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1. Introduction

Many physically interesting quantities can be computed from the UV counterterms of Feynman
diagrams, for example, anomalous dimensions (such as the beta function). The UV counterterms
are part of the pole structure of a diagram, which are often much easier to compute than the finite
part.

In this work we sketch the R∗-operation [1–3], which is able to compute the pole parts of L-
loop diagrams by a computation of at most (L−1)-loop diagrams. Using a high-performance imple-
mentation of the R∗-operation combined with the FORCER program [4–6], we are able to compute
the poles of five-loop massless propagator diagrams. Our programs rely heavily on FORM [7–10].

Using this setup, the five-loop beta function for Yang-Mills theory with fermions [11] can be
computed in six days on one 32-core machine. We have also computed the R-ratio in e+e− →
hadrons, and the Higgs decays to bottom quarks and gluons at five loops [12].

In this work we describe how to compute UV counterterms in MS using the R∗-operation. We
provide an abstract notation for extended Feynman diagrams, which can also describe derivatives
and local operators. Using these two components, we can compute the UV counterterm of any L-
loop Feynman diagram with arbitrary local operators using only L− 1-loop massless propagators
diagrams. These can automatically be computed using FORCER.

The outline of this paper is as follows. In section 2 we very briefly describe the R∗-operation.
In section 3 we briefly discuss some recent physics results obtained by using the R∗-program. In
section 4 we discuss how to compute UV counterterms in MS. In section 5 we generalize our
procedure to include Feynman diagrams with arbitrary local operators. Finally, we summarize and
present a brief outlook in 6.

2. The R∗-operation

The R∗-operation can be used to compute the poles of Feynman diagrams [1, 2]. Recently, it has
been extended to Feynman diagrams with arbitrary numerator structure [3]. In this section we
briefly sketch how the R∗-operation works, focusing on UV-counterterms.

The basic object of the R∗-operation is the UV counterterm operation ∆ acting on a graph
G, which is defined as the poles of G in the limit of all loop momenta going to infinity with all
contributions from subdivergences subtracted. Additionally, we define the pole operator K for a
Laurent series in ε

K
∞

∑
i=−∞

ci ε
i =

−1

∑
i=−∞

ci ε
i . (2.1)

Then the R∗ operation for some simple examples yields
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In general, all sets of non-overlapping divergent subdiagrams have to be considered:
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Here the contribution from two counterterms gets a minus sign, to prevent double counting.
For logarithmically divergent diagrams, ∆ does not depend on external momenta or masses.

Consequently, we can infrared rearrange (IRR) [13]:

∆

( )
= ∆

( )
= ∆

( )
. (2.5)

Using IRR and the definition of ∆, we can express the UV-counterterm of G in terms of simpler
diagrams:

∆(G)
IRR
= ∆(G′)︸ ︷︷ ︸

Simpler than G

= K(G′)− subdivergences(G′)︸ ︷︷ ︸
Lower-loop diagrams

(2.6)

Using this setup, we can rewrite all L-loop diagrams to (L−1)-loop scalar massless propagator
integrals. For five-loop applications, all those integrals can be computed using FORCER [5, 6].

3. Five-loop results

In this section we briefly discuss the five-loop results for the Higgs-boson decay to gluons. We
have used the R∗-operation to compute the pole parts, and used FORCER for the computation of
the integrals. With the same setup, we have also computed the Higgs decay to bottom quarks and
the electromagnetic R-ratio at five loops [12]. Since these were re-computations, see ref. [14] and
ref. [15] and references therein, respectively, we will not address these results here.

In the heavy-top limit, there is an effective coupling of the Higgs boson to gluons. If the
light-quark masses are neglected the Higgs decay to hadrons can be expressed, using the optical
theorem, as

ΓH→gg =

√
2GF

MH
|C1|2 ImΠ

GG(−M 2
H − iδ ) . (3.1)

The Wilson coefficient C1, which includes the top-mass (scheme) dependence, is known to N4LO,
see ref. [16] and reference therein. Due to the analytical continuation from the spacelike case, only
the pole part of Higgs-boson self-energy ΠGG induced by the effective Hgg coupling is required:

ImΠ
GG(−q2− iδ ) = sin(Lπε)ΠGG(q2) = Π

GG(q2)Lπε + . . . , (3.2)

where D = 4−2ε and L is the number of loops. Consequently, ImΠGG(−q2− iδ ) and hence the
N4LO decay rate can be computed using the setup described above. The computation is much more
costly than that of the beta function and took almost two months on the machines available to us.

For an on-shell top mass of 173 GeV, the perturbative expansion of the decay width reads

Γ
MS
H→gg = Γ0

(
1+5.703052αs +15.51204α

2
s +12.6660α

3
s −69.3287α

4
s + . . .

)
(3.3)
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Figure 1: The renormalization scale dependence of ΓH→gg, normalized as described in the text, in the MS
and MiniMOM schemes, for αs(MZ) = 0.118 in MS, MH = 125 GeV and an on-shell top-mass in 173 GeV.

at nf = 5 for the renormalization scale µ = MH with (GF is the Fermi constant)

Γ0 = GFM 3
H/(36π

3
√

2) · (αs(M 2
H))

2 . (3.4)

Taking into account also the renormalization scale dependence as shown in fig. 1, we arrive at

ΓN4LO(H→ gg) = Γ0
(
1.844 ± 0.011series ± 0.045αs(MZ),1%

)
(3.5)

with αs(MH) = 0.11264, the MS value corresponding to αs(MZ) = 0.118, in eq. (3.4). For 1/m top

corrections and light-quark mass effects, see ref. [17] and references therein.

4. The R∗-operation and MS counterterms

In the results described above the R∗-operation has been used to compute the singular part of
five-loop Feynman graphs. The pole parts are a scheme independent quantity. While computing the
pole parts provides the advantage of not having to worry about the UV counterterms being in MS,
the disadvantage is that it requires the computation of subgraphs of the non-infrared rearranged
graph:

K(G)
IRR
= ∆(G′)− subdivergences(G′)+ subdivergences(G) (4.1)

If G contains complicated local operators, it may be difficult to compute its subdivergences.
Thus the question arises if we can also compute the UV counterterms consistenly in MS, so

that we can compute Feynman diagrams with local operators using only much simpler L−1 loop
massless propagator intergrals.
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A first complication is that the R∗-operation cannot safely be applied after the Feynman rules
are subsituted. An example of a problematic case is shown below:

∆

  6= ∆

(D+ . . .) · + . . .

 .

The D that is created by the Feynman rules of the gluon does not commute with the (nested) ∆-
operation, since ∆ truncates the Laurent series. In this example, the D ‘belongs’ to the bubble
subdiagram.

To get results in MS, we apply R∗ before the Feynman rules:

∆

 = K

 
−∆

 ∗
+ ∆̃

 ∗∆

 ∗ ,

where ∆̃ is the IR-counterterm operation [3]. Note that even though the subdiagrams have non-
trivial vertex structures, the R∗-operation only requires the dimensionality of the vertices and prop-
agators.

Now that the Feynman rules are only applied after the R∗ operation splits up the diagram into
many subdiagrams, the bookkeeping becomes rather involved. The original connectivity needs to
be remembered, and (dummy) indices arising from the Feynman rules need to be matched between
components. An example is shown below:

∆

µ ν

∗
δ µρδ νσ

ρ σ

A second complication is that infrared rearrangement can only be applied on diagrams that
are logarithmically divergent. A Taylor expansion can be used to make every diagram logarithmic.
In the scalar case this is straightforward, but with non-trivial vertices and propagators we can
essentially only apply the operator after the Feynman rules have been substituted. Thus, we have
to bookkeep how the derivative should be taken. This leads to the introduction of new vertices,
were some momenta are set to 0, and to new propagators.
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Below we show a Taylor expansion in Q:

∆

 =
1
2

QαQβ
∆

(
2

δ α
δ β

+

δ α δ β

+2
δ α

δ β

)

The R∗ can be applied on diagrams with derivatives acting on them without much change: the effect
of a derivative is a decrease by one of the degree of the vertex/propagator.

Using the above setup, we can compute the UV counterterms safely in MS, using only massless
L−1-loop propagator diagrams.

We have tested our new code by recomputing the five-loop beta function.

5. Local operators

As mentioned in the previous section, only the dimension of vertices and propagators is re-
quired to apply the R∗-operation. To compute the counterterms in MS, we have to use an abstract
notation for the Feynman rules and potential derivatives. This means that it is straightforward to
introduce local operators: they are simply special vertices.

We define a Qgraf-like notation for abstract propagators and vertices, where we code the mo-
menta, the type of vertex or propagator, and the degree of UV divergence. For example, the fol-
lowing Higgs propagator graph

can be written as

vx(Q,p1,p2,vhgg,2)*

vx(-p1,-p2,-Q,vhgg,2)*

prop(p1,gl,-2)*prop(p2,gl,-2).

To code derivatives in this convention, we add the path of the derivate through the vertex and
generate dummy indices. For example, a derivative with respect to Q through p1 on the vertex

vx(Q,p1,p2,vhgg,2)

becomes

Q(mu)*vx(Q0,p1,p2,vhgg,1,Q0,p1,mu)

where Q0 denotes that this momentum is set to 0.
The workflow for computing UV counterterms can now be summarized in the following four

steps: (1) the user defines Feynman rules and provides an abstract Feynman graph, (2) the R∗

program generates all abstract counterterms, (3) all the Feynman rules are evaluated and derivatives
are taken, and (4) all resulting diagrams are computed with FORCER.
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6. Summary and outlook

We have sketched how the R∗-operation can be used to compute the poles of Feynman diagrams.
Using these methods, we have computed the five-loop beta function for Yang-Mills theory with
fermions [11] and the R-ratio and Higgs-boson decay widths ΓH to quarks and gluons [12]. We have
briefly discussed the results for ΓH→gg in the heavy-top limit.

Next, we have illustrated how to use the R∗-operation to compute UV counterterms in MS. Us-
ing an abstract notation for graphs and the fact that the R∗-operation only needs the dimensionality
of propagators and vertices, we provide a framework to compute the UV counterterms of Feynman
graphs with arbitrary local operators automatically. We have recomputed the five-loop QCD beta
function to test the code.

Future work is to compute UV counterterms of theories with dimension six operators, and to
apply the code to compute splitting functions. The latter is a computation of the complete pole
part, but the use of the abstract notation can postpone a blow-up of the number of terms due to the
application of the Feynman rules to a later stage in the program.
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