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1. Introduction

The heavy flavor corrections to deep-inelastic scattering to 3-loop order are an important asset to
describe the structure functions in the region of lower values of x and to account for the scaling
violations correctly, which are different in the massless and massive cases. They are required in
precision measurements of the strong coupling constant [1], the determination of the heavy quark
masses [2–4], and the parton distribution functions [4–6]. In a long program, cf. [7], the different
heavy flavor contributions to deep-inelastic scattering are calculated in the region Q2 � m2. For
all quantities a series of Mellin moments has been obtained in [8]. The corrections in terms of
the general Mellin variable N in the single heavy mass case were calculated in the non-singlet, the
pure singlet, the gq- and gg-cases [9–16], as well as for all logarithmic corrections [17]. Likewise,
we have also obtained all 3-loop anomalous dimensions γi j contributing to the heavy flavor case
in Refs. [9, 10, 14, 18], which are the terms ∝ TF . In case of γPS

qq and γqg these are the complete
anomalous dimensions. All the 1st order factorizing contributions to the operator matrix element
OME A(3)

Qg , i.e. the contributions due to iterative integrals, have been computed [7]. The calculation
of these quantities required the development of several new computation techniques and algorithms,
cf. Ref. [19] for a survey.

Already at 2-loop order, two-mass corrections contribute to the heavy flavor Wilson coeffi-
cients in the form of reducible terms, cf. [20]. However, for many years, they were not considered
in the variable flavor number scheme (VFNS) [21]. At 3-loop order, genuine two-mass contribu-
tions appear [20]. For them a number of moments has been calculated expanding in the mass ratio
η = m2

c/m2
b ∼ 1/10, cf. Ref. [20, 22, 23]. In the flavor non-singlet, transversity and gq-cases, the

general N- and x-results have been calculated in Ref. [20].
More recently, the complete 3-loop corrections in the flavor pure-singlet case [24] and for the

massive OME Agg [25] have been computed. These results are discussed in Section 2. At 2-loop
order all two-mass terms are known. In Section 3 we discuss the variable flavor number scheme at
2-loop order, extended to the 2-mass case and describe the corresponding changes for the parton
densities [26]. They turn out to be of relevance for precision measurements at the LHC, comparing
to the single mass case. Section 4 contains the conclusions.

2. Three-Loop Corrections

Recently we computed the two-mass 3-loop corrections to the OMEs APS,(3)
Qq and A(3)

gg,Q in Refs. [24,
25]. Contrary to the 3-loop non-singlet cases and Agq, the η-dependence does not factorize here.
The analytic results can be represented in terms of iterated integrals over general alphabets and
specific integrals thereof. The iterated integrals are given by

G f0, f1,..., fk(x) =
∫ x

0
dy f0(y)G f1,..., fk(y), G /0 = 1, (2.1)

with letters fl(x), which may depend on the additional parameter η and usually form root valued
irrational functions. The package HarmonicSums [27–29] allows the automated calculation of
these integrals and the reduction of special constants which appear in this context.

It turns out that the calculation of the OME APS,(3)
Qq cannot be easily done in N space. It is

therefore computed in x-space and written in terms of a Mellin transform, separating a series of
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N-dependent pre-factors, which will be dealt with at a later stage. The contributing mass ratios are
either ruled by η or 1/η . In the former case only one principle integration region is obtained, while
in the latter case the regions x ∈ {[0,η−], [η−,η+], [η+,1]} contribute, with η± = (1±

√
1−η)/2.

Besides the letters of the usual harmonic polylogarithms (HPLs) [30], two more letters√
(4− x)x,

√
1−4x

x
(2.2)

contribute to the integrals of the Mellin transforms. Finally, one has to incorporate the N-dependent
pre-factors by partial integration. From the global Mellin-transform one then obtains the two-mass
contribution to the OME APS,(3)

Qq . The structure of the constant term in ε is given by

aPS,(3)
Qq (N) =

∫ 1

0
dx xN−1

{
K(η ,x)+

(
θ(η−− x)+θ(x−η+)

)
xg0(η ,x)

+θ(η+− x)θ(x−η−)

[
x f0(η ,x)−

∫ x

η−
dy
(

f1(η ,y)+
y
x

f2(η ,y)+
x
y

f3(η ,y)
)]

+θ(η−− x)
∫

η−

x
dy
(

g1(η ,y)+
y
x

g2(η ,y)+
x
y

g3(η ,y)
)

−θ(x−η+)
∫ x

η+

dy
(

g1(η ,y)+
y
x

g2(η ,y)+
x
y

g3(η ,y)
)

+xh0(η ,x)+
∫ 1

x
dy
(

h1(η ,y)+
y
x

h2(η ,y)+
x
y

h3(η ,y)
)

+θ(η+− x)
∫

η+

η−
dy
(

f1(η ,y)+
y

η+x
f2(η ,y)+η+

x
y

f3(η ,y)
)

+
∫ 1

η+

dy
(

g1(η ,y)+
y
x

g2(η ,y)+
x
y

g3(η ,y)
)}

. (2.3)
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Figure 1: The ratio of the 2-mass (tm) contributions to the massive OME APS,(3)
Qq to all contributions to

APS,(3)
Qq of O(T 2

F ) as a function of x and µ2. Dotted line (red): µ2 = 30 GeV2. Dashed line (black): µ2 =

50 GeV2. Dash-dotted line (blue): µ2 = 100 GeV2. Full line (green): µ2 = 1000 GeV2. Here the on-shell
heavy quark masses mc = 1.59 GeV and mb = 4.78 GeV [2, 31] have been used; from Ref. [24].
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The functions K, fi,gi and hi are given in Ref. [24] and can be represented in terms of HPLs at
more involved arguments for which the numerical representation is available [32, 33]. In Figure 1
the ratio of the 3-loop two-mass corrections in the pure singlet case is compared to the complete
O
(
T 2

F CF(CA)
)
. The ratio behaves about flat as a function of x, with some rise towards x = 1 and

grows with µ2 to typical values of ∼ 0.4 and is therefore a significant contribution at this order.
In Ref. [25] we have calculated the 3-loop two-mass contributions to the OME Agg. Here

the calculation can be either performed in N- or x-space. In N-space it requires one analytic
Mellin-Barnes integral aside of integrals which can be performed using simpler methods. We
have chosen the direct calculation of all contributions, which leads to a large set of individual sum
expressions. The largest diagram led to a representation of ∼ 100MB. We use modern summa-
tion technologies [34] encoded in the package Sigma [35, 36]. The sums are first crunched to a
few master sums using the package SumProduction. The latter sums are solved individually
using EvaluatMultiSums [37] and limits to infinity are performed using built-in routines of
HarmonicSums. Finally the results are reduced to basic sums. In the case of the largest diagram,
∼ 78 days were needed to perform the sums and ∼ 33 days to reduce to the basis, i.e. to eliminate
all relations between the sums. The full summation of this OME took about five months.

Typical sums occurring are

S~k

(
η−1

η
,1,N

)
,

(
2N
N

) N

∑
i=1

4i
(

η

η−1

)i

i
(2i

i

) S~k

(
η−1

η
,1, i
)
, etc. (2.4)

These are generalized harmonic sums at real weights, cf. e.g. [28] and nested binomial sums over
these objects, which generalize the class of sums having been dealt with in Ref. [38] before.
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Figure 2: The ratio of the two-mass (tm) contributions to the massive OME A(3)tm
gg,Q to all contributions to

A(3)
gg,Q of O(T 2

F ) as a function of z and µ2. Dashed line (black): µ2 = 50 GeV2. Dash-dotted line (blue):
µ2 = 100 GeV2. Full line (green): µ2 = 1000 GeV2. Here the on-shell heavy quark masses mc = 1.59 GeV
and mb = 4.78 GeV [2, 31] have been used; from Ref. [25].

HarmonicSums provides algorithms to perform the inverse Mellin transform to x space.
Here iterated integrals of the kind (2.1) occur. The letters of the corresponding alphabet are those
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of the usual HPLs and√
x(1− x),

1
x+η(1− x)

,
1

1− x(1−η)
,

1
η + x(1−η)

,√
x(1− x)

1− x(1−η)
,

√
x(1− x)

x−η(1− x)
,

√
x(1− x)

η + x(1−η)
. (2.5)

Again rational pre-factors in N have to be absorbed like in the pure singlet case. This leads to a
one-dimensional integral representation over integrands out of HPLs with involved argument, well
suited for a fast numerical evaluation. In Ref. [25] detailed lists of integrals and special constants
of the type (2.1) emerging in the present context have also been given which can be used in similar
calculations.

The relative effect of the 3-loop two-mass contributions to Agg in comparison to all O
(
T 2

F CF

(CA)
)

terms is illustrated in dependence of x and µ2 in Figure 2. The ratio behaves flat in the small
x region, with some structure towards larger values of x. The ratio grows with µ2 and reaches
values of ∼ 0.4 at µ2 = 1000GeV2.

3. Two-mass Corrections in the Variable Flavor Number Scheme

Since the mass ratio squared η for charm and bottom is not a very small number, one cannot
treat charm quarks as massless at the scale µ = mb. The decoupling in the variable flavor number
scheme has therefore to account for the 2-mass effects from O(α2

s ) onward. In the usual VFNS,
one decouples one heavy quark at a time, cf. Ref. [21]. Its generalization, cf. Ref. [26], accounts
for the two-mass effects. The corresponding transition rules for the parton distributions are:

fNS,i(NF +2,µ2) =

{
1+a2

s (µ
2)
[
ANS,(2,c)

qq,Q +ANS,(2,b)
qq,Q

]}
fNS,i(NF ,µ

2), (3.1)

Σ(NF +2,µ2) =

{
1+a2

s (µ
2)
[
ANS,(2,c)

qq,Q +APS,(2,c)
qq,Q +ANS,(2,b)

qq,Q +APS,(2,b)
qq,Q

]}
Σ(NF ,µ

2)

+

{
as(µ

2)
[
A(1,c)

Qg +A(1,b)
Qg

]
+a2

s (µ
2)
[
A(2,c)

Qg +A(2,b)
Qg +A(2,cb)

Qg

]}
G(NF ,µ

2),

(3.2)

G(NF +2,µ2) =

{
1+as(µ

2)
[
A(1,c)

gg,Q +A(1,b)
gg,Q

]
+a2

s (µ
2)
[
A(2,c)

gg,Q +A(2,b)
gg,Q +A(2,cb)

gg,Q

]}
G(NF ,µ

2)

+a2
s (µ

2)
[
A(2,c)

gq,Q +A(2,b)
gq,Q

]
Σ(NF ,µ

2), (3.3)[
fc + fc̄

]
(NF +2,µ2) = a2

s (µ
2)APS,(2,c)

Qq Σ(NF ,µ
2)

+

{
as(µ

2)A(1,c)
Qg +a2

s (µ
2)
[
A(2,c)

Qg +
1
2

A(2,cb)
Qg

]}
G(NF ,µ

2), (3.4)[
fb + fb̄

]
(NF +2,µ2) = a2

s (µ
2)APS,(2,b)

Qq Σ(NF ,µ
2)

+

{
as(µ

2)A(1,b)
Qg +a2

s (µ
2)
[
A(2,b)

Qg +
1
2

A(2,cb)
Qg

]}
G(NF ,µ

2) , (3.5)
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where as = αs/(4π).
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Figure 3: The ratio of the two-mass contribution to the singlet distribution and the complete singlet distri-
bution (left) and the respective ratio for the bottom quark distribution (right) at O(a2

s ), Eq. (3.2), in %, as a
function of x and Q2, using the parton distribution functions [4] and mc = 1.59 GeV [2], mb = 4.78 GeV [31].
Dotted line: Q2 = 30 GeV2; dashed line: Q2 = 100 GeV2; dash-dotted line: Q2 = 1000 GeV2; full line:
Q2 = 10000 GeV2; from Ref. [26].

Comparing the two-mass contributions to the different parton distribution functions with the
complete result one finds O(1%) effects e.g. for the flavor singlet distribution. For the bottom
quark distribution the effect can reach O(5%) at typical scales Q2 ∈ [30,10000]GeV2 at the LHC,
see Figure 3.

At 3-loop order still the two-mass corrections to the OME A(3)
Qg have to be calculated in order

to describe the generalized VFNS. This is work in progress and currently O(500) even moments
have been calculated, expanding in the mass ratio η to the 5th order.

4. Conclusions

The 2-mass contributions to the massive OMEs in deep-inelastic scattering have a significant nu-
merical effect on a series of parton distributions in precision data analysis. Already at 2-loop order
the bottom quark distribution at the LHC receives about 5% corrections, while those for other PDFs
are smaller, but not negligible at the 1% level. We have by now calculated all two-mass contribu-
tions at 3-loop order, but those for the massive OME AQg. In the latter case, iterative integrals will
not be sufficient to represent this quantity and at least iterated integrals over elliptic integrals are
contributing as well, cf. [39, 40]. In an ongoing study we investigate first a large number of Mellin
moments expanding in the mass ratio η working towards a two-mass generalization of the VFNS
also at 3-loop order. Along with the present calculations, again new powerful analytic integra-
tion techniques have been designed, which can be used in other 2- and 3-loop calculations facing
two-scale problems.

Acknowledgment. This work was supported in part by the Austrian Science Fund (FWF) grant
SFB F50 (F5009-N15).

5



P
o
S
(
L
L
2
0
1
8
)
0
5
1

Two-mass three-loop effects in deep-inelastic scattering K. Schönwald

References

[1] S. Bethke et al., Workshop on Precision Measurements of alphas, arXiv:1110.0016 [hep-ph];
S. Moch, S. Weinzierl et al., High precision fundamental constants at the TeV scale, arXiv:1405.4781
[hep-ph];
S. Alekhin, J. Blümlein and S.O. Moch, Mod. Phys. Lett. A 31 (2016) no.25, 1630023.

[2] S. Alekhin, J. Blümlein, K. Daum, K. Lipka and S. Moch, Phys. Lett. B 720 (2013) 172
[arXiv:1212.2355 [hep-ph]].

[3] A. Gizhko et al., Phys. Lett. B 775 (2017) 233 [arXiv:1705.08863 [hep-ph]].

[4] S. Alekhin, J. Blümlein, S. Moch and R. Placakyte, Phys. Rev. D 96 (2017) no.1, 014011
[arXiv:1701.05838 [hep-ph]].

[5] A. Accardi et al., Eur. Phys. J. C 76 (2016) no.8, 471 [arXiv:1603.08906 [hep-ph]].

[6] S. Alekhin, J. Blümlein and S. Moch, Eur. Phys. J. C 78 (2018) no.6, 477 [arXiv:1803.07537
[hep-ph]].

[7] J. Blümlein, J. Ablinger, A. Behring, A. De Freitas, A. von Manteuffel, C. Schneider and
C. Schneider, PoS (QCDEV2017) 031 [arXiv:1711.07957 [hep-ph]].

[8] I. Bierenbaum, J. Blümlein and S. Klein, Nucl. Phys. B 820 (2009) 417 [arXiv:0904.3563 [hep-ph]];
J. Blümlein, S. Klein and B. Tödtli, Phys. Rev. D 80 (2009) 094010 [arXiv:0909.1547 [hep-ph]].

[9] J. Ablinger, J. Blümlein, S. Klein, C. Schneider and F. Wißbrock, Nucl. Phys. B 844 (2011) 26
[arXiv:1008.3347 [hep-ph]].

[10] J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round,
C. Schneider, and F. Wißbrock, Nucl. Phys. B 886 (2014) 733 [arXiv:1406.4654 [hep-ph]].

[11] A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel and C. Schneider, Nucl. Phys. B 897
(2015) 612 [arXiv:1504.08217 [hep-ph]].

[12] A. Behring, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel and C. Schneider, Phys.
Rev. D 92 (2015) no.11, 114005 [arXiv:1508.01449 [hep-ph]].

[13] A. Behring, J. Blümlein, G. Falcioni, A. De Freitas, A. von Manteuffel and C. Schneider, Phys. Rev.
D 94 (2016) no.11, 114006 [arXiv:1609.06255 [hep-ph]].

[14] J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel and C. Schneider, Nucl. Phys.
B 890 (2014) 48 [arXiv:1409.1135 [hep-ph]].

[15] J. Ablinger, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round, C. Schneider
and F. Wißbrock, Nucl. Phys. B 882 (2014) 263 [arXiv:1402.0359 [hep-ph]].

[16] J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, and C. Schneider, DESY
15–112.

[17] A. Behring, I. Bierenbaum, J. Blümlein, A. De Freitas, S. Klein and F. Wißbrock, Eur. Phys. J. C 74
(2014) no.9, 3033 [arXiv:1403.6356 [hep-ph]].

[18] J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel and C. Schneider, Nucl. Phys.
B 922 (2017) 1 [arXiv:1705.01508 [hep-ph]].

[19] J. Blümlein and C. Schneider, Int. J. Mod. Phys. A 33 (2018) no.17, 1830015.

[20] J. Ablinger, J. Blümlein, A. De Freitas, A. Hasselhuhn, C. Schneider and F. Wißbrock, Nucl. Phys. B
921 (2017) 585 [arXiv:1705.07030 [hep-ph]].

6



P
o
S
(
L
L
2
0
1
8
)
0
5
1

Two-mass three-loop effects in deep-inelastic scattering K. Schönwald

[21] M. Buza, Y. Matiounine, J. Smith and W. L. van Neerven, Eur. Phys. J. C 1 (1998) 301
[hep-ph/9612398].

[22] J. Ablinger, J. Blümlein, S. Klein, C. Schneider and F. Wißbrock, arXiv:1106.5937 [hep-ph].

[23] J. Ablinger, J. Blümlein, A. Hasselhuhn, S. Klein, C. Schneider and F. Wißbrock,
PoS (RADCOR2011) 031 [arXiv:1202.2700 [hep-ph]].

[24] J. Ablinger, J. Blümlein, A. De Freitas, C. Schneider and K. Schönwald, Nucl. Phys. B 927 (2018)
339 [arXiv:1711.06717 [hep-ph]].

[25] J. Ablinger, J. Blümlein, A. De Freitas, A. Goedicke, C. Schneider and K. Schönwald, Nucl. Phys. B
932 (2018) 129 [arXiv:1804.02226 [hep-ph]].

[26] J. Blümlein, A. De Freitas, C. Schneider and K. Schönwald, Phys. Lett. B 782 (2018) 362
[arXiv:1804.03129 [hep-ph]].

[27] J. Ablinger, PoS (LL2014) 019; Computer Algebra Algorithms for Special Functions in Particle
Physics, Ph.D. Thesis, J. Kepler University Linz, 2012, arXiv:1305.0687 [math-ph];
A Computer Algebra Toolbox for Harmonic Sums Related to Particle Physics, Diploma Thesis, J.
Kepler University Linz, 2009, arXiv:1011.1176 [math-ph];
J. Ablinger, J. Blümlein and C. Schneider, J. Math. Phys. 52 (2011) 102301 [arXiv:1105.6063
[math-ph]];
J. Ablinger, PoS (RADCOR2017) 001.

[28] J. Ablinger, J. Blümlein and C. Schneider, J. Math. Phys. 54 (2013) 082301 [arXiv:1302.0378
[math-ph]];

[29] J. Ablinger, An improved Algorithm to compute Inverse Mellin Transforms of Nested Binomial Sums,
PoS (LL2018) 063.

[30] E. Remiddi and J.A.M. Vermaseren, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237].

[31] K. A. Olive et al. [Particle Data Group], Chin. Phys. C 38 (2014) 090001.

[32] T. Gehrmann and E. Remiddi, Comput. Phys. Commun. 141 (2001) 296 [hep-ph/0107173].

[33] J. Ablinger, J. Blümlein, M. Round and C. Schneider, PoS (RADCOR2017) 010 [arXiv:1712.08541
[hep-th]].

[34] M. Karr, J. ACM 28 (1981) 305;
M. Bronstein, J. Symbolic Comput. 29 (2000), no. 6 841;
C. Schneider, Symbolic Summation in Difference Fields, Ph.D. Thesis RISC, Johannes Kepler
University, Linz technical report 01–17 (2001); An. Univ. Timisoara Ser. Mat.-Inform. 42 (2004) 163;
J. Differ. Equations Appl. 11 (2005) 799; Appl. Algebra Engrg. Comm. Comput. 16 (2005) 1; J.
Algebra Appl. 6 (2007) 415. Motives, Quantum Field Theory, and Pseudodifferential Operators, Clay
Mathematics Proceedings Vol. 12, eds. A. Carey, D. Ellwood, S. Paycha and S. Rosenberg, (Amer.
Math. Soc) (2010), 285, [arXiv:0904.2323]; Ann. Comb. 14 (2010) 533 [arXiv:0808.2596];
C. Schneider, in: Computer Algebra and Polynomials, Applications of Algebra and Number Theory,
J. Gutierrez, J. Schicho, M. Weimann (ed.), Lecture Notes in Computer Science (LNCS) 8942 (2015),
157; [arXiv:1307.7887 [cs.SC]]; J. Symbolic Comput. 43 (2008) 611 [arXiv:0808.2543]; J. Symb.
Comput. 72 (2016) 82 [arXiv:1408.2776 [cs.SC]];
J. Symb. Comput. 80 (2017) 616 [arXiv:1603.04285 [cs.SC]].

[35] C. Schneider, Sém. Lothar. Combin. 56 (2007) 1, article B56b.

7



P
o
S
(
L
L
2
0
1
8
)
0
5
1

Two-mass three-loop effects in deep-inelastic scattering K. Schönwald

[36] C. Schneider, Computer Algebra in Quantum Field Theory: Integration, Summation and Special
Functions Texts and Monographs in Symbolic Computation eds. C. Schneider and J. Blümlein
(Springer, Wien, 2013) 325, arXiv:1304.4134 [cs.SC].

[37] J. Ablinger, J. Blümlein, S. Klein and C. Schneider, Nucl. Phys. Proc. Suppl. 205-206 (2010) 110
[arXiv:1006.4797 [math-ph]];
J. Blümlein, A. Hasselhuhn and C. Schneider, PoS (RADCOR 2011) 032 [arXiv:1202.4303
[math-ph]];
C. Schneider, J. Phys. Conf. Ser. 523 (2014) 012037 [arXiv:1310.0160 [cs.SC]].

[38] J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider, J. Math. Phys. 55 (2014) 112301
[arXiv:1407.1822 [hep-th]].

[39] J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C. G. Raab, C.-S. Radu and
C. Schneider, J. Math. Phys. 59 (2018) no.6, 062305 [arXiv:1706.01299 [hep-th]].

[40] J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, P. Marquard and C. Schneider, PoS (LL2018)
017 [arXiv:1807.05287 [hep-ph]].

8


