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1. Introduction

Top quark pair production is one of the most important processes at the Large Hadron Col-
lider (LHC). It allows us to precisely study the properties of the top quark which are related to
many important questions in particle physics, such as the hierarchy problem, the stability of the
electroweak vacuum, as well as the origin of fermion masses. Top quark pair production is also a
major background to the searches for many rare processes in the standard model (SM) and in new
physics models beyond the SM.

Currently, the best fixed-order calculation in quantum chromodynamics (QCD) for top quark
pair production is at the next-to-next-to-leading order (NNLO) [1–7]. Despite the high precision
of the NNLO result, the complicated kinematics of tt̄ production makes it necessary to consider
even higher order corrections. This is particularly important since the large collider energy of the
LHC enables the study of “boosted” top quark pairs, where the energies of the top quarks are
much larger than their rest mass mt . In [7], it has been found that the NNLO QCD differential cross
sections in the boosted regime are rather sensitive to the choice of factorization and renormalization
scales. This scale dependence can be dramatically reduced by resumming certain towers of large
logarithms to all orders in the strong coupling αs [8, 9]. These include not only the threshold
logarithms which arise when the partonic center-of-mass energy approaches the tt̄ invariant mass
M, but also the small-mass logarithms of the form lnn(m2

t /M2) which develop in the boosted region
M� mt .

The resummation of the large logarithms starts from the factorization formula for the differ-
ential cross section with respect to the tt̄ invariant mass M and the scattering angle θ . It can be
conveniently written in the moment space after a Mellin transform as

d2σ̃(N)

dM d cosθ
=

8πβ

3sM ∑
i j

L̃i j(N,µ f ) c̃i j(N,M,β ,cosθ ,µ f ) , (1.1)

where N is the Mellin moment, µ f is the factorization scale, β =
√

1−4m2
t /M2, L̃i j is the parton

luminosity function, and c̃i j is the hard-scattering kernel. The threshold limit corresponds to N→
∞, where the hard-scattering kernel develops large logarithms of the form lnn N. In order to resum
these threshold logarithms, one exploits the factorization formula [10–12]

c̃i j(N,M,β ,cosθ ,µ) = Tr

[
HHHm

i j

(
ln

M2

µ2 ,β ,cosθ ,µ

)

× s̃ssm
i j

(
ln

M2

N̄2µ2 ,β ,cosθ ,µ

)]
+O

(
1
N

)
, (1.2)

where N̄ = NeγE with γE the Euler constant, while HHHm
i j and s̃ssm

i j are the massive hard and soft func-
tions, which are both matrices in the color space as indicated by the bold symbols. The resumma-
tion then proceeds by choosing an appropriate hard scale µh for HHHm

i j and an appropriate soft scale
µs for s̃ssm

i j, and evolving the two functions to the factorization scale µ f via their renormalization
group equations (RGEs).

The factorization formula (1.2) is valid whether or not the top quarks are boosted. However,
in the boosted limit M� mt or β → 1, the massive hard and soft functions HHHm

i j and s̃ssm
i j themselves
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develop large logarithms of the form lnn(m2
t /M2) which also requires resummation. In [13], it was

shown that the massive hard and soft functions can be further factorized in the boosted limit as

HHHm
i j

(
ln

M2

µ2 ,β ,cosθ ,µ

)
= HHH i j

(
ln

M2

µ2 ,cosθ ,µ

)
C2

D

(
ln

m2
t

µ2 ,µ

)
+O

(
m2

t

M2

)
,

s̃ssm
i j

(
ln

M2

N̄2µ2 ,β ,cosθ ,µ

)
= s̃ssi j

(
ln

M2

N̄2µ2 ,cosθ ,µ

)
s̃2

D

(
ln

m2
t

N̄2µ2 ,µ

)
+O

(
m2

t

M2

)
, (1.3)

where HHH i j and s̃ssi j are massless hard and soft functions describing the production of a highly boosted
top quark pair, while CD and s̃D describe the fragmentation of a nearly massless top quark. Using
this double factorization, one can simultaneously resum the threshold logarithms and the small-
mass logarithms in the boosted region via the RGEs.

In order to achieve the resummation at the next-to-next-to-leading logarithmic (NNLL) accu-
racy, we need to know the various functions in the factorization formulas (1.2) and (1.3) to the
next-to-leading order (NLO), and the anomalous dimensions governing their evolution to order α2

s .
These ingredients for the un-boosted case have been collected in [12,14,15] and the NNLL resum-
mation of the threshold logarithms was performed in [12]. This result will be denoted as NNLLm

in the following, where the subscript “m” means “massive”. In the boosted case, it is possible to
improve the resummation accuracy to NNLL′ by including the NNLO contributions to the func-
tions HHH i j, s̃ssi j, CD and s̃D [13, 16]. Among them the NNLO massless soft function was calculated
in [17]. This NNLL′b (“b” meaning “boosted”) resummation can be combined with the NNLLm

resummation to obtain an NNLL′b+m result valid both in the un-boosted and boosted regions. This
was further matched to the NLO fixed-order calculation and finally arrived at the NLO+NNLL′

result in [8].
In this talk, we present two recent efforts towards improving the NLO+NNLL′ predictions. In

Section 2, we discuss the calculation of the NNLO massive soft function which can be used in the
future to improve the resummation accuracy of the threshold logarithms to NNLL′m. In Section 3,
we discuss the construction of the NNLO+NNLL′ predictions combining the NNLO calculation
with the double resummation at the NNLL′b+m precision. We summarize in Section 4.

2. The NNLO massive soft function

The massive soft function is an important ingredient in the factorization formula (1.2) which is
key to the resummation of threshold logarithms. In order to perform the resummation at the NNLL′

accuracy, it is necessary to calculate the soft function to the NNLO. This has been accomplished
in [18]. In this section, we briefly review the main results of that work.

The soft function describes the interactions of soft gluons with the hard partons involved in a
scattering process. It is defined in terms of the soft Wilson lines

SSSi(x) = P exp
(

igs

∫ 0

−∞

dsvi ·Aa(x+ svi)TTT a
i

)
, (2.1)

where P denotes path ordering, vi is a (incoming) 4-vector parallel to the momentum of the i-th
hard parton, which satisfies v2

i = 0 for massless partons and v2
i > 0 for massive ones. The boldface
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TTT a
i is the color generator associated with the i-th hard parton in the color-space formalism [19,20].

Specifically, we consider the tt̄ production process

h1(p1)+h2(p2)→ t(p3)+ t̄(p4)+Xs(ps) , (2.2)

where h1 and h2 are two incoming massless partons, and Xs represents additional soft radiations
which are described by the soft function. We work in the limit ps→ 0, where M2 = (p1 + p2)

2 =

(p3 + p4)
2, and the scattering angle θ is defined as the angle between ~p3 and ~p1 in the partonic

center-of-mass frame. The bare momentum-space soft function is defined by

SSSbare(ω,β ,cosθ)≡ 1
dR

∑
Xs

〈
0

∣∣∣∣∣ 4

∏
i=1

SSS†
i (0)

∣∣∣∣∣Xs

〉〈
Xs

∣∣∣∣∣ 4

∏
i=1

SSSi(0)

∣∣∣∣∣0
〉

δ (ω− v0 · pXs) , (2.3)

where the reference vector v0 = (2,0,0,0), and ω represents (2 times) the energy of the additional
soft partons. We have included a normalization factor dR = 3 for h1h2 = qq̄ and dR = 8 for h1h2 =

gg. It is convenient to perform a Mellin or Laplace transform into the moment space

s̃ssbare(Λ,β ,cosθ) =
∫

∞

0
dω exp

(
− ω

ΛeγE

)
SSSbare(ω,β ,cosθ) , (2.4)

where Λ is a soft momentum scale in the moment space which will be identified with M/N̄ later.
The next-to-leading order (NLO) contribution to the bare soft function has been calculated

in [12], which is rather generic and can be applied to many processes besides tt̄ production, e.g.,
the tt̄H production process [21, 22]. In order to calculate the NNLO soft function, it is necessary
to have the NLO term to higher orders in the dimensional regulator ε = (4−d)/2, where d is the
space-time dimension. This can be done using the integration-by-parts (IBP) identities [23,24] and
the method of differential equations [25–27]. The results can be obtained by solving the differential
equations and are expressed in terms of generalized polylogarithms (GPLs) [28] to all orders in ε .

The calculation of the bare NNLO contribution is more involved, but can proceed with similar
techniques. One subtlety in the calculation is the boundary conditions for the differential equa-
tions. We choose the boundary to be β → 0. However, some of the virtual-real integrals develop
Coulomb-type singularities in this limit. To illustrate this, we consider the integral family defined
by

F(4)
a1,a2,a3,a4,a5,a6,a7,a8 ≡

∫
ddk dd l δ

(
ω− v0 ·k

)
Disc

[(
k2)−a1

][
l2]−a2

[
(k+ l)2]−a3

[
v1 ·k

]−a4

×
[
v1 · l

]−a5
[
v4 ·(k+ l)

]−a6
[
v3 ·k

]−a7
[
v3 · l

]−a8 , (2.5)

where

Disc
[(

k2)−a1
]
≡ 1

2πi

[(
k2 + i0

)−a1−
(
k2− i0

)−a1
]
. (2.6)

This integral family has 21 master integrals which satisfy differential equations

∂β~g
(4)(ε,β ,cosθ) = ε

(
− â(4)

β −1
+

b̂(4)

β
+

ĉ(4)

β +1
− d̂(4)

β −1/cosθ
+

ê(4)

β +1/cosθ

)
~g(4)(ε,β ,cosθ) ,

(2.7)
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where â(4), b̂(4), ĉ(4), d̂(4) and ê(4) are 21× 21 matrices depending only on cosθ . All but two of
the master integrals are regular in the limit β → 0 and can be readily evaluated at the boundary.
The remaining two are logarithmic divergent as β → 0, and we need to extract their asymptotic
behavior near the boundary. As an example, we have

g(4)9 (ε,β ,cosθ) =− ie−2iπε Γ(1−2ε)ω4ε β

4π3−2ε Γ2(−ε)Γ(2ε)

∫ ddk dd l δ+(k2)δ (ω− v0 ·k)
(l2 + i0) (−v1 ·k) (v3 · l + i0) [−v4 ·(k+ l)+ i0]

β→0≈ (e−2iπε −1)β 2ε Γ(1−2ε)Γ(1+ ε)

23−4ε Γ(1− ε)
. (2.8)

Given the boundary conditions, the bare NNLO soft function can be solved from the differential
equations in terms of GPLs.

The bare soft function contains ultraviolet divergences and requires renormalization in the
form

s̃ss(L,β ,cosθ ,µ) = lim
ε→0

ZZZ†
s (L,β ,cosθ ,µ) s̃ssbare(Λ,β ,cosθ)ZZZs(L,β ,cosθ ,µ) , (2.9)

where L ≡ ln(Λ2/µ2), and the renormalization matrix ZZZs can be constructed from the anomalous
dimension matrix ΓΓΓs(L,β ,cosθ ,µ) obtained in [14,15,29]. It is interesting to note that the 3-parton
correlated divergences arising in our calculation are exactly cancelled by the corresponding term
in the anomalous dimension matrix, which is a highly non-trivial check of our result. We have also
verified the β → 0 limit of the renormalized soft function against the known results in [30, 31] and
find complete agreements. A more interesting and non-trivial limit is β → 1, which corresponds
to highly boosted top quarks. In this limit the massive soft function can be further factorized as
in Eq. (1.3). We have checked that our result indeed satisfies that factorization formula, and this
allows us to extract the NNLO expression of the soft fragmentation function s̃D.

3. Resummation at NNLO+NNLL′ in QCD

In [8], the NNLL′b+m resummed result is only matched to the NLO fixed-order result. With
the availability of the NNLO result with dynamic renormalization and factorization scales [7], it
is desirable to combined these two state-of-the-art calculations, which was finally achieved in [9].
This is the first time a resummed calculation at full NNLO+NNLL′ accuracy in QCD for a process
with non-trivial color structure has been completed at the differential level.

Technically, the NNLO+NNLL′ result involves three different contributions, two of which
contains all-order information. Therefore we need to combine them very carefully to ensure that
there is no double-counting (or triple-counting) at any order in αs. We first match the resummation
formulas in the soft and boosted-soft limit with each other. To do so, we need to remove the overlap
between the NNLL′b and NNLLm results to all orders in αs. This can be done by exploiting the fact
that the boosted-soft resummation formula is the small-mass limit of the soft-gluon resummation
formula at any given order in αs. The combined NNLL′b+m result is thus given by

dσ
NNLL′b+m = dσ

NNLL′b +
(

dσ
NNLLm− dσ

NNLLm
∣∣
mt→0

)
, (3.1)
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where the terms in the parenthesis account for contributions which are suppressed by mt/M in the
boosted-soft limit and thus not included in the NNLL′b result. Matching with the NNLO calculation
then proceed by subtracting the NNLO expansion of the resummed formula

dσ
NNLO+NNLL′ = dσ

NNLL′b+m +

(
dσ

NNLO− dσ
NNLL′b+m

∣∣∣ NNLO
expansion

)
. (3.2)

With the above formulas, it is straightforward to perform the matching and obtain the NNLO+NNLL′

predictions for the tt̄ invariant mass distribution as well as the top quark transverse momentum dis-
tribution. However, due to the complicated kinematics of tt̄ production, one should be careful about
the choice of the factorization scale as well as the matching scales for each of the functions in the
factorization formula (1.2) and (1.3). In [7], it has been found that the tt̄ invariant mass distribution
are quite sensitive to the choice of the factorization scale in the boosted region, even at NNLO. By
studying the convergence of the perturbative series, it was argued that the optimal choice should be

µ f =
HT

4
≡ 1

4

[√
p2

T,t +m2
t +
√

p2
T,t̄ +m2

t

]
, (3.3)

instead of correlating with M. This fact also has implications for the choices of the other matching
scales in the resummation formula, especially the hard scale µh and the soft scale µs. In [8], the
hard scale was chosen to be correlated with M. However, a closer look at the hard function in the
gg-channel reveals that in the boosted limit, the t- and u-channel propagators enhance the forward
and backward regions:

m2
t − (p1− p3)

2∣∣
mt→0 ≈

M2

2
(1− cosθ)+m2

t cosθ
cosθ→1−−−−→ p2

T,t +m2
t ≈ H2

T/4 , (3.4)

m2
t − (p2− p3)

2∣∣
mt→0 ≈

M2

2
(1+ cosθ)−m2

t cosθ
cosθ→−1−−−−−→ H2

T/4 . (3.5)

As a result, the hard function is sensitive to the scale HT/2 instead of M when the top quarks are
highly boosted. The analytic form and the numeric behavior of the hard function in the boosted
region then lead to the default choice µh = HT/2, as concluded in [9]. The choice of the soft scale,
on the other hand, is not as obvious. By studying the perturbative convergence of the massless soft
function, [9] has identified the default choice µs = HT/N̄. This choice is also supported by the
behavior of the massive soft function introduced in the last section [18]. In the following, we will
adopt these default choices, together with the choice of µ f as in Eq. (3.3).

We now show some phenomenological results at the LHC with
√

s = 13 TeV. We use the
NNPDF3.0 NNLO PDF sets with αs(MZ) = 0.118 [32], and take mt = 173.3 GeV. The perturba-
tive uncertainties are estimated by varying the various scales separately and adding the resulting
uncertainties in quadrature. In Fig. 1, we show the results for the absolute (left plot) and the nor-
malized (right plot) tt̄ invariant mass distribution. A remarkable feature of this figure is that the
NNLO+NNLL′ and NNLO results are in close agreement in the whole range of M when µ f =HT/4
is chosen. To add context to this result, we display in Fig. 2 the results for the cross section in a
sample bin M = [2500− 3000] GeV in the boosted region. This figure deliver a couple of impor-
tant messages. Firstly, the NNLO+NNLL′ result is rather stable against switching the factorization
scale between HT -based and M-based schemes. This implies that the even higher order corrections
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Figure 1: Results for the absolute (left) and normalized (right) top-pair invariant mass distribution at the
LHC with

√
s = 13 TeV. In all cases the ratio is to the NNLO result with µ f = HT/4. The uncertainty bands

reflect scale variations.
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Figure 2: Cross sections obtained in a sample bin M = [2500− 3000] GeV in the boosted region. The
default value of µ f is indicated explicitly, and the error bars represent perturbative uncertainties estimated
through scale variations.

to the NNLO+NNLL′ result are not so important. On the other hand, the NNLO result changes
drastically when switching the schemes. In particular, higher order contributions beyond NNLO
encoded in the resummation produce a very large effect for the choice µ f =M/2, as already forseen
in [8]. Given these observations, the close compatibility between the NNLO+NNLL′ result (with
either scale choice) and the NNLO result with µ f = HT/4 is a highly non-trivial fact. This pro-
vides an important confirmation of the result of [7], which favors the choice µ f = HT/4 for the
fixed-order calculation of the tt̄ invariant mass distribution. The overall picture emerging from the
above analysis is that the perturbative description of the top-quark pair invariant mass distribution
is under good control.

Results for the absolute (normalized) average top/anti-top (pT,avt) distribution at NNLO and
NNLO+NNLL′ are shown in the left (right) panel of figure 3. The NNLO results (with which
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Figure 3: Results for the absolute (left) and normalized (right) pT,avt distributions at the LHC with
√

s =
13 TeV. In all cases the ratio is to the NNLO result with µ f = mT/2.

resummation is matched) have been calculated using the definition

dσ

d pT,avt
=

1
2

(
dσ

d pT,t
+

dσ

d pT,t̄

)
. (3.6)

The default factorization scale is chosen to be µ f =mT/2 (where mT refers to the transverse mass of
either the top or anti-top quark depending on the distribution under consideration), which is favored
by the study of [7]. We see that the NNLO+NNLL′ result is consistent with the NNLO one. On
the other hand, it has been found that upgrading matching with fixed-order from NLO+NNLL′

to NNLO+NNLL′ is an important effect for the pT distributions, especially in reducing the scale
uncertainties in the high pT region. This is an important fact to keep in mind when using NLO-
based Monte Carlo event generators to model pT distributions.

4. Summary

To summarize, in this talk we have introduced two recent efforts towards improving the theo-
retical predictions for the differential cross sections in top quark pair production. Both are related
to the effect of soft gluons.

The first result is the analytic calculation of the NNLO massive soft function which is an
important ingredient in the resummation formula of threshold logarithms [18]. We find that it can
be entirely written in terms of GPLs, which makes it efficient for numerical evaluation. Our result
represents the first ever NNLO soft function for processes involving a non-trivial color structure
and two massive partons with full velocity dependence. We show that in the boosted limit, the
massive soft function exhibits the expect factorization property of mass logarithms, which leads
to a consistent extraction of the soft fragmentation function. We also find full agreement with the
NNLO massless soft function in [17], up to the three-parton virtual-real contributions not calculated
in that paper.
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The second result is the matched NNLO+NNLL′ predictions which combine state-of-the-art
NNLO QCD calculations with double resummation at NNLL′ accuracy of threshold logarithms
arising from soft gluon emissions and of small mass logarithms [9]. This is the first time a re-
summed calculation at full NNLO+NNLL′ accuracy in QCD for a process with non-trivial color
structure has been completed at the differential level. Of main interest to us is the stability of the
tt̄ invariant mass and top-quark pT distributions in the boosted regime where fixed order calcula-
tions may become strongly dependent on the choice of dynamic scales. With the help of numeric
and analytic arguments we confirm that the choice for the factorization and renormalization scales
advocated in [7] is indeed optimal. We further derive a set of optimized kinematics-dependent
scales for the matching functions which appear in the resummed calculations. Our NNLO+NNLL′

prediction for the top-pair invariant mass is significantly less sensitive to the choice of factoriza-
tion scale than the fixed order prediction, even at NNLO. Notably, the resummed and fixed order
calculations are in nearly perfect agreement with each other in the full M range when the optimal
dynamic scale is used. For the top-quark pT distribution the resummation performed here has less
of an impact and instead we find that upgrading the matching with fixed-order from NLO+NNLL′

to NNLO+NNLL′ to be an important effect, a point to be kept in mind when using NLO-based
Monte Carlo event generators to calculate this distribution.
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