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1. Introduction

Plans for future electron-positron colliders are currently being put forward in Europe (FCC-
ee [1], CLIC [2]), China (CEPC [3]) and Japan (ILC [4] ). These machines would provide us with
high-precision measurements of various Standard Model (SM) observables, which could help not
only to scrutinize the properties of the recently discovered scalar boson, but also to improve our
understanding of the strong force.

The latter can be approached by studying QCD event shape observables such as Thrust [5,6], C-
parameter [7–9], Jet Broadening [10–12], Jet Masses [13] or Energy-Energy Correlation (EEC) [14].
The event shape observables represent a special set of infrared (IR) safe quantities that were designed
to be equally well accessible through experimental measurements and calculations in perturbative
QCD (pQCD). In the following, we will focus on the EEC, which can be defined by considering
electron-positron annihilation into two hadrons plus anything e+e−→ a+b+X and measuring the
energies of the hadrons a and b with two calorimeters separated by the angle χ . EEC corresponds to
the differential angular distribution of the energy flowing through these calorimeters and is defined
as

dΣ(χ)

d cos χ
= ∑

a,b

∫ EaEb

Q2 δ (cosθab− cos χ)dσa+b+X , cosθab = p̂ppa · p̂ppb, (1.1)

with Q2 being the total CM energy squared, while p̂ppa and p̂ppb denote the directions of the hadron
3-momenta. In pQCD we can use the corresponding momentum sum rule to calculate this quantity
by replacing the hadrons with partons, where the leading contribution arises from the process
e+e−→ qq̄g. Notice that EEC also receives nonperturbative corrections (cf. [15] for more details),
but those are beyond the scope of this work.

The analytic LO result for this observable was presented in the original publication [14] and is
given by

1
σtot

dΣ(χ)

d cos χ
=

αs(µ)

2π
CF

3−2z
4(1− z)z5

[
3z(2−3z)+2(2z2−6z+3) log(1− z)

]
+O(α2

s ), (1.2)

where we introduced z≡ (1−cos χ)/2 and σtot is the Born cross section for e+e−→ qq̄. Subsequent
NLO calculations were carried out using numerical methods [16–27]. The publicly available code
EVENT2 provides a stable implementation of the dipole subtraction method [25,26] and can be used
to obtain reliable NLO results. More recently, the NNLO results were derived in the CoLoRfulNNLO
subtraction scheme [28, 29]. An important milestone on the way to obtain analytic results beyond
LO was the NLO calculation of EEC in the N = 4 Supersymmetric Yang-Mills (SYM) theory [30].

In this proceeding we briefly report on the first fully analytic result for EEC at NLO. We explain
how this result was obtained by combining publicly available tools for automatic calculations in a
clever way and discuss the challenges that we faced during this process. Finally, we present the final
result, which exhibits a remarkably simple structure and contains only classical polylogarithms up
to weight 3. For details, we refer to our original publication [31].

2. Method

The LO contribution1 to the EEC is given by just two tree-level Feynman diagrams, that
1In our calculation we take all quarks to be massless and neglect the small [32] contribution from the Z-boson pole.
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describe the electron-positron annihilation into a quark-antiquark pair and a gluon. At NLO one
has to consider the virtual correction to e+e−→ q(p1)+ q̄(p2)+ g(p3) and three classes of real
radiative corrections (cf. Fig. 1).
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Figure 1: Representative QCD diagrams for the three classes of real corrections in EEC.

The generation of the corresponding Feynman amplitudes and the calculation of the matrix
elements squared M 2 can be carried out straightforwardly using QGRAF [33] and FORM [34]
together with the COLOR [35] package. The main challenge in obtaining the analytic results for
EEC is the evaluation of the phase-space integral in Eq. 1.1, where for each combination of the
measured particles (e. g. qq̄ or qg), M 2 is multiplied by the corresponding measurement function(

(Q·pa)(Q·pb)
Q2

)2
δ
(
(1− cos χ)(Q · pa)(Q · pb)−Q2(pa · pb)

)
. (2.1)

In the case of the LO and the virtual NLO contributions, the phase-space integrals are finite and
can be calculated directly. This method is, however, not applicable to the real radiative corrections,
where the phase-space integration leads to unresolved soft and collinear IR divergences.

We choose to approach this difficulty by using the methods of IBP reduction [36] and reverse
unitarity [37, 38] so that we can first rewrite our complicated phase-space integrals as loop integrals
and then reduce them to a small set of master integrals. At first sight, this does not make our
task any simpler, as the cut propagator obtained from the measurement function turns out to be
quadratic in the scalar products involving loop momenta. Since publicly available IBP reduction
tools are designed to deal with the (cut) propagators of the type 1/(p2±m2) or 1/(p · q±m2),
there seems to be no easy way to apply IBP reduction to integrals with such nonlinear propagators
as 1/((1− cos χ)(pa ·Q)(pb ·Q)−Q2(pa · pb))

∣∣
cut. At this point it is important to realize that this

is merely a technical but not a fundamental obstacle. Once we identify all the unique integral
topologies2, nothing prevents us from deriving IBP equations for each of these topologies and then
solving them in the usual way. Although this does not work out-of-the box with the existing software
tools, it turns out that a combination of LITERED [39, 40] and FIRE [41, 42] supplemented with a
minimal amount of extra MATHEMATICA code can be used to achieve the desired result with very
little effort.

When employing LITERED we define each unique topology using the standard NewBasis
function, but in such a way that the nonlinear propagator is omitted. The propagator is then added
by modifying the definition of the Ds function for each topology. This way one can directly derive
the corresponding IBP equations via GenerateIBP. The so-obtained set of equations is, however,
still incomplete, and has to supplemented by the additional relation∫ [(

(1− cos χ)(pa ·Q)(pb ·Q)−Q2(pa · pb)
)

Jab(n1, . . . ,n10)− Jab(n1, . . . ,n10−1)
]
= 0, (2.2)

2The topology identification is carried out using an in-house code.
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where n10 is the integer power of the nonlinear propagator in the integrand Jab. For each topology
this yields a solvable system of the IBP equations that, together with the list of the occurring loop
integrals, can be imported into a suitable tool for IBP reduction. Now we only need to find a package
that can solve IBP equations and perform the IBP reduction without any reference to the explicit
form of the involved propagators, so that the nonlinear propagator will not cause any troubles.
Fortunately, this can be accomplished by using FIRE. While one would normally generate FIRE
scripts by specifying all the internal and external momenta and the propagators, it is also possible to
bypass this step and supply only the set of the corresponding IBP equations. The relevant variable is
called startinglist and is explicitly mentioned in the manual of the package [42]. This allows
us to perform the reduction of our highly nonstandard phase-space integrals in a fast and convenient
way. Using the C++ version of FIRE on a server equipped with Intel Xeon E5-2696 (18 cores) and
128 GB RAM, we can reduce all the 12375 3-loop integrals from the real corrections in just 3 days.

Alternatively, one could also linearize the propagator that stems from the measurement function
by introducing an auxiliary variable x

δ
(
(1− cos χ)(pa ·Q)(pb ·Q)−Q2(pa · pb)

)
=
∫ 1

0
dxδ (x− (pa ·Q))

×δ (x(1− cos χ)(pb ·Q)−Q2(pa · pb)), (2.3)

which yields master integrals that depend on two variables x and z. This method is used in the
analytic calculation of EEC at NLO described in [43, 44], but as of now the final result obtained
with this technique is not yet available.

Our approach leaves us with only 40 master integrals that are, however, too complicated to
be evaluated directly. To calculate each of these integrals analytically we turn to the method of
differential equations [45–50]. Here we employ the publicly available package FUCHSIA [51] that
can automatically turn systems of differential equations into a canonical form [52] using Lee’s
algorithm [53]. While the package can easily obtain the canonical form for many of our systems
of equations, in some cases it fails to find a suitable transformation matrix. The reason for this
is that such systems require a nonlinear transformation of variables, which is not covered by the
original version of Lee’s algorithm. In principle, one can often guess such transformations by
looking at the structure of the differential equations and the kinematical constraints of the process
under consideration. In our case this turns out to be unnecessary, since we can directly benefit from
the exact result for EEC at NLO in N = 4 SYM obtained in [30]. The presence of letters involving
square roots of z and 1− z in the N = 4 result already provides a strong hint for the form of the
required nonlinear transformations. After some trial and error we identify the two transformations
z→√z and z→ i

√
z/
√

1− z, which are sufficient to turn all remaining systems of equations into
the canonical form using FUCHSIA and to solve them in terms of harmonic polylogarithms [54] to
any desired order in ε .

The last hurdle to be overcome on the way towards the fully analytic NLO result is the
determination of the integration constants. Since the EEC calculated in the fixed-order perturbation
theory diverges for z→ 0 and z→ 1, it is not easy to find suitable boundary conditions that can
be used to fix those constants. While we obviously cannot demand the regularity of the master
integrals in the collinear limit, it is still possible to use power counting to predict the power of the
leading contribution in the expansion around z = 0. Such expansions of harmonic polylogarithms
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can be conveniently done using the HPL package [55, 56] and allow us to determine a large number
of the integration constants. We also consider the limit z→ ∞, demanding that particular master
integrals should have no support for such unphysical values of z and therefore vanish. Furthermore,
the master integrals can be multiplied with a suitable weight function zm(1− z)n with m,n ∈ Z and
integrated over z, which allows us (after performing an additional IBP reduction) to match them to
linear combinations of the master integrals of the inclusive 4-particle phase-space [57]. One should
note that this particular boundary condition is similar to the method employed in [43, 44], although
in our case the master integrals do not have an additional dependence on the auxiliary variable
x, which makes the integration simpler. Finally, we can substitute the preliminary results for the
master integrals (with some integration constants still undetermined) into the full result for the real
corrections and demand that 1/z is the strongest singularity that may appear in the collinear limit.
The combination of the above boundary conditions fixes all the relevant constants and allows us
to arrive at the final analytic result for EEC at NLO. The first nontrivial test satisfied by this result
is the expected complete cancellation of all soft and collinear singularities, which leaves us with a
manifestly IR finite expression.

3. Analytic results

Our final result for EEC at NLO is given by

1
σtot

dΣ(χ)

d cos χ
=

αs(µ)

2π
A(z)+

(
αs(µ)

2π

)2(
β0 log

µ

Q
A(z)+B(z)

)
+O(α3

s ), (3.1)

with β0 = 11CA/3−4N f Tf /3, where the NLO coefficient B(z) admits the following color decompo-
sition

B(z) =C2
FBlc(z)+CF(CA−2CF)Bnlc(z)+CFN f Tf BN f (z). (3.2)

All the color coefficients can be written in the basis of pure functions g(n)i of uniform transcendental
weight n≤ 3 defined as

g(1)1 = log(1− z) , g(1)2 = log(z) , g(2)1 = 2(Li2(z)+ζ2)+ log2(1− z) , (3.3)

g(2)2 = Li2(1− z)−Li2(z) , g(2)3 =−2Li2
(
−
√

z
)
+2Li2

(√
z
)
+ log

(
1−√z
1+
√

z

)
log(z) , g(2)4 = ζ2 , (3.4)

g(3)1 =−6
(

Li3

(
− z

1− z

)
−ζ3

)
− log

(
z

1− z

)(
2(Li2(z)+ζ2)+ log2(1− z)

)
, (3.5)

g(3)2 =−12
(

Li3(z)+Li3

(
− z

1− z

))
+6Li2(z) log(1− z)+ log3(1− z) , (3.6)

g(3)3 = 6log(1− z)(Li2(z)−ζ2)−12Li3(z)+ log3(1− z) , g(3)4 = Li3

(
− z

1− z

)
−3ζ2 log(z)+8ζ3 , (3.7)

g(3)5 =−8
(

Li3

(
−
√

z
1−√z

)
+Li3

( √
z

1+
√

z

))
+2Li3

(
− z

1− z

)
+4ζ2 log(1− z)+ log

(
1− z

z

)
log2

(
1+
√

z
1−√z

)
.

(3.8)

The single color coefficients are

Blc(z) =
122400z7−244800z6 +157060z5−31000z4 +2064z3 +72305z2−143577z+63298

1440(1− z)z4
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− −244800z9 +673200z8−667280z7 +283140z6−48122z5 +2716z4−6201z3 +11309z2−9329z+3007
720(1− z)z5 g(1)1

− 244800z8−550800z7 +422480z6−126900z5 +13052z4−336z3 +17261z2−38295z+19938
720(1− z)z4 g(1)2

+
4z7 +10z6−17z5 +25z4−96z3 +296z2−211z+87

24(1− z)z5 g(2)1

+
−40800z8 +61200z7−28480z6 +4040z5−320z4−160z3 +1126z2−4726z+3323

120z5 g(2)2

− 1−11z
48z7/2

g(2)3 −
120z6 +60z5 +160z4−2246z3 +8812z2−10159z+4193

120(1− z)z5 g(2)4

−2
(

85z4−170z3 +116z2−31z+3
)

g(3)1 +
−4z3 +18z2−21z+5

6(1− z)z5 g(3)2 +
z2 +1

12(1− z)
g(3)3 , (3.9)

Bnlc(z) =
57600z7−115200z6 +75748z5−17359z4 +902z3 +14966z2−27552z+9320

720(1− z)z4

− −115200z9 +316800z8−321680z7 +147846z6−31035z5 +3225z4−3571z3 +11322z2−12412z+4880
360(1− z)z5 g(1)1

− 230400z8−518400z7 +412960z6−138600z5 +18696z4−742z3 +10971z2−25029z+11424
720(1− z)z4 g(1)2

+
−91z7 +235z6−184z5 +15z4−140z3 +721z2−760z+314

120(1− z)z5 g(2)1

+
−19200z8 +28800z7−14680z6 +2660z5−340z4−40z3 +315z2−1431z+952

60z5 g(2)2

+
960z4−160z3 +992z2 +547z+1435

480z7/2
g(2)3 −

−120z6 +120z5−130z4−585z3 +2647z2−3143z+1266
60(1− z)z5 g(2)4

+
640z6−1920z5 +2196z4−1196z3 +318z2−42z+3

4(1− z)z
g(3)1 +

2z7−3z6 +3z5− z4− z3 +9z2−9z+1
12(1− z)z5 g(3)2

−
(1−2z)

(
z2− z+1

)
2(1− z)z

g(3)4 −
2z5− z4 +2z3 + z2 +3

4z4 g(3)5 , (3.10)

BN f (z) =
7200z7−14400z6 +8852z5−1568z4 +48z3 +1825z2−4115z+2050

144(1− z)z4

− 72000z9−198000z8 +193040z7−77700z6 +10960z5−100z4−489z3 +3269z2−4801z+1801
360(1− z)z5 g(1)1

+
36000z8−81000z7 +60520z6−16650z5 +1190z4 +10z3 +428z2−939z+561

180(1− z)z4 g(1)2

+
−z7−4z3 +18z2−24z+9

6(1− z)z5 g(2)1 −
−12000z8 +18000z7−7840z6 +920z5 +72z2−222z+187

60z5 g(2)2

+
1−3z
48z7/2

g(2)3 +
8z3−66z2 +71z+7

60(1− z)z5 g(2)4 +2
(

50z4−100z3 +66z2−16z+1
)

g(3)1 . (3.11)

Let us remark that the unpublished analytic result for the contribution proportional to the
number of the light quark flavors BN f (z) was independently obtained by one of the authors (L. D.)
and his collaborator Marc Schreiber as early as 2004. The confirmation of this result using our
computational framework at an early stage of this work was very encouraging.

We have validated our result against the output of EVENT2 after sampling over 109 points and
compared its asymptotic properties to the partial results available in the literature. In the collinear
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limit (z→ 0) our log(z)/z term agrees with the jet calculus prediction from [23, 58, 59], while in the
back-to-back limit (z→ 1) terms enhanced by 1/(1− z) agree with the results from the NNLL soft
gluon resummation [60]. The N3LL soft resummation results should become available in the near
future, since the corresponding factorization formula is already known [61].

Last but not least, we also studied the full NLO result in the unphysical limit z→ ∞ by
analytically continuing the formula initially valid only in the physical region 0 ≤ z ≤ 1. It is
remarkable that each color coefficient is suppressed at least as 1/z3, which requires an intricate
cancellation between many terms of the full result.

4. Summary

The analytic structure of QCD event shape observables beyond LO is still poorly understood.
While it is possible to calculate such observables at high precision using numerical codes, fully
analytic calculations in the whole range of the given observable require the evaluation of complicated
phase-space integrals with involved measurement functions. For many years such calculations were
deemed too complicated, but owing to the recent progress in our understanding of IBP reduction,
unitarity methods and differential equations, they are finally within reach of modern computers with
server-grade CPUs running efficient codes for automatic calculations.

In our recent publication [31], we employed the publicly available packages FIRE, LITERED

and FUCHSIA to obtain the fully analytic result for the EEC in e+e− annihilation at NLO. This result
promotes EEC to the very first QCD event shape observable known analytically beyond LO and
raises hopes that our method can be used to obtain new analytic results also for more complicated
event shape observables, such as C-Parameter or Thrust.
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