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Multiloop EHL Christian Schubert

1. Euler-Heisenberg Lagrangian and photon amplitudes

In 1936 Heisenberg and Euler [1] calculated what nowadays is called the one-loop QED ef-
fective Lagrangian in a constant field (“ Euler-Heisenberg Lagrangian” = EHL), obtaining the fol-
lowing well-known integral representation:

ZW(a,b) =
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Here a, b are the two invariants of the Maxwell field, related to E, B by a*—b>*=B*—E? ab=
E -B. The superscript (1) stands for one-loop. A similar representation was obtained shortly later
for scalar QED by Weisskopf [2].

The EHL holds the information on the N - photon amplitudes in the low energy limit, where
all photon energies are small compared to the electron mass, @; < m . Diagrammatically, this

Figure 1: Sum of diagrams equivalent to the one-loop EHL

corresponds to Fig. 1

In [3] it was shown how to construct these amplitudes explicitly from the weak field expansion
coefficients ¢y, defined by

LW(a,b) =Y crya®v?. (1.1)
k.l

In particularly, there it was shown that, for each N and each given helicity assignment, the depen-
dence on the momentum and polarization vectors can be absorbed into a single invariant .

2. Imaginary part and Sauter-Schwinger pair creation

If the field has an electric component (b # 0) then there are poles on the integration contour at
ebT = km which create an imaginary part. For the purely electric case one gets [4]

4 oo

Im?V(E) = %[32 k; 2 exp {—”k] @.1)
(B = eE/m?). Physically, in this decomposition the kth term relates to coherent creation of k
pairs in one Compton volume. In the following we will consider only the weak-field limit f < 1,
where only the leading k = 1 is relevant. Note that Im.Z(!) (E) depends on E non-perturbatively
(nonanalytically), which is consistent with the interpretation of pair creation as vacuum tunneling,
originally due to Sauter, where a virtual electron-positron pair turns real by extracting their rest
mass energies from the external field (Fig. 2).
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Figure 2: Pair creation by an external field.

This connection between the effective action and the pair creation rate is based on the Optical
Theorem, which relates the imaginary part of the diagrams shown in Fig. 1 to the * cut diagrams ”’
shown in Fig. 3.

R S R u s B
Figure 3: “Cut” diagrams describing Schwinger pair creation.

However, the latter individually all vanish for a constant field, which can emit only zero-energy
photons. Thus for a constant field we cannot use dispersion relations for individual diagrams; what
counts is rather the asymptotic behaviour of the diagrams for a large number of photons. The
appropriate generalization is then a Borel dispersion relation. This works in the following way [5]:
define the weak field expansion coefficients of the EHL by

- eEN\2n
Z0(E) =Y c(n)<ﬁ> . 2.2)
n=2
It can be shown that their leading large - n behavior is
c(n) "7 eI 2n—2]. (2.3)

The Borel dispersion relation relates this leading behavior to the leading weak-field behavior of the
imaginary part of the Lagrangian:

7[m2
meW(E) P20 e e . 2.4)
Thus we have rederived the leading Schwinger exponential of (2.1) in a way that might seem
rather indirect and complicated. However, this approach turns out to be very useful for higher-loop
considerations.

3. Beyond one loop

The two-loop (one-photon exchange) correction to the EHL corresponds to the set of diagrams
shown in Fig. 4 (there is also a one-particle reducible contribution [6], but for our present purposes
it can be discarded).
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Figure 4: Feynman diagrams correposnding to the 2-loop EHL.
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Figure 5: Feynman diagrams contributing to 2-loop Schwinger pair creation.

The corresponding corrections to the tree-level pair creation diagrams of Fig. 3 are shown in
Fig. 5.

Even at the two-loop level, the study of the EHL has already a quite substantial history [7, 8,
9, 10]. Unfortunately, it leads to a type of rather intractable two-parameter integrals. However, the
imaginary part Im.Z(?) (E) admits a decomposition similar to Schwinger’s one-loop one, eq. (2.1),
and in the weak-field limit it becomes a simple addition to it [8]:

B—0 m4ﬁ2
873

Im.ZY(E) +Im.2? (E) (1+an)e b,

In [8], Lebedev and Ritus further noted that, if one assumed that higher orders will lead to expo-
nentiation,

m4ﬁ2
873

ImZW(E)+ImZ?(E)+Im L3 (E) + ... e~ exp[—z+a7r] = ImZV(E) ™"

then the result could be interpreted in the tunneling picture as the corrections to the Schwinger pair
creation rate due to the pair being created with a negative Coulomb interaction energy. This lowers
the energy that has to be drawn from the field, and can be interpreted as a mass shift

ocE
E)=~ om(E om(E)=———
m(E) ~m+8m(E), Sm(E)=—3=
where dm(E) is just the “Ritus mass shift”, originally derived from the crossed process of one-loop
electron propagation in the field [11].
Unbeknownst to those authors, for scalar QED the corresponding exponentiation had been

conjectured already two years earlier by Affleck, Alvarez and Manton [12]:

m4BZ
1673

Y imz k) P20 - (E) e,
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exp [—% + Om] = Il’n.,%(cla)l

However, they arrived at this conjecture in a very different way, namely using Feynman’s worldline
path integral formalism in a semi-classical approximation ( “worldline instanton”).
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Figure 6: Feynman diagrams contributing to the AAM formula.

Thus, although neither derivation is rigorous, there is much that speaks for the exponentiation
conjecture. If true, it would constitute a unique example of a double summation of an infinite set
of Feynman diagrams, involving any number of loops and legs, depicted in Fig. 6.

Here it is understood that the “horizontal” summation is performed using the leading large n
approximation for the weak-field expansion coefficients, which at each fixed loop order produces
the same leading Schwinger exponential e 7. The “vertical” summation over an increasing num-
ber of internal photon insertions produces the Affleck-Alvarez-Manton/Lebedev-Ritus factor e*”.
Note that diagrams with more than one electron loop are nor included, since they get suppressed
in the weak-field/large n limit. On the other hand, the counterdiagrams from mass renormaliza-
tion, although not shown here, have to be included. What is very surprising about the “vertical”
exponentiation is, that it has produced the analytic factor e**! This is counter-intuitive, since the
growth in the number of diagrams caused by the insertion of an increasing number of photons into
an electron loop would lead one to expect a vanishing radius of convergence in «.

Let us mention also that, using Borel analysis, this factor can be transferred from the imaginary
part of the effective Lagrangian to the large - N limit of the N - photon amplitudes with all “+”
polarizations [13]:

L@I=100R) [y e sk, €]
r(l)[khg;r;...;kN,S;/r]

an

Here an essential ingredient is the above-mentioned fact that, independently of the loop order, the
complete dependence of the N - photon amplitudes for a fixed helicity assignment can be absorbed
into a single invariant.

4. The EHL in 1+1 dimensional QED

The exponentiation conjecture has been verified at the two-loop order by explicit computation
in both scalar and spinor QED. A three-loop check is in order, but calculating the three-loop EHL
in D = 4 seems presently technically out of reach. In 2005, Krasnansky [14] studied the EHL for
scalar QED in various spacetime dimensions. In 1+1 dimensions, he found the following explicit
result for this Lagrangian:
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where & = — (Y(x+ 3) ~In(x) ), W(x) = I'(0)/T(x), Kk =/ (2ef), 2= §FuFH.

This is simpler than in four dimensions, but still non-trivial (in fact very similar in structure
to the EHL in four dimensions for a self-dual field [16]), which suggests to use 1+1 dimensional
QED as a toy model for testing the exponentiation conjecture. In [17] two of the authors and G.
McKeon used the method of [12] to generalize the exponentiation conjecture to the 2D case, in the
following form:

2
11—1 _m°T | x2.2
Im %Z(a oop) ~ e E +an-k (4‘1)

~ 2, .. )
where @t = % is our definition of the fine-structure constant in 2D. There we also calculated the

one- and two-loop contributions to the 2D EHL, obtaining (dropping now the subscript ‘2D’)

2
20 (k) = _E% [0 ()~ K(ink— 1) +%m(%)} ,
LO0) = L g(0) 100/ () + g +7+2].

where ¥(x) = y(x) — Inx+ 2—1)( This allowed us to obtain explicit formulas not only for ¢(!)(r) but
also for ¢ (n):

C(l)(n) = (=1) Hm’
a1 @2n—1
0(2)(”) = (_1) Hg m 2n -

Using properties of the Bernoulli numbers B,,, it was then easy to verify the following prediction
made by the exponentiation conjecture for the ratio between the two-loop and the one-loop expan-
sion coefficients:

@)
lim —S ) _ g2
n—oo c(1) (n + 1)
(the relative shift in the argument of the coefficients is due to the fact that, unlike the four-dimensional
case, in two dimensions the term involving & in the exponent in (4.1) also involves the external
field). The convergence of ¢(2) (n) to the asymptotic prediction is rather fast (Fig. 7):
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Figure 7: Convergence of the two-loop coefficients to the asymptotic prediction.

Figure 8: Single electron-loop contributions to the three-loop EHL.

5. The three-loop EHL in 1 + 1 dimensional QED

At the three-loop level, the calculation of the EHL becomes challenging even in the two-
dimensional case. There are five different topologies of diagrams, but for the exponentiation con-
jecture only the diagrams with a single electron loop are relevant, depicted in Fig. 8.

We note that, due to the super-renormalizability of two-dimensional QED, at three loops the
EHL is already UV finite. There are spurious IR - divergences, but we found that they can be
removed by going to the “traceless” or “anti-Feynman” gauge & = —1. Although this gauge is
known to have some special properties (see [15] and A. Kataev’s talk at this workshop) it is not
clear to us why this is the case. Both diagrams lead to four-parameter integrals with a trigonometric
integrand. The one for diagram A is simple:

o2m?
321

LA(f) = .A dwdw' dwdw Iy e,

p? coshp(w—w) 1

AT A cosh pwcosh pw(cosh pwcosh pw’)? 2p Acoshpwcoshpw

where p = %,a =w+w +W+w,A = tanhpw + tanhpw’ + tanhpWw + tanhpw. The calculation

_iﬁFA

of its contribution to the weak-field expansion coefficients ¢4 (n) = ol

is straightforward, and
yields rational numbers. The first few are

1 1 17 251
0 371 30276377 997

(so far we have obtained 13 coefficients). As one would expect, the nonplanar diagram B leads to

(5.1)

a more complicated integrand:



Multiloop EHL Christian Schubert

ZLP(f) = 12871'/0 dwdw'dwdw Iz e,
I P B
B cosh? pwecosh? pw’ cosh? pw cosh? pw A3C
h(pw 1 C G*
e s s~ 0+ )
coshpwcoshpw’coshpwcoshpw LA G2 AC

B = (tanh’z+ tanh?2)(tanhz’ 4 tanhz) + (tanh?2z’ + tanh®Z) (tanhz + tanh2) ,
C = tanhztanhz tanhZ + tanhz tanhz’ tanhZ + tanhz tanhZ tanhZ + tanhz’ tanh2 tanhz ,

G = tanhztanhZ — tanhz’ tanhz

(z = pw etc.). For diagram B, the calculation of the weak-field expansion coefficients turned out
to be much more difficult than for A. This is not only because the integrals are of a more difficult
structure, and this time produce also {3 values, but also because the expansion in the external field
creates huge numerator polynomials in the Feynman parameters. In a first attempt using numerical
integration [18] we obtained only six coefficients, which is much too few for our purposes. In a
forthcoming paper, we show how to use the high symmetry of diagram B to solve both problems.
For obtaining a first integral, we introduce the operator

o9 0,0 3
T dw ow ow

Cow
which acts simply on the trigonometric building blocks of the integrand. Integrating by parts with

this operator, it is possible to write the integrand of the n-th coefficient B, as a total derivative
B, = d6,. Then, using again the symmetries of diagram B,

/ dwdw'dvwdw e B, = / dwdwdwdw'd e~ g — 4 / dwdw'dw e T g o o
0 0 0

The remaining integrals are already of a standard type. In this way we obtained the first two
coefficients:

3

7 251 35
=_-4° 2=
2+4C35 1

—— 4+ —=3. 52
20 " 16 62
We can also predict that all coefficients will be of the form r; + r, {3 with rational numbers r, ;.
For the purpose of obtaining more compact Feynman numerator polynomials, we note that
Diagram B has the symmetries
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Those generate the dihedral group D4. Using the theory of polynomial invariants of that group, this
allows one to rewrite the numerator polynomials as polynomials in the variable w=w —w'+Ww—w
with coefficients that are polynomials in the four Dy - invariants a, v, j, h,

a=w+w+W+w,
v =2 +ww)+(w+w)(W +w),
j=aw—4wh—nw'w),
h = a(ww'w +ww'w + wid +w'ww) + (wi —w'w)?.
These invariants are moreover chosen such that they are annihiliated by d. Thus they are well-

adapted to the integration-by-parts algorithm. This very significantly reduces the size of the ex-
pressions generated by the expansion in the field.

6. Outlook

To summarize, we are confident to get enough expansion coefficients to settle the question of
the validity of the exponentiation conjecture in 1+ 1 dimensional QED by the time of Loops and
Legs 2020. The techniques that we have developed for the calculation of the 3-loop EHL in 2D
should also become useful in an eventual calulation of this Lagrangian in four dimensions.
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