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1. Introduction

The class of iterated integrals known as multiple polylogarithms (MPLs) includes many of
the functions obtained from integrating Feynman diagrams in dimensional regularization. Their
remarkable mathematical properties, including a coaction [1, 2], have led to new perspectives on
evaluating Feynman diagrams. In particular, the coaction on MPLs has natural links to disconti-
nuities and differential operators, both of which have been important tools in computing scattering
processes of interest.

It is conjectured that the coaction on MPLs corresponds to a similar combinatorial coaction on
Feynman diagrams themselves, and that these two coactions agree when the diagrams are evaluated
[3, 4]. At one-loop order, the conjecture is precise, and there is ample evidence for its validity.

In this article, we review the conjecture of the diagrammatic coaction and present some progress
towards generalizing it beyond one loop on the diagrammatic side, and beyond the class of MPLs
to generalized hypergeometric functions on the functional side, eliminating the need to expand in
the parameter of dimensional regularization.

The article is structured as follows. We first review the definition of a coaction on a bialge-
bra. We present the combinatorial incidence coaction, which can be interpreted as the basis of the
separate coactions on one-loop Feynman diagrams and MPLs. Then, we state the conjecture of
the diagrammatic coaction for Feynman diagrams at one-loop order. We close with new results on
the coactions of certain (generalized) hypergeometric and Appell functions, and two-loop diagram-
matic coactions for a double triangle integral and the sunset integral with one massive propagator.

2. Bialgebras and the coaction

Definitions. An algebra H is a ring with a multiplicative unit (1), which is also a vector space
over a field K. In our applications to Feynman integrals, we will always take the field to be K =

Q. A bialgebra is an algebra H with two maps, the coproduct ∆ : H → H ⊗H, and the counit
ε : H → Q, which are algebra homomorphisms satisfying the axioms (∆⊗ id)∆ = (id⊗∆)∆ and
(ε⊗ id)∆ = (id⊗ ε)∆ = id, where id is the identity map.

The incidence algebra. As an exemplar of a bialgebra, let us take the incidence algebra of
[6], which is a simple combinatorial construction. Let [n] = {1,2, . . . ,n}. The elements of the
incidence algebra are pairs of nested subsets [S,T ], where S ⊆ T ⊆ [n]. Multiplication is a free
abelian operation, and the coproduct is defined by

∆Inc([S,T ]) = ∑
S⊆X⊆T

[S,X ]⊗ [X ,T ]. (2.1)

For example:

∆Inc([S,S]) = [S,S]⊗ [S,S] for any S , (2.2)

∆Inc([ /0,{2}]) = [ /0,{2}]⊗ [{2},{2}]+ [ /0, /0]⊗ [ /0,{2}] , (2.3)

∆Inc([ /0,{1,2}]) = [ /0,{1,2}]⊗ [{1,2},{1,2}]+ [ /0,{1}]⊗ [{1},{1,2}]
+[ /0,{2}]⊗ [{2},{1,2}]+ [ /0, /0]⊗ [ /0,{1,2}] , (2.4)

∆Inc([{1},{1,2}]) = [{1},{1,2}]⊗ [{1,2},{1,2}]+ [{1},{1}]⊗ [{1},{1,2}] , (2.5)
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The counit εInc([S,T ]) is 1 if S = T , and 0 otherwise.
These combinatorial operations can be applied to edge-sets of graphs. Consider graphs with

the topologies of one-loop Feynman diagrams. The set of edges of a graph G is denoted by EG.
In order to include “cut” graphs, we let some subset C of EG carry “cut” labels. The cut graph
dressed with these labels is then denoted by (G,C). A graph derived from G by contracting edges
is denoted GX , where X is the set of edges remaining uncontracted. The empty graph is set to zero
identically. Then the incidence coproduct is

∆Inc(G,C) = ∑
C⊆X⊆EG

X 6= /0

(GX ,C)⊗ (G,X) . (2.6)

Here are the graphical versions of some of the examples listed above, respectively in eqs. (2.4),
(2.5), and (2.2) with S = {1,2}.

∆Inc

[
e1

e2

]
=

e1

e2

⊗
e1

e2

+ e1 ⊗
e1

e2

+ e2 ⊗
e1

e2

,

∆Inc

[
e1

e2

]
=

e1

e2

⊗
e1

e2

+ e1 ⊗
e1

e2

,

∆Inc

[
e1

e2

]
=

e1

e2

⊗
e1

e2

.

A remark on coproduct and coaction. If H is a bialgebra over the field K with coproduct ∆ :
H → H⊗H and counit ε : H → K, then a vector space A is called an H (right-) comodule if there
is a map ρ : A→ A⊗H such that (ρ⊗ id)ρ = (id⊗∆)ρ and (id⊗ε)ρ = id. Then the map ρ is said
to be a coaction on A.

The first and second entries in the coaction are thus elements of different mathematical spaces.
In the coaction on MPLs, numbers such as π can appear only in the first entries. In the correspond-
ing coaction on Feynman diagrams, uncut diagrams (generically) appear only in the first entries.

Coaction on MPLs. Multiple polylogarithms (MPLs) are the iterated integrals defined by the
following construction.

G(a1,a2, . . . ,an;z) =
∫ z

0

dt
t−a1

G(a2, . . . ,an; t) . (2.7)

There is a coaction on MPLs, graded by their transcendental weight n [1, 2].1 It can be presented
as a pairing of contours and integrands, in the same spirit as the incidence algebra.

∆MPL(G(~a;z)) = ∑
~b⊆~a

G(~b;z)⊗G~b(~a;z) . (2.8)

On the right-hand side, the subscript~b means that the integration contour has been deformed such
that it encircles each of the points in~b.

1With respect to the definition of coaction given above, H is the bialgebra of MPLs modulo iπ , and A is Q[iπ]⊗H.
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Discontinuity and differential operators interact with the coaction in a very simple way, as

∆MPLDisc = (Disc⊗ id)∆MPL and ∆MPL∂ = (id⊗∂ )∆MPL . (2.9)

Because of the grading by weight, it follows that the effects of discontinuities and differential
operators on iterated integrals can be traced to their effects on functions of lower weight.

A remark on the Hopf algebra. It is well known that the bialgebra on MPLs can be extended
to a Hopf algebra by identifying an antipode map that satisfies the usual axioms, and by working
modulo iπ . To extend the incidence algebra to a Hopf algebra, it is necessary to adjoin formal
multiplicative inverses of the “grouplike” elements [S,S]. The existence of grouplike elements
means that the incidence Hopf algebra is not connected. It remains to be determined whether
the antipode map associated to our diagrammatic coaction might carry physical significance. We
note that in our diagrammatic coaction, maximally cut one-loop integrals are naturally appearing
grouplike elements. They evaluate to functions of the form xε , whose infinite Laurent series in
MPLs is grouplike, even though there are no individuallly grouplike MPLs.

3. Diagrammatic coaction for Feynman integrals

We now outline the diagrammatic coaction, by describing how to interpret one-loop diagrams
with Feynman rules, and by deforming the incidence coaction on graphs so that it matches the coac-
tion on MPLs. Some early applications may be found in [4, 5]. We then recast the diagrammatic
coaction as a special case of a general coaction on families of integrals.

Interpretation of diagrams. It is possible to reduce one-loop Feynman integrals to the following
scalar basis corresponding to graphs G with edges EG:

JG =
ieγE ε

π |EG|/2

∫
dDGk ∏

j∈EG

1
(k−q j)2−m2

j
≡
∫

Γ /0

ωG , (3.1)

where k is the loop momentum, q j are sums of external momenta, m j are internal masses, and the
integrals are evaluated in the dimensionality DG ≡ D|EG| given as follows.

Dn =

{
n−2ε , for n even ,
n+1−2ε , for n odd .

(3.2)

Each of the JG is of uniform transcendental weight when expanded in ε , if we assign a weight of
-1 to ε itself.

We also need to define the cuts of Feynman integrals. This is done using residues, so that we
deform the integration contour instead of inserting on-shell delta functions in the integrand. Our
definition is written as

CC[JG] =
∫

ΓC

ωG mod iπ . (3.3)

Here, C denotes the set of cut propagators, and the contour ΓC is defined to encircle the poles
associated to C, in contrast to the original contour Γ /0 of eq. (3.1). This information is sufficient

3
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to determine the cut integral up to terms proportional to iπ , which are eliminated by a quotient
construction, and up to an overall sign. The freedom in this definition is consistent with the fact
that the coaction is blind to such terms in the second entry. Further details of the definition, along
with discussion and examples, may be found in [7].

Deformation of the incidence coaction. An algebraic isomorphism of the incidence bialgebra
leads to the following deformed version,

∆a(G,C) = ∑
C⊆X⊆EG,

X 6= /0

(
(GX ,C)+aX ∑

e∈X\C
(GX\e,C)

)
⊗ (G,X) . (3.4)

where aX = a if |X | is even and 0 otherwise, and a is a constant. The value a = 0 reproduces
the undeformed coaction, eq. (2.6). In order to match the coactions on one-loop graphs and their
expressions in MPLs, we will need the particular deformation with a = 1/2. This value of a and
the dependence of aX on the parity of |X | have their origin in homology theory, as will be seen
below.

Statement of diagrammatic conjecture. For one-loop graphs,

∆MPL I (G,C) = (I ⊗I )∆1/2(G,C) , (3.5)

where by I we denote the linear map that associates to (G,C) its cut integral I (G,C)≡ CCJG in
DG dimensions, as defined above, and performs a Laurent expansion in ε . For example,

∆

[
e1

e2

]
=

e1

e2

⊗
e1

e2

+ e1 ⊗

(
e1

e2

+
1
2

e1

e2

)

+ e2 ⊗

(
e1

e2

+
1
2

e1

e2

)
, (3.6)

∆

 e2

e1

e3
1

 = e1 ⊗


e1

e3
1

e2

+
1
2

e2

e1
e3

1

+
e1

e2

1 1 ⊗
e2

e1
e3

1 , (3.7)

∆


e1

e2

e3

 = e1 ⊗


e1

e2

e3
+

1
2

e1

e2

e3

+ e2 ⊗


e1

e2

e3
+

1
2

e1

e2

e3


+

e1

e2

⊗
e1

e2

e3
+

e1

e2

e3
⊗

e1

e2

e3
. (3.8)

where the coaction can either be read directly as ∆1/2 acting on the diagrams, or interpreted as
∆MPL after applying the Feynman rules. We observe nontrivial cancellations among terms at dif-
ferent orders in ε on the right-hand side, resulting in a coaction that is valid order by order. In
the following section, we will extend the coaction to hypergeometric functions including 2F1 and
Appell F1, eliminating the need to expand in ε .
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Taking the first of these examples as an illustration, eq. (3.6) can be written in terms of integrals
as

∆

(∫
Γ /0

ω12

)
=
∫

Γ /0

ω12⊗
∫

Γ12

ω12 +
∫

Γ /0

ω1⊗
(∫

Γ1

ω12 +
1
2

∫
Γ12

ω12

)
+
∫

Γ /0

ω2⊗
(∫

Γ2

ω12 +
1
2

∫
Γ12

ω12

)
=
∫

Γ /0

ω12⊗
∫

Γ12

ω12 +
∫

Γ /0

ω1⊗
∫
− 1

2 Γ1∞

ω12 +
∫

Γ /0

ω2⊗
∫
− 1

2 Γ2∞

ω12 , (3.9)

where in the last line, we have introduced contours detecting the pole at infinite momentum. In
fact, it is the pole at infinity that leads to the need for deforming the incidence coaction on graphs.
At one loop, the Decomposition Theorem for the homology of Feynman integrals shows how to
rewrite any contour involving infinity in terms of the ones describing cuts of propagators, leading
to the equivalence of the two lines above [8].

The diagrammatic coaction can be written neatly, for all one-loop integrals, as

∆

(∫
γ

ωG

)
= ∑

/06=C⊆EG

∫
γ

ωGC ⊗
∫

γC

ωG , (3.10)

where γC = ΓC +aC ∑e∈EG\C ΓCe , and aC = 1/2 for |C| odd and 0 otherwise. We note that since γ /0

is excluded in the second entry, uncut integrals can appear only in the first entry.

Master formula for coaction on integrals. The diagrammatic coaction of eq. (3.10) is a special
case of a general coaction on integrals defined by

∆

(∫
γ

ω

)
= ∑

i

∫
γ

ωi⊗
∫

γi

ω , (3.11)

whenever there is a suitable pairing of master integrands and master contours such that

Pss

(∫
γi

ω j

)
= δi j . (3.12)

Here, Pss denotes the projection onto semi-simple numbers, which are numbers x satisfying ∆(x) =
x⊗1. In particular, Pss retains π , but drops polylogarithms unless they evaluate to powers of π .

4. Coaction on hypergeometric functions

In this section, we present bases of integrands and integration regions adapted for various
(generalized) hypergeometric functions giving coactions of the form (3.11), which moreover cor-
respond to the coaction on Feynman diagrams. Specifically, in each case,

∫
γ1
(∑ j a jω j) evaluates to

a hypergeometric function in a given family. We note that in each of the cases presented here, there
is a simple change of variables such that each integral over γi(i > 1) can be rewritten as an integral
over γ1, and hence recognized as a hypergeometric integral of the same family.

We have checked that the coactions written here are consistent with the coaction on MPLs in
the ε expansion.

5
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Hypergeometric 2F1. Consider the family of integrands ω(α1,α2,α3;z)= xα1(1−x)α2(1−zx)α3dx.
They are related to the Gauss hypergeometric function 2F1 by

∫ 1

0
ω(α1,α2,α3) =

Γ(α1)Γ(α2−α1)

Γ(α2)
2F1(−α3,α1 +1;α2 +α1 +2;z) . (4.1)

Through integration-by-parts relations, it is possible to shift the exponents by integer values and
reduce to a set of two master integrands. For the 2F1 family, this statement is a consequence of the
well-known contiguous relations. If we expand around integer arguments, i.e. αi = ni + aiε and
ni ∈ Z, aiε 6∈ Z, we can take the master integrands to be

ω0 = a2ε xa1ε(1− x)−1+a2ε(1− zx)a3ε , ω1 = a3ε z xa1ε(1− x)a2ε(1− zx)−1+a3ε . (4.2)

Normalization factors have been chosen so that with the two contours γ0 = [0,1] and γ1 = [0,1/z],
we have Pss

∫
γi

ω j = δi j. Since the diagrams in (3.6) and (3.7) evaluate to 2F1 functions, we can
verify that the coaction (3.11) accounts for those diagrammatic formulas, without having to expand
in ε .2

Appell F1. For this family, the integrands take the form ω(α1,α2,α3,α4;z1,z2)= xα1(1−x)α2(1−
z1x)α3(1− z2x)α4 dx , since

∫ 1

0
ω(α1,α2,α3,α4;z1,z2) =

Γ(α1)Γ(α2−α1)

Γ(α2)
F1(α1,α3,α4,α2;z1,z2) . (4.3)

If again we expand around integer arguments, αi = ni +aiε and ni ∈ Z, aiε 6∈ Z, then the following
choice of master integrands,

ω0 = a2ε xa1ε(1− x)−1+a2ε(1− z1x)a3ε(1− z2x)a4ε , (4.4)

ω1 = a3ε z1 xa1ε(1− x)a2ε(1− z1x)−1+a3ε(1− z2x)a4ε , (4.5)

ω2 = a4ε z2 xa1ε(1− x)a2ε(1− z1x)a3ε(1− z2x)−1+a4ε , (4.6)

with the corresponding master contours γ0 = [0,1], γ1 = [0,z−1
1 ], γ2 = [0,z−1

2 ], satisfies Pss
∫

γi
ω j =

δi j. Since the diagrams in (3.8) evaluate to F1 functions, we can verify that the coaction (3.11)
accounts for the diagrammatic formula, without having to expand in ε .

Generalized hypergeometric p+1Fp. We show the case p= 2, from which it is straightforward to
generalize to arbitrary p. The integrands are ω(α1,α2,α3,α4,α5;z) = xα1(1−x)α2yα3(1−y)α4(1−
zxy)α5 dxdy, where αi = ni +aiε and ni ∈ Z, aiε 6∈ Z, Then

∫ 1

0

∫ 1

0
ω(α1,α2,α3,α4,α5;z) = (4.7)

Γ(α1 +1)Γ(α2 +1)Γ(α3 +1)Γ(α4 +1)
Γ(2+α1 +α2)Γ(2+α3 +α4)

3F2(α1 +1,α3 +1,−α5;2+α1 +α2,2+α3 +α4;z) .

2One might wish to write the coaction on a 2F1 function unaccompanied by the gamma-function prefactors. This
can be done with the help of the relation ∆(Γ(1+aε)) = Γ(1+aε)⊗Γ(1+aε).

6
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With the master integrands

ω0 = a2a4 ε
2xa1ε(1− x)−1+a2εya3ε(1− y)−1+a4ε(1− zxy)a5ε , (4.8)

ω1 =
a2a5(a1−a3−a4)

a1 +a2−a3−a4
ε

2zxa1ε(1− x)−1+a2εya3ε(1− y)a4ε(1− zxy)−1+a5ε , (4.9)

ω2 =
a4a5(a3−a1−a2)

a3 +a4−a1−a2
ε

2zxa1ε(1− x)a2εya3ε(1− y)−1+a4ε(1− zxy)−1+a5ε . (4.10)

and contours γ0 =
∫ 1

0 dx
∫ 1

0 dy, γ1 =
∫ 1

0 dx
∫ 1/zx

0 dy, γ2 =
∫ 1

0 dy
∫ 1/zy

0 dx, we have Pss
∫

γi
ω j = δi j.

In the following diagrammatic relation, the diagram on the left-hand-side evalutes to a 3F2

function. For this function, the coaction above is consistent with a surprisingly direct application
of the incidence coaction on diagrams.

∆


1 2

=
1 2

⊗
1 2

+ 1 ⊗
1 2

+ 2 ⊗
1 2

+ 1

2

⊗
1 2

+ 2

1

⊗
1 2

+ 1 2 ⊗
1 2

The graphs in this equation are interpreted as scalar integrals in 4− 2ε dimensions, adjusted by
simple rational factors in order to convert them to pure integrals. Specifically, these factors are
(1−2ε)(1−3ε)(2−3ε)/p2 for the sunset, (1−2ε)(1−3ε) for the triangle-bubble, and (1−2ε)2

for the double bubble.
Further details of the results in this section will appear in forthcoming publications [9].

5. Discussion

In attempting to generalize the diagrammatic coaction beyond one-loop, we further expect to
find a matrix equation for all master integrals of any given topology. Consider, for example, the
sunset integral with external momentum p and just one massive propagator of mass m. There are
two master integrals in the top topology, which can be taken to be the sunset with single and double
powers, respectively, of the massive propagator:

S111 =
∫

Γ /0

ω111 = , S211 =
∫

Γ /0

ω121 = . (5.1)

For each master integral, we find that only two of the cuts are linearly independent, in keeping
with the arguments of [10]. If we label the massive propagator by 1 and the others by 2 and 3, the
integration contours for cuts are related as follows: Γ12 = Γ13,0 = 4Γ23 + 3Γ1− 2Γ12 +Γ123,0 =

Γ1−Γ12+Γ23,εΓ /0 = Γ(1+ ε)Γ(1− ε)Γ23. Because of their relation to the physical discontinuities
of the sunset integral, let us choose the contours Γ1,Γ123 as a basis, giving integrals such as

C1S111 =
∫

Γ1

ω111 = , C123S111 =
∫

Γ123

ω111 = . (5.2)

7
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We find that the coaction on S111, as defined for the 2F1 family, can be written as a linear combina-
tion of terms with S111 and S211 in the first entries, and C1S111 and C123S111 in the second entries
[9]. From this relation, we can confirm that C1S111 and C123S111 are precisely the discontinuities
related to the weight-one first entries log(m2) and log(p2−m2), as expected. The coaction on S211

is similar. We emphasize the form of the result: the coaction on the integral can be expressed in
terms of Feynman diagrams, and the second entries are generically cut integrals.

Similarly to the one-loop case, we observe that it is helpful to identify a basis of pure integrals.
In this example, ω1≡ ε(p2−m2)ω111 yields a pure integral when paired with any of the cut or uncut
contours. For the second master integral, it is possible to subtract an algebraic multiple of ω1 from
m2(p2−m2)ω211 to leave a pure integrand ω2. We can now neatly present the full coaction for this
topology. Construct the matrix

Ω =

( ∫
Γ /0

ω1
∫

Γ /0
ω2∫

− 1
3 Γ1− 1

2 Γ123
ω1

∫
− 1

3 Γ1− 1
2 Γ123

ω2

)
, (5.3)

where the contours and normalizations have been chosen such that PssΩ is the identity matrix, and
the first row contains the original master integrals. Then the coaction on any integral in this family
can be obtained with the formula ∆(Ωi j) = ∑k Ωik⊗Ωk j.

In view of our results, it would be very interesting to seek a systematic diagrammatic coaction
for multiloop Feynman integrals and amplitudes, supported by a coaction on an expanded set of
functions including various generalizations of hypergeometric functions.
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