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1. Introduction

The physics program of the Large Hadron Collider (LHC) demands precision calculations of
cross sections of Standard Model processes to attain a quantitative understanding of the background
and in turn facilitate the extraction of new physics signals. The required accuracy is typically next-
to-next-to leading order (NNLO) in fixed-order perturbation theory, in order to match the parton
distribution uncertainties and the experimental precision. Out of the contributions to NNLO cross
sections, the double-virtual one, i.e. the two-loop scattering amplitude, is the main bottleneck.

Calculation of multi-loop amplitudes proceeds in two stages. In the first step, the amplitude is
rewritten as a linear combination of a basis of integrals through the use of discrete symmetries and
integration-by-parts (IBP) reductions. The latter are linear relations among loop integrals which
arise from the vanishing integration of total derivatives in dimensional regularization,

∫ L

∏
i=1

dD`i

iπD/2

L

∑
j=1

∂

∂`
µ

j

vµ

j P

Dα1
1 · · ·D

αm
m

= 0 , (1.1)

where P and the vectors vµ

j are polynomial in the internal and external momenta, the Dk denote
inverse propagators, and the αi are integers. Upon applying Gaussian elimination [1, 2] to a suitably
large system of IBP identities (1.1), one obtains the IBP reductions [3–16], which express the
majority of the contributing loop integrals as linear combinations of a small basis of integrals.

In the second step, one sets up differential equations for the basis integrals [17–26]. Letting
xm denote an external kinematical invariant, ε = 4−D

2 the dimensional regulator, and I (x,ε) =
(I1(x,ε), . . . ,IM(x,ε)) the basis of integrals, we have the following first-order linear system,

∂

∂xm
I (x,ε) = Am(x,ε)I (x,ε) , (1.2)

where in practice one uses the IBP reductions to decompose the derivatives ∂I j
∂xm

in the basis. With
appropriate boundary conditions, eq. (1.2) can be solved to produce expressions for the basis inte-
grals. This method has proven to be a powerful tool for computing multi-loop integrals.

The aim of these proceedings, based on ref. [27], is to investigate to what extent the IBP re-
duction formalisms of refs. [10–12, 15] are compatible with differential equations of the type in
eq. (1.2). The main idea of these IBP reduction formalisms is to choose the vµ

j (`i) in eq. (1.1) such
that the resulting IBP identities do not involve squared propagators. The resulting IBP identities
thus involve a more limited set of integrals and therefore produce significantly smaller linear sys-
tems to be solved. The question we wish to address is therefore whether it is possible to set up
differential equations of the form (1.2) without generating integrals with squared propagators in
intermediate stages.

2. Differential equations in Baikov representation

We begin by fixing our notation and conventions. We consider a Feynman integral with L
loops, k propagators and m− k irreducible scalar products (i.e., polynomials in the loop momenta
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and external momenta which cannot be expressed as a linear combination of the inverse propaga-
tors). We apply dimensional regularization and normalize the integral as follows,

I(N;α1, . . . ,αm;D)≡
∫ L

∏
j=1

dD` j

iπD/2

N
Dα1

1 · · ·D
αm
m

. (2.1)

Here N denotes a polynomial in the linearly independent external momenta p1, . . . , pE and the loop
momenta `1, . . . , `L, and m = LE +L(L+1)/2. The propagators are labeled such that,

αi ≥ 1 for i = 1, . . . ,k

αi ≤ 0 for i = k+1, . . . ,m . (2.2)

We remark that eq. (2.1) does not give a unique representation, as D−αk+1
k+1 · · ·D−αm

m can be absorbed

into N to form a polynomial numerator, I(N;α;D) = I
(

N ∏
m
j=k+1 D−α j

j ; (α1, . . . ,αk,0);D
)

. Nev-
ertheless, we find it more convenient to use this notation than to fix the rescaling invariance.

The question we wish to address is whether differential equations of the form (1.2) can be set
up without introducing integrals with squared propagators. To this end it is convenient to make use
of the Baikov representation [28] in which the integration variables are the inverse propagators and
irreducible numerator insertions, zα = Dα with 1 ≤ α ≤ m. The associated Jacobian involves the
Gram determinants U = deti, j=1,...,E(pi · p j) and F = deti, j=1,...,E+L(vi · v j) where {v1, . . . ,vE+L} ≡
{p1, . . . , pE , `1, . . . , `L}. Using this notation, the integral in eq. (2.1) has the following Baikov
representation (up to an irrelevant kinematics-independent prefactor),

I(N;α;D) = U
E−D+1

2

∫ dz1 · · ·dzm

zα1
1 · · ·z

αm
m

F(z)
D−L−E−1

2 N(z) . (2.3)

To write down differential equations of the form (1.2), we let
(
I1, . . . , IM

)
denote a basis of integrals

and differentiate the Baikov representation (2.3) with respect to an arbitrary external invariant χ ,
yielding,

∂

∂ χ
I j(N j;α;D) =

E−D+1
2U

∂U
∂ χ

I j(N j;α;D)+
D−L−E−1

2
I j

( 1
F

∂F
∂ χ

N j;α;D
)
. (2.4)

We observe that the 1
F factor in the second term effectively modifies the integration measure in

eq. (2.3), shifting the space-time dimension from D to D−2.
However, as proved in ref. [27], the second term of eq. (2.4) can always be expressed as a linear

combination of D-dimensional integrals. This follows from the fact that there exist polynomials
(a1, . . . ,am,b) in the zα and the external kinematical invariants such that the following relation
holds,

∂F
∂ χ

=
m

∑
i=1

ai
∂F
∂ zi

+bF , (2.5)

referred to as fundamental ideal membership of F .
Using eq. (2.5) and integration by parts in each zi, one finds that eq. (2.4) takes the form

∂

∂ χ
I j(N j;α;D) =

E−D+1
2U

∂U
∂ χ

I j(N j;α;D)+ I j(Q j;α;D) , (2.6)
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where the insertion Q j is given by,

Q j =
m

∑
i=1

[
αi

aiN j

zi
− ∂

∂ zi
(aiN j)

]
+

D−L−E−1
2

bN j . (2.7)

The resulting right-hand side of eq. (2.6) thus involves only D-dimensional integrals. Upon ap-
plying integration-by-parts reductions to the the right-hand sides for each j = 1, . . . ,M, we find
differential equations of the form (1.2).

3. Differential equations without squared propagators

Having set up the differential equations (1.2) in Baikov representation it is now straightforward
to examine whether it is possible to avoid introducing integrals with squared propagators. From
eqs. (2.6)–(2.7) we observe that terms with positive αi will produce squared propagators for a
generic polynomial ai. However, provided it is possible to choose the polynomials ai such that,

ai = zibi for i = 1, . . . ,k , (3.1)

where bi denote polynomials, the insertion (2.7) takes the following form,

Q j =
k

∑
i=1

[
(αi−1)biN j− zi

∂ (biN j)

∂ zi

]
+

m

∑
i=k+1

[
αi

aiN j

zi
−

∂ (aiN j)

∂ zi

]
+

D−L−E−1
2

bN j . (3.2)

We observe that the only occurrence of 1
zi

is within the sum over the range k+1≤ i≤m. However,
in this range 1

zαi
i

occurs in the integrands with non-positive αi, cf. eqs. (2.2) and (2.3). That is, the
1
zi

in eq. (3.2) can at most introduce a propagator, but never double a propagator already present.
We conclude that no integrals with squared propagators are generated in setting up differential

equations of the form (1.2) provided that the following relation holds,

∂F
∂ χ

=
k

∑
i=1

bizi
∂F
∂ zi

+
m

∑
i=k+1

ai
∂F
∂ zi

+bF . (3.3)

Eq. (3.3) can be rewritten as the equivalent statement

∂F
∂ χ
∈
〈

z1
∂F
∂ z1

, . . . ,zk
∂F
∂ zk

,
∂F

∂ zk+1
, . . . ,

∂F
∂ zm

,F
〉
, (3.4)

which we refer to as enhanced ideal membership of F .
Ideal membership (3.4) can be determined by computing a Gröbner basis G of the ideal on the

right-hand side and then computing the remainder r of ∂F
∂ χ

after polynomial division with respect
to G . Namely, eq. (3.4) holds if and only if r = 0. Alternatively, one can solve explicitly for the
cofactors (b1, . . . ,bk,ak+1, . . . ,am,b) by starting with Ansätze which are linear in (z1, . . . ,zm) and
iteratively allowing for cofactors of higher degree. This is an efficient approach in practice, as
cofactors are typically of low degrees and thus lead to linear systems of manageable sizes.

The enhanced ideal membership turns out to hold for a large class of multi-loop integrals.
Some examples are illustrated in figure 1. At the same time we note that the enhanced ideal mem-
bership (3.4) is not a general property of the Baikov polynomial F : e.g., the diagram in figure 2
provides a counterexample.
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Figure 1: A selection of diagrams for which the enhanced ideal membership in eq. (3.3) holds. The bold
lines represent massive momenta and propagators.

Figure 2: Non-planar double-box diagram. The bold lines represent massive momenta and propagators. For
this diagram, the enhanced ideal membership (3.3) does not hold.

4. Example

As an application of the formalism in sections 2 and 3, let us work out the cofactors and the
differential equations of the fully massless planar double-box diagram shown in figure 3.

Figure 3: The fully massless planar double-box diagram. All external momenta are taken to be outgoing.
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In the case at hand we have m= 2 ·3+2 ·3/2= 9 Baikov variables which we define as follows,

z1 = `2
1 , z2 = (`1− p1)

2 , z3 = (`1− p1− p2)
2 ,

z4 = (`2 + p1 + p2)
2 , z5 = (`2− p4)

2 , z6 = `2
2 ,

z7 = (`1 + `2)
2 , z8 = (`1 + p4)

2 , z9 = (`2 + p1)
2 .

(4.1)

We wish to set up differential equations for a basis of the vector space spanned by the diagram in
figure 3 and its subdiagrams. An integral basis I can be obtained with AZURITE [29]. Setting
Iα ≡ I(1;α;D), it finds

I =
(

s−1+2ε I(0,1,0,0,1,0,1,0,0), s−1+2ε I(1,0,0,1,0,0,1,0,0), s2ε I(1,0,1,0,1,0,1,0,0), s2ε I(1,0,1,1,0,1,0,0,0),

s1+2ε I(1,1,0,1,1,0,1,0,0), s1+2ε I(1,1,1,0,1,0,1,0,0), s3+2ε I(1,1,1,1,1,1,1,0,0), s2+2ε I(1,1,1,1,1,1,1,−1,0)

)
.

(4.2)

We rescaled the basis integrals Iα by s|α|−4+2ε to render them dimensionless. Thus, the integrals in
eq. (4.2) depend on kinematics only through the dimensionless ratio χ ≡ t/s.

We are therefore interested in differential equations for the basis integrals in eq. (4.2) taken
with respect to χ . In the case at hand, we find that the following property, slightly stronger than
eq. (3.3), holds,

∂F
∂ χ

=
9

∑
i=1

bizi
∂F
∂ zi

+bF . (4.3)

By writing Ansätze for (bi,b) which are linear in (z1, . . . ,z9) and solving the resulting linear system,
one finds the following cofactors, setting b = (b1, . . . ,b9),

b =
(

z3−z8
χ(χ+1)s ,

z3−z8−χs−s
χ(χ+1)s , z3−z8−s

χ(χ+1)s ,
z4−z5−s
χ(χ+1)s ,

z4−z5−s
χ(χ+1)s ,

z4−z5
χ(χ+1)s ,

z3+z4−z5−z8−s
χ(χ+1)s , z3−z8−s

χ(χ+1)s ,
z4−z5−χs−s

χ(χ+1)s

)
b =−2z3+2z4−2z5−2z8−2χs−3s

χ(χ+1)s . (4.4)

We insert these expressions into eqs. (3.1) and (3.2) and subsequently apply IBP reductions to the
resulting right-hand sides to find a system of differential equations of the desired form,

∂

∂ χ
I (χ,ε) = A(χ,ε)I (χ,ε) . (4.5)

The resulting coefficient matrix A(χ,ε) is not particularly illuminating. Rather than presenting its
explicit form, we take one further step [22] and rotate to a new basis J (χ,ε),

J (χ,ε) =U(χ,ε)I (χ,ε) , (4.6)

in which the coefficient matrix becomes proportional to ε , whereby the system is in canonical form.
We can find a change-of-basis matrix U with the desired property by using Fuchsia [30].

Providing the coefficient matrix A(χ,ε) computed in eq. (4.5) as input, it finds

U = diag
(
(1−2ε)(1−3ε)(2−3ε)

120ε3χ
, (1−2ε)(1−3ε)(−2+3ε)

120ε3 , (1−2ε)(1−3ε)
24ε2 , (1−2ε)2

18ε2 ,− χ+1
2 , −1+2ε

6ε
,− χ

2 ,
1
2

)
.

(4.7)

5



P
o
S
(
L
L
2
0
1
8
)
0
6
4

Differential equations for loop integrals without squared propagators Kasper J. Larsen

In the new basis J (χ,ε), we have the explicit differential equations

∂

∂ χ
J (χ,ε) = ε

(
a0

χ
+

a−1

χ +1

)
J (χ,ε) , (4.8)

where a0 and a−1 are matrices with integer entries,

a0 =



−2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−60 −60 0 0 −2 0 0 0
20 0 −4 0 0 −2 0 0
−360 360 72 0 12 36 −20
540 −360−90−9−18−36 1 1


, a−1 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0
−20 0 4 0 0 1 0 0
360 −720−36 18 −12−36 2 2
−540 360 90 −9 18 36 −1−1


.

(4.9)
Thus we have derived differential equations of the type (1.2) for the basis integrals in eq. (4.2) and
achieved a canonical form of the system without introducing integrals with squared propagators in
intermediate stages.

5. Conclusions

Differential equations of the form (1.2) provide a powerful method for computing multi-loop
integrals. In practice, setting up such equations for multi-scale integrals is non-trivial, as the step of
expressing the derivatives of the integrals in the basis requires integration-by-parts (IBP) reductions
which are computationally intensive to generate. Refs. [10–12, 15] provide a simplified approach
to IBP reductions where integrals with squared propagators are avoided in intermediate stages, thus
producing significantly smaller linear systems to be solved.

In these proceedings, based on ref. [27], we have addressed the question whether it is pos-
sible to set up differential equations of the form (1.2) without introducing integrals with squared
propagators in intermediate stages, so that the formalism of refs. [10–12, 15] can be applied.

We have shown that a sufficient condition is that the Baikov polynomial F satisfies eq. (3.3).
This condition holds for a large class of multi-loop diagrams, including highly non-trivial loop
diagrams whose differential equations are not attainable with standard methods. A sample is illus-
trated in figure 1. At the same time, we have identified a counterexample to eq. (3.3), shown in
figure 2. An interesting open problem is therefore to classify the diagrams for which the enhanced
ideal membership property (3.3) holds. Another interesting problem is to find closed formulas for
the cofactors in eq. (3.3).
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