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1. Introduction

The calculation of one-loop amplitudes either for next-to-leading order or loop-induced pro-

cesses in the Standard Model may now be considered a solved problem from the technical point of

view with several publicly available general purpose programs up to the task [1–5]. The tremen-

dous progress in the last decade was set in motion by the transition from algebraic methods to

calculate amplitudes to tree-level or tree-like recursive numerical algorithms for loop amplitudes

in combination with reduction techniques for the loop integrals or integrands. In particular, the

OpenLoops method proved to be powerful in terms of performance, both in the generation and

evaluation of matrix elements, and numerical stability [6]. It is based on a diagrammatic for-

mulation of the method proposed in [7] for the numerical construction of the numerator of the

integrand as loop momentum polynomials, encoding the functional dependence on the loop mo-

mentum components. The algorithm has been implemented in the OpenLoops program [1] and

in MadLoop [4]. Recola [2] employs a similar approach based on a current recursion instead

of Feynman diagrams. For the reduction of one-loop integrals to scalar integrals, several public

tools are available, e.g. Collier [8] which implements numerically stable tensor integral reduc-

tion [9,10], CutTools [11] for OPP reduction [12], or Ninja [13]. The more recently introduced

method of on-the-fly reduction of open-loops [14] which performs integrand reduction already dur-

ing the construction of the integrand, thereby keeping the tensor rank small, will soon be available

in OpenLoops2 [15]. It is particularly suited for applications with a demand for high numerical

stability like next-to-next-to-leading order real-virtual subtraction.

Now that the technical developments regarding one-loop amplitudes slowed down and automa-

tion efforts shifted to two-loop amplitudes [16] it is time to identify and root out shortcomings and

inconveniences of the existing tools.

2. A new one-loop generator

2.1 Tree Feynman diagram and amplitude generation

At the time when the work on OpenLoops started it was a reasonable choice to rely on

FeynArts [17] as an existing diagram generator and Mathematica to generate process spe-

cific source code. However, in the meantime this has become its most apparent weakness. First of

all, for state-of-the-art high multiplicity processes, say 2 → 6, the generation is displeasingly slow

and memory hungry with FeynArts requiring 1–2 days and ∼ 30 GB of memory for a single

partonic channel. Another problem which stems from this approach is the necessity to retain a

stable interface between the process specific code and the generic code. This hampers the integra-

tion of new features that would require interface changes. Therefore we decided to implement our

own Feynman diagram generator and abandon the strategy of generating process code, but instead

generate processes on-demand in memory. Since this would also require a rewrite of major parts of

the process independent code, it lead us to the conclusion that a reimplementation of OpenLoops

from scratch is the best solution. This new matrix element generator is being developed under the

working title OpenLoops: The Next Generator (TNG). Its diagram generator is based on

the recursive construction of tree graphs. To this end, an n-particle tree-level process is regarded

as a set of n− 1 incoming and one outgoing particle. The graphs are generated by recursively
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Figure 1: At tree level, Feynman diagrams are generated by recursively partitioning external legs into

2(v− 1) proper subsets for 3(v)-point vertices in all possible ways. The recursion stops when the external

legs are reached. Then the fields are inserted according to the Feynman rules of the theory.

partitioning the incoming particles according to the vertex degrees in the theory at hand. This is

illustrated in figure 1. When the incoming edges are reached, the recursion stops. The tree is then

traversed in opposite direction to insert the particle flavours which may appear according to the

given Feynman rules. Contributions which lead to the wrong outgoing particle flavour, i.e. not

matching the corresponding external particle, are discarded. Furthermore, the coupling orders and

colour factors are assigned. Contributions to different coupling orders are kept separate, so that

arbitrary interferences may be selected and calculated.

2.2 Colour treatment

There are several choices for the colour bases which are used in various amplitude generators.

The most common ones are

• the trace basis, where each basis element is a product of chains of fundamental generators

T a or traces thereof,

• the colour flow basis with products of Kronecker-Deltas δ ia
ja

, where each adjoint index a is

decomposed into a pair of a fundamental and anti-fundamental index, a =
(ia

ja

)
,

• no intermediate colour reduction, i.e. the colour factors of the diagrams are kept unreduced

until the interference.

Instead of commiting to one particluar choice, the basis may be chosen dynamically depending on

the symmetry properties of the amplitude. A linear combination of colour stripped amplitudes Ai,

i = 1, . . . ,N, with (unreduced) colour factors Ci is expressed as a new linear combination

N

∑
i=1

CiAi =
n

∑
i=1

BiÂi, (2.1)

where Bi, i = 1, . . . ,n, are the elements of the colour basis, thus defining the colour reduced ampli-

tudes Âi. The basis may now be chosen in such a way that as many of the Âi as possible vanish and

therefore do not have to be calculated. The simplest case where this can be achieved is the colour

factor f abc of the 3-gluon vertex. Both in the trace basis and the colour flow basis, f abc decomposes

into two terms,

c

a

b

∝ f abc ∝ Tr(T aT bT c)−Tr(T cT bT a)
︸ ︷︷ ︸

trace basis

∝ δ ia
jb

δ ib
jc

δ ic
ja
−δ ia

jc
δ ib

ja
δ ic

jb
︸ ︷︷ ︸

colour flow basis

. (2.2)
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Figure 2: By cutting one of the loop propagators, one-loop diagrams become tree-like with two “special”

particles for the loop. n-particle loop amplitudes can therefore be generated similar to n+2-particle tree

amplitudes. Because of the ambiguity which propagator is cut and due to symmetry properties, there is an

overcounting of diagrams which must be removed by appropriate selection rules.

On the other hand, the basis { f abc
,dabc} has the correct symmetry properties so that the ampli-

tude corresponding to dabc vanishes. In the case of multi-gluon amplitudes this is equivalent to

employing the Kleiss–Kuijf relations [18].

2.3 Loop amplitude generation

Feynman diagrams with one loop are generated similarly to tree-level diagrams. By cutting

the loop open at one of the loop propagators, the loop diagram becomes tree-like with two special

particles corresponding to the cut loop propagator, as illustrated in figure 2. These two particles

must be joined later on to close the loop. This strategy leads to a significant amount of redundancy

and therefore to an overcounting of diagrams, because for each loop propagator two contributions

will be present with this propagator cut and the two possible build directions. This overcounting

must be eliminated by an appropriate selection rule, corresponding to the cutting rule of the orig-

inal open-loops algorithm. At the same time, the cutting rule ensures that structures appearing in

more than one diagram are calculated only once and shared among diagrams. Furthermore, certain

diagram classes require special treatment. In the common renormalisation schemes, external wave

function corrections and tadpole diagrams are discarded. In the case of bubble diagrams with two

identical self-adjoint particles in the loop, the symmetry factor 1
2

must be taken into account.

2.4 Physics model import

A major design element of TNG is the possibility to import physics models for Beyond the

Standard Model or Effective Field Theory applications. On one hand, this procedure will be com-

pletely automated. The models must then be provided in the UFO [19] rsp. NLO-CT [20] format

as generated by FeynRules [21]. An extension of Rept1l [22] to produce a format readable

by OpenLoops is planned as well. As of now, the import of tree-level models from UFO files has

been implemented. On the other hand, the format to specify Feynman rules is human readable and

the models can be created or modified at runtime. If a user wants to modify an existing model,

e.g. by changing coupling factors, adding or removing specific vertices to or from the theory, this

can be achieved without generating and compiling a new model. The only components which must

be compiled are the numerical routines corresponding to the spinor and Lorentz structures of the

vertices. New numerical routines which are needed by a specific model are generated automatically

by the model importer.
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Generate Evaluate

Process TNG OL TNG OL OL/TNG

pure EW [ms] [s] [µs] [µs]

dd̄ → e+e− 0.075 1 1.47 1.97 1.34

dd̄ → e+e−γ 0.165 1 3.03 3.66 1.21

dd̄ → e+e−νeν̄e 0.315 2 4.57 5.06 1.11

dd̄ → e+e−νeν̄eγ 0.914 11 9.43 20.6 2.18

dd̄ → e+e−νeν̄edd̄ 2.94 182 29.1 151 5.19

pure QCD

dd̄ → tt̄ 0.081 1 2.24 2.88 1.29

dd̄ → tt̄g 0.283 1 4.97 5.19 1.04

dd̄ → tt̄gg 1.51 6 30.1 28.8 0.96

dd̄ → tt̄ggg 22.9 87 463 568 1.23

Table 1: Timings for the process generation and evaluation of colour and helicity summed tree-level matrix

elements on an Intel i7-4790 CPU. TNG outperforms OpenLoops (OL) in almost all cases, most pro-

nounced in the case of multi-leg electroweak processes. Note that these results are preliminary and subject

to future optimisations.

2.5 Technical realisation

Our language of choice to implement TNG is C++. An important design goal is to produce a

maintainable and extensible, well documented code base. On one hand, we use a high level ampli-

tude representation for human readability, on the other hand high performance low level numerics.

This is achieved by translating the amplitude representation into a sequence of numerical calls,

each one representing an external wave function, a propagator, a vertex or a linear combination

of colour stripped amplitudes. This sequence is then executed for each given phase space point

rsp. set of parameter values. The calls at this stage are precision independent, so that the same

sequence can be used to calculate the matrix element in any supported numerical precision. To this

end, we implemented our own memory management. After the amplitude generation, a sufficiently

large memory pool which is shared among all processes is allocated to store all wave functions

sequentially in memory, avoiding the necessity for (slow) memory allocations during the matrix

element evaluation. The numerical precision is in principle not limited to double and quadruple

precision, but the data types to be used can be chosen at compile time. However, to the best of our

knowledge, there is currently no reduction library available which offers the same flexibility. A

similar problem exists with the thread-safety. While TNG on its own will be thread-safe, the 1-loop

matrix elements will probably only be when we implemented our own reduction machinery, i.e. the

on-the-fly reduction of open-loops. For the future we are also planning to explore and utilise the

potential of SIMD vectorisation units and GPU computing.

While the tree-level part of the generator is already working, the 1-loop part is still incomplete.

Some first benchmarks at tree-level are shown in table 1.
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3. Conclusions

A new generator for tree and one-loop matrix elements is in the making: OpenLoops:

The Next Generator. It is designed to address the shortcomings of OpenLoops as well as

other available generators. Processes are generated in memory as needed and evaluated in an effi-

cient way in double or higher precision numerics. As known from OpenLoops, different libraries

may be chosen to perform the reduction to scalar integrals and their evaluation. Our goal is further-

more to provide a future-proof maintainable and extensible framework with a focus on Standard

Model and Beyond-the-Standard Model applications. The program will be published as free soft-

ware when it is complete.
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