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1. Introduction

There have been several methods proposed to compute the inverse Mellin transform of special
sequences, for instance in [1] an algorithm (using rewrite rules) to compute the inverse Mellin
transform of harmonic sums was stated. This algorithm was extended in [2] to generalized har-
monic sums such as S-sums and cyclotomic sums. A different approach to compute inverse Mellin
transforms of binomial sums was described in [3]. In [4] a method to compute the inverse Mellin
transform of general holonomic sequences was described. That method uses holonomic closure
properties and was implemented in the computer algebra package HarmonicSums [2, 5, 6, 7, 8].
In the frame of this article we want show how this method can be modified in order to find a more
efficient and improved method to compute the inverse Mellin transform of holonomic sequences.
The resulting method has been heavily used in the frame of the work on [9].

In the following we repeat important definitions and properties (compare [3, 4, 10]). Let K
be a field of characteristic 0. A function f = f (x) is called holonomic (or D-finite) if there exist
polynomials pd(x), pd−1(x), . . . , p0(x)∈K[x] (not all pi being 0) such that the following holonomic
differential equation holds:

pd(x) f (d)(x)+ · · ·+ p1(x) f ′(x)+ p0(x) f (x) = 0. (1.1)

We emphasize that the class of holonomic functions is rather large due to its closure properties.
Namely, if we are given two such differential equations that contain holonomic functions f (x)
and g(x) as solutions, one can compute holonomic differential equations that contain f (x)+g(x),
f (x)g(x) or

∫ x
0 f (y)dy as solutions. In other words any composition of these operations over known

holonomic functions f (x) and g(x) is again a holonomic function h(x). In particular, if for the inner
building blocks f (x) and g(x) the holonomic differential equations are given, also the holonomic
differential equation of h(x) can be computed.
Of special importance is the connection to recurrence relations. A sequence ( fn)n≥0 with fn ∈K is
called holonomic (or P-finite) if there exist polynomials pd(n), pd−1(n), . . . , p0(n) ∈ K[n] (not all
pi being 0) such that the holonomic recurrence

pd(n) fn+d + · · ·+ p1(n) fn+1 + p0(n) fn = 0 (1.2)

holds for all n ∈ N (from a certain point on). In the following we utilize the fact that holonomic
functions are precisely the generating functions of holonomic sequences: if f (x) is holonomic, then
the coefficients fn of the formal power series expansion

f (x) =
∞

∑
n=0

fnxn

form a holonomic sequence. Conversely, for a given holonomic sequence ( fn)n≥0, the function
defined by the above sum (i.e., its generating function) is holonomic (this is true in the sense
of formal power series, even if the sum has a zero radius of convergence). Note that given a
holonomic differential equation for a holonomic function f (x) it is straightforward to construct
a holonomic recurrence for the coefficients of its power series expansion. For a recent overview
of this holonomic machinery and further literature we refer to [10]. An additional property of
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holonomic functions was given for example in [4] and [3]: if the Mellin transform of a holonomic
function

M[ f (x)](n) :=
∫ 1

0
xn f (x)dx = F(n) (1.3)

is defined, i.e., the integral
∫ 1

0 xn f (x)dx exists, then it is a holonomic sequence. And using the
properties of the Mellin transform we can easily check that

M[xm f (p)(x)](n) =
(−1)p(n+m)!
(n+m− p)!

M[ f (x)](n+m− p)+
p−1

∑
i=0

(−1)i(n+m)!
(n+m− i)!

f (p−1−i)(1).(1.4)

Conversely, if the Mellin transform M[ f (x)](n) of a function f (x) is holonomic, then also the
function f (x) is holonomic. In this article we will report on an improved method to calculate the
inverse Mellin transform in terms of iterated integrals, note that this method is implemented in the
the package HarmonicSums.

The paper is organized as follows. In Section 2 we revisit a method to derive a differential
equation for f (x) under the assumption that a holonomic recurrence for M[ f (x)](n) is given. In
Section 3 we present a new improved method to compute the inverse Mellin transform of holonomic
sequences and finally in Section 4 we give a detailed example to show the application of the method.

2. Deriving the differential equation

In this section we want to recall how we can compute a differential equation for f (x) given a
holonomic recurrence for M[ f (x)](n) (compare [4]). First we state an important property of the
Mellin transform that will be useful in the remainder of this section:

dm

dnm M[ f (x)](n) = M[log(x)m f (x)](n). (2.1)

Analyzing (1.4) we see that

M[(−1)pxm+p f (p)(x)](n) =
(n+m+ p)!
(n+m)!

M[ f (x)](n+m)

+
p−1

∑
i=0

(−1)i+p(n+m+ p)!
(n+m+ p− i)!

f (p−1−i)(1). (2.2)

Hence we get

np M[ f (x)](n+m) = M[(−1)pxm+p f (p)(x)](n)−a(n)M[ f (x)](n+m)

−
p−1

∑
i=0

(−1)i+p(n+m+ p)!
(n+m+ p− i)!

f (p−1−i)(1), (2.3)

where a(n) ∈ K[n] with deg(a(n)) < p. We can use this observation to compute the differential
equation recursively: Let

pd(n) fn+d + · · ·+ p1(n) fn+1 + p0(n) fn = 0 (2.4)
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be the holonomic recurrence for M[ f (x)](n). Let k := max
0≤i≤d

(deg(pi(x))) and let c be the coefficient

of nk in the recurrence i.e.,

c =
d

∑
i=0

ci fn+i,

for some ci ∈K. For 0≤ i≤ d we replace cink fn+i by

cink fn+i + M[ci(−1)kxk+i f (k)(x)](n)− ci(−1)k M[xk+i f (k)(x)](n)︸ ︷︷ ︸
∗

and apply (1.4) to ∗. Considering (2.3) we conclude that we reduced the degree of n. We apply this
strategy until we have removed all appearances of fn+i. At this point we deal with an equation of
the form

M[ql(x) f (l)(x)+ · · ·+q1(x) f ′(x)+q0(x) f (x)](n)+
k−1

∑
j=0

r j(n) f ( j)(1) = 0 (2.5)

where ri(n) ∈ K[n]. If all ri(n) = 0, we can immediately conclude that f (x) has to satisfy the
differential equation

f (l)(x)+ · · ·+q1(x) f ′(x)+q0(x) f (x) = 0. (2.6)

If not all ri(n) = 0, let m := max
0≤i≤k−1

(deg(r j(n))), we differentiate equation (2.5) (m+1)-times with

respect to n. According to (2.1) we get

M[log(x)m(ql(x) f (l)(x)+ · · ·+q1(x) f ′(x)+q0(x) f (x))](n) = 0,

and hence f (x) has to satisfy the differential equation (2.6).

3. The Inverse Mellin Transform of Holonomic Sequences

In the following, we deal with the following problem:
Given a nested sum F(n) of the form

F(n) := F0(n)
n

∑
i1=1

F1(i1)
i1

∑
i2=1

F2(i2) · · ·
ik−1

∑
ik=1

Fk(ik), (3.1)

with Fj(n) holonomic in n such that Fj(y)
Fj(y+1) ∈ K(η)(y)1. Note that we could incorporate η into

the field K, but in our applications η represents a specific number with 0 < η < 1 and we keep η

explicit since it is important in the regularization later on.
Find, whenever possible, a representation in the form

H(n) =
k

∑
j=0

vn
j

(
d0, j +

∫ 1

0
(xn−an

j)
b j

∑
i=1

di, j fi, j(x)dx

)
, (3.2)

1In this particular instance Fj(y) is also called hypergeometric with respect to y.
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such that F(n) = H(n) for all n ∈ N with n > n0 for some n0 ∈ N where in our cases v j, a j, di, j ∈
K(η) and fi, j(x) are expressions of the form p(η ,x) g(x) with p(η ,x) ∈ K(η)(x) and g(x) is an
iterated integral of the form

G(g1(τ),g2(τ), · · · ,gk(τ),x) =
∫ x

0
g1(τ1)G(g2(τ), · · · ,gk(τ),τ1)dτ1,

with g j(x) holonomic in x such that g j(y)
g′j(y)
∈K(η)(y)2 and with the special cases

G(x) = 1,

and

G
(

1
τ
,

1
τ
, . . . ,

1
τ︸ ︷︷ ︸

k times

,x
)
=

1
k!

log(x)k.

In order to find such a representation we start by defining

F̄j(n) := F0(n)
n

∑
i1=1

F1(i1)
i1

∑
i2=1

F2(i2) · · ·
i j−1

∑
i j=1

Fj(i j) (3.3)

for 0 ≤ j ≤ k. Hence for example F̄k(n) = F(n), F̄k−1(n) is the original sum with the innermost
summation quantifier dropped, F̄1(n) = F0(n)∑

n
i1=1 F1(i1) and F̄0(n) = F0(n). Now for each j with

0≤ j ≤ k we proceed as follows:

• Determine v j, note that vn
j reflects the asymptotic behavior of Fj(n).

• Construct a recurrence

pd(n) fn+d + · · ·+ p1(n) fn+1 + p0(n) fn = 0, (3.4)

such that v−n
j F̄j(n) is a solution of (3.4).

• Use the method from Section 2 to derive a differential equation

qb j(x) f (b j)(x)+ · · ·+q1(x) f ′(x)+q0(x) f (x) = 0 (3.5)

for the inverse Mellin transform of v−n
j F̄j(n).

• Compute, if possible, a general solution3

b j

∑
i=1

di, j fi, j(x) (3.6)

of (3.5) in terms of iterated integrals by using the algorithms form [11, 12, 13, 14, 15], see
also [16].

2g j(y) is also called hyperexponential with respect to y.
3If only a subspace of the general solution can be computed, the result can be still obtained provided that such a

representation exists.
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• Read off a j ∈ (0,1] from (3.6), note that a j is a zero of the denominator or 0.

At this point we use the ansatz

F(n) =
k

∑
j=0

vn
j

(
d0, j +

b j

∑
i=1

di, j

∫ 1

0
(xn−an

j) fi, j(x)dx

)
, (3.7)

and it remains to determine the di, j. Therefore, for each j we compute

M j(n) =
b j

∑
i=1

di, j

∫ 1

0
(xn−an

j) fi, j(x)dx, (3.8)

i.e., we compute the Mellin transform of ∑
b j
i=0 di, j fi, j(x) for symbolic di, j. Hence we have

F(n) =
k

∑
j=0

vn
j (d0, j +M j(n)) , (3.9)

and by checking a sufficient amount of initial values we can determine the di, j.

4. A detailed Example

Let’s consider the following expression (0 < η < 1):

F(n) := 4−n
(

2n
n

) n

∑
i=1

4i
( 1

1−η

)i
∑

i
j=1

(1−η) j

j

i2
(2i

i

) .

We proceed as suggested in the previous section. Hence we define:

F̄2(n) := 4−n
(

2n
n

) n

∑
i=1

4i
( 1

1−η

)i

i2
(2i

i

) i

∑
j=1

(1−η) j

j
,

F̄1(n) := 4−n
(

2n
n

) n

∑
i=1

4i
( 1

1−η

)i

i2
(2i

i

) ,

F̄0(n) := 4−n
(

2n
n

)
.

In order to find v0,v1 and v2 we determine the asymptotic behavior of F̄0(n), F̄1(n) and F̄2(n),
respectively. Since,

4−n
(

2n
n

)
︸ ︷︷ ︸

∼(1)n
(

1√
π

1√
n+O( 1

n)
)

n

∑
i=1

4i
( 1

1−η

)i

i2
(2i

i

)︸ ︷︷ ︸
∼( 1

1−η )
i
(

1√
i3
+O
(

1
i2

))
i

∑
j=1

(1−η) j

j︸ ︷︷ ︸
∼(1−η) j

(
1
j +O

(
1
j2

))
,

we have

F̄2(n) ∼
(

1 · 1
1−η

· (1−η)

)n( log(η)

η2n2 +0
(

1
n3

))
= 1n

(
log(η)

η2n2 +0
(

1
n3

))
(n→ ∞),

5
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F̄1(n) ∼
(

1 · 1
1−η

)n( 1
η

1
n2 +0

(
1
n3

))
=

(
1

1−η

)n( 1
η

1
n2 +0

(
1
n3

))
(n→ ∞),

F̄0(n) ∼ 1n
(

1√
π

1√
n
+O

(
1
n

))
(n→ ∞),

and hence v0 = v2 = 1 and v1 =
1

1−η
.

Now for j = 2 we derive a recurrence for

v−n
2 F̄2(n) = 4−n

(
2n
n

) n

∑
i=1

4i
( 1

1−η

)i

i2
(2i

i

) i

∑
j=1

(1−η) j

j
,

and find

0 = (1+n)(2+n)(1+2n) f (n)+(2+n)
(
−17+6η−20n+7ηn−6n2 +2ηn2) f (1+n)

+
(
85−61η +104n−72ηn+43n2−29ηn2 +6n3−4ηn3) f (2+n)

+2(η−1)(3+n)3 f (3+n).

We compute a differential equation for the inverse Mellin transform of v−n
2 F̄2(n) using the method

presented in Section 1 and get

0 = 2(η−1) f (x)+(11−14x−3η +14xη) f ′(x)

+
(
−5+17x−12x2−7xη +12x2

η
)

f ′′(x)+2x(1− x+ xη) f (3)(x).

with the general solution d1,2 f1,2(x)+d2,2 f2,2(x)+d3,2 f3,2(x) with d1,2,d2,2,d3,2 ∈ K(η) and

f1,2(x) =
1√

1− x
√

x
,

f2,2(x) =

√
1− x

√
x−2

√
1− xx3/2 +4G

(√
1− τ

√
τ,x
)

√
1− x

√
x

,

f3,2(x) =
2G
(√

1− τ
√

τ,x
)

(1−η)
√

1− x
√

x
−

G
(

1
1−τ+ητ

,x
)

1−η
+

ηG
(

1
1−τ+ητ

,x
)

1−η
+

2xG
(

1
1−τ+ητ

,x
)

1−η

−
2ηxG

(
1

1−τ+ητ
,x
)

1−η
−

G
(√

1−τ
√

τ

1−τ+ητ
,x
)

(1−η)
√

1− x
√

x
−

ηG
(√

1−τ
√

τ

1−τ+ητ
,x
)

(1−η)
√

1− x
√

x

−
4G
(√

1− τ
√

τ, 1
1−τ+ητ

,x
)

(1−η)
√

1− x
√

x
+

4ηG
(√

1− τ
√

τ, 1
1−τ+ητ

,x
)

(1−η)
√

1− x
√

x
.

Since the solution has no pole in 0 < x < 1 we can set a2 = 0.
Next for j = 1 derive a recurrence for

v−n
1 F̄1(n) = (1−η)n4−n

(
2n
n

) n

∑
i=1

4i
( 1

1−η

)i

i2
(2i

i

) ,

and find

0 = −(η−1)(1+n)(1+2n) f (n)+
(
−8+6η−11n+7ηn−4n2 +2ηn2) f (1+n)

6
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+2(2+n)2 f (2+n).

Now we compute a differential equation and get

0 = 2 f (x)+3(−1+η +2x) f ′(x)+2x(−1+η + x) f ′′(x),

for which we find the solution d1,1 f1,1(x)+d2,1 f2,1(x) with d1,1,d2,1 ∈K(η) and

f1,1(x) =
1√

1−η− x
√

x
,

f2,1(x) =

(√
1−η− x

√
x−η

√
1−η− x

√
x−2

√
1−η− xx3/2 +4G

(√
1−η− τ

√
τ,x
))

(1−η)2
√

1−η− x
√

x
.

Again, since the solution has no pole in 0 < x < 1 we can set a1 = 0.
Finally for j = 0 we derive a recurrence for

v−n
0 F̄0(n) = 4−n

(
2n
n

)
,

and find

0 = (−1−2n) f (n)+2(1+n) f (1+n).

We compute a differential equation and get

0 = (−1+2x) f (x)+2(x−1)x f ′(x) = 0,

which has the solution d1,0 f1,0(x) with d1,0 ∈K(η) and

f1,0(x) =
1√

1− x
√

x
.

Since the solution has no pole in 0 < x < 1 we again set a0 = 0. Since v0 = v2, a0 = a2 and
f1,0(x) = f1,2(x) we don’t have to consider this solution separately.
Summarizing we have

F(n) =
2

∑
j=1

vn
j

(
d0, j +

b j

∑
i=1

di, j

∫ 1

0
(xn−an

j) fi, j(x)dx

)

= d0,2 +d1,2

∫ 1

0
xn f1,2(x)dx+d2,2

∫ 1

0
xn f2,2(x)dx+d3,2

∫ 1

0
xn f3,2(x)dx

+
1

(1−η)n

(
d0,1 +d1,1

∫ 1

0
xn f1,1(x)dx+d2,1

∫ 1

0
xn f2,1(x)dx

)
.

And it remains to fix the di, j. Therefore we compute the Mellin transforms and get

F(n) = d0,2 +d1,2

(
−2
√

π

4n

(
2n
n

))
+d2,2

(
− 1

4n

(
2n
n

) n

∑
i=1

4i(2i
i

)
i2
+ · · ·

)

+d3,2

− (2n
n

)
(1−η)4n

n

∑
i=1

(1−η)i
∑

i
j=1

4 j

(2 j
j )(1−η) j j2

i
+ · · ·

+d0,1
1

(1−η)n

7
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+d1,1

(
−√η

(2n
n

)
4n

n

∑
i=1

4i(2i
i

)
(1−η)ii

+ · · ·

)
+d2,1

(
−
(2n

n

)
4n

n

∑
i=1

4i(2i
i

)
(1−η)ii2

+ · · ·

)
.

Now it is straightforward to determine the di, j by checking initial values and we find

F(n) =
∫ 1

0
xn 1

12π
√

1− x
√

x(1−η)3

(
3π

2(1−η)3−4
(
1+11η +11η

2 +η
3)

−192
√
−η(1+η)G

(√
1−η− τ

√
τ,1
)

G
(

1
1− τ +ητ

,1
)

+384G
(√

1−η− τ
√

τ,1
)2

G
(

1
1− τ +ητ

,1
)

−24π(1−η)3(1+η)G
(√

1− τ
√

τ

1− τ +ητ
,1
)

+96π(1−η)4G
(

1
1− τ +ητ

,
√

1− τ
√

τ,1
)

+192(1−η)3(1+η)G
(√

1− τ
√

τ

1− τ +ητ
,
√

1− τ
√

τ,1
)

−768(1−η)4G
(

1
1− τ +ητ

,
√

1− τ
√

τ,
√

1− τ
√

τ,1
))

dx

+
∫ 1

0
xn

2(1−η)
(
−
√

1− x
√

x+2
√

1− xx3/2−4G
(√

1− τ
√

τ,x
))

G
(

1
1−τ+ητ

,1
)

√
1− x

√
x

dx

+
∫ 1

0
xn

(
−

4G
(√

1− τ
√

τ,x
)

√
1− x

√
x

+
2(1+η)G

(√
1−τ
√

τ

1−τ+ητ
,x
)

√
1− x

√
x

+
2
(√

1− x
√

x−2
√

1− xx3/2−
√

1− x
√

xη +2
√

1− xx3/2η
)

G
(

1
1−τ+ητ

,x
)

√
1− x

√
x

+
2(4−4η)G

(√
1− τ

√
τ, 1

1−τ+ητ
,x
)

√
1− x

√
x

)
dx

+
1

(1−η)n

(∫ 1

0
xn

2
(
η +η2 +4

√
−ηG

(√
1−η− τ

√
τ,1
))

G
(

1
1−τ+ητ

,1
)

√
x
√

1− x−η(−1+η)
√
−η

dx

+
∫ 1

0
xn

2G
(

1
1−τ+ητ

,1
)

√
x
√

1− x−η(−1+η)

(
−
√

x
√

1− x−η +2x3/2
√

1− x−η

+
√

x
√

1− x−ηη−4G
(√

1−η− τ
√

τ,x
))

dx

)
.
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