (w′, w̄)

7



P
o
S
(
L
L
2
0
1
8
)
0
3
5

Multiloop EHL Christian Schubert

Those generate the dihedral group D4. Using the theory of polynomial invariants of that group, this
allows one to rewrite the numerator polynomials as polynomials in the variable w̃≡w−w′+ ŵ− w̄
with coefficients that are polynomials in the four D4 - invariants a,v, j,h,

a = w+w′+ ŵ+ w̄ ,

v = 2(wŵ+w′w̄)+(w+ ŵ)(w′+ w̄) ,

j = aw̃−4(wŵ−w′w̄) ,

h = a(ww′ŵ+ww′w̄+wŵw̄+w′ŵw̄)+(wŵ−w′w̄)2 .

These invariants are moreover chosen such that they are annihiliated by d̃. Thus they are well-
adapted to the integration-by-parts algorithm. This very significantly reduces the size of the ex-
pressions generated by the expansion in the field.

6. Outlook

To summarize, we are confident to get enough expansion coefficients to settle the question of
the validity of the exponentiation conjecture in 1+ 1 dimensional QED by the time of Loops and
Legs 2020. The techniques that we have developed for the calculation of the 3-loop EHL in 2D
should also become useful in an eventual calulation of this Lagrangian in four dimensions.
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