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1. Introduction

Since the 2012 discovery of the Higgs boson [1, 2], investigations into its exact properties and
the extent to which they agree with the Standard Model, have been ongoing.

While a fully inclusive cross section for Higgs production is suitable for the measurement of
most properties, there are effects that only reveal themselves in the pT distribution. Having the
Higgs to be produced with a non-zero pT requires it to be produced together with something else,
and at the LHC that is most likely to be a hadronic jet.

As the Higgs boson does not couple directly to (massless) partons, the leading contribution
to H + j will be a one-loop process, in which the Higgs couples to a top-quark circulating in the
loop. That contribution is known exactly [3, 4]. At next-to leading order in QCD that is no longer
the case. The NLO contribution is known in the HEFT limit, in which the top-quark is considered
infinitely heavy [5, 6, 7, 8]. Additionally it is known as expansions around that [9, 10, 11] and other
[12, 13, 14, 15, 16, 17]1 limits, and a numerical result is also available [18]2.

A full analytical result has so far been beyond reach. This is due to the presence of two loops
and four scales (s = (p1 + p2)

2, t = (p1 + p3)
2, m2

H = (p1 + p2 + p3)
2, and m2

t ) in the virtual
contribution to the amplitude, which puts this calculation on the edge of what is possible with the
current computational technology.

One important step towards a full analytical result, was the 2016 calculation [19] of the planar
Feynman integrals contributing to the process. This proceedings contribution is an overview of the
progress that has been made so far on the non-planar integrals.

2. Method

This section will describe the methods used for the calculation of the planar and non-planar
Feynman integrals. The first step is to classify the integrals needed into integral families, which
we define as sets of Feynman integrals for which the propagators are a subset of a set of seven
propagators defining the family:

I f
a1,...,a9

=
∫ ∫ ddk1

iπd/2

ddk2

iπd/2

P−a8
f ,8 P−a9

f ,9

Pa1
f ,1 Pa2

f ,2 Pa3
f ,3 Pa4

f ,4 Pa5
f ,5 Pa6

f ,6 Pa7
f ,7

. (2.1)

All Feynman integrals needed for the process will then have to be expressed in terms of a
minimal set of master integrals for these families, something that is done using publically available
programs [20, 21] along with private implementations.

Seven integral families contribute to gg→ Hg, and to the two quark channels the integrals
form a subset thereof. The seven families, that can be seen in fig. 1, are named with letters from A
to G. Families A to D contain only planar integrals, that were computed and presented in ref. [19].

The computation of the planar integrals was done using the method of differential equations
[22, 23], simplified by the use of canonical forms [24, 25] for the integrals whenever possible. This
turned out to be possible for all except eight of the 125 planar master integrals, and these eight are

1For a discussion of the work of refs. [16, 17], see the talk and proceedings by K. Kudashkin.
2For a discussion of the work of ref. [18], see the talk and proceedings by M. Kerner.
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A B C D’

E F G
Figure 1: The seven integrals families needed for gg→ gH.

1) A canonical form is available, and a fit to a closed expression can be performed.
2) A canonical form is available, but an integral expression is used at weight 3 and 4.
3) No canonical form is available, due to the presence of elliptic integrals.

Table 1: The three ’complexity classes’ of the integrals contributing to gg→ gH.

integrals that are expressible only in terms of elliptic integrals and integrals thereof, and therefore
cannot be brought to canonical form in the traditional sense.

From the canonical differential equation, we extract the ’symbol’ [26, 27, 28] to which we fit
an analytical result for the integrals. One additional ingredient that is needed is the values of the
integrals in a boundary point, for which we chose s = t = mH = 0 where most of the canonical
master integrals are identically zero.

For many of the integrals we are unable to make a valid fit beyond weight two. So for these
cases we express the result at weights three and four as an integral over the lower-weight contribu-
tions following ref. [29]. Based on whether or not we can find a canonical form and a closed-form
solution, we may split the computed integrals into three ’complexity classes’ as can be seen on tab.
1.

For the planar elliptic cases, a two-fold iterated integral representation was used to express the
result.

3. Non-planar integrals

Most of the Feynman integrals in the three non-planar integrals families E, F , and G, will
be planar and contained in families A to D. Only four genuinely non-planar sectors are present
in each family. Of these twelve sectors, two are identical to others under an interchanging of two
Mandelstam variables, and this leaves ten genuinely different non-planar sectors, that can be seen
listed in tab. 2. Of these ten sectors, seven can be brought completely to canonical form, while
the remaining three contain elliptic integrals in one form or the other. It should be noted that the
elliptic, non-planar integral denoted as F66 is known, and has been computed in ref. [30].
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name figure nr. comment

E60 1 canonical form

E61 2 canonical form

E63 4 canonical form

E67 5 canonical form

F58 4×2 canonical form

name figure nr. comment

F66 2 elliptical

F68 6 elliptical × 2

G“63” 4×2 canonical form

G“95” 1 canonical form

G“127” 5 elliptical via A66

Table 2: The ten genuinely different, genuinely non-planar sectors contributing to gg→ gH. “name” refers
to the name of the first member of the sector in the internal naming, and “nr.” refers to the number of master
integrals in the sector. The sectors where the nr. is written as n×2 are the sectors that appear in two different
kinematical channels.

4. Elliptic sectors

One aspect that attracted attention to the planar integrals calculated in ref. [19], is the presense
of elliptic integrals in the result, as mentioned. To the best of our knowledge, that calculation was
the fist time such structures have shown up in a calculation for a genuine scattering (i.e. 2→ 2)
process. More and more Feynman integrals containing these kinds of structures are being calculated
and the mathematical structures therein are being investigated and analyzed, for more recent work,
see e.g. refs. [31, 30, 32, 33, 34].

For the planar integrals, there were two elliptic sectors with four integrals in each, both in
family A. One is the sector denoted A66 that can be seen drawn in fig. 2. The ellipticity is indicated
by the fact that the maximal cut in 4 dimensions, is given by the following integral

A66|max cut ∝

∫ dz

s
√

P4;1(z)
, (4.1)

with

P4;1 ≡
(
(m2

H + z)2−4m2
Hm2

t
)(

4m2
t tu/s+(t + z)2) , (4.2)

which will evaluate to a complete elliptic integral of the first kind. For more discussion on the
relations between canonical forms, ellipticity, and maximal cuts, see e.g. refs. [25, 35, 36].

Also the planar sector denoted A70 contains elliptic integrals, but there they only enter through
the coupling with the A66 sector. The maximal cuts of the integrals in the A70 sector are logarithmic,
so only one elliptic curve appears in the planar case, the one defined by the polynomial of eq. (4.2).

In the new, non-planar families, E is purely canonical and only G and F contain elliptic struc-
tures. Family G has three elliptic sectors, G“126”, G“123”, and G“127”. G“126” is equivalent to the
A66-sector mentioned above, and so is G“123” except that is corresponds to a different kinematical

3



P
o
S
(
L
L
2
0
1
8
)
0
7
6

Non-planar H+j Hjalte Frellesvig

channel (t↔ u), such that

G“123”|max cut ∝

∫ dz

s
√

P4;2(z)
, (4.3)

with

P4;2 ≡
(
(m2

H + z)2−4m2
Hm2

t
)(

4m2
t tu/s+(u+ z)2) . (4.4)

The sector G“127” is elliptical through its coupling with the two lower sectors G“126” and G“123”, its
own maximal cut is logarithmic.

A66/G“126” A70 G“123” G“127” F66 F68

Figure 2: The six elliptic sectors present for H + j.

In family F there are two elliptic sectors, both of which are elliptical from their maximal cut

F66|max cut ∝

∫ dz

(m2
H − t)

√
P4;3(z)

, (4.5)

F68|max cut ∝

∫ dz

t (z+u)
√

P4;3(z)
, (4.6)

with

P4;3 ≡ z(t−m2
H − z)

(
4m2

t t− z(m2
H − t + z)

)
, (4.7)

and an additional elliptical contribution to F68 comes from having F66 as a sub-sector.
So we see that three different elliptic curves appear in the non-planar families, as defined

by the polynomials P4;1 to P4;3. And unlike in the planar case there is a sector (G“127”) that has
contributions from two different elliptic curves, and there is a sector (F68) that has the same elliptic
curve contributing twice.

Integrating the elliptic sectors using the differential equations, yield results that are so large
large that a more desirable method for at least some of these cases should be considered. Such a
method could be to abandon the differential equation approach, and instead evaluate the integrals
starting from a Feynman parameter representation, as discussed for integrals yielding GPLs in [37]
and for certain elliptical cases in [30, 32].

5. Discussion

In section 2 we discussed the three different “complexity classes” into which the various inte-
grals may be grouped. Which integrals go into class 3) is given by whether or not they necessarily
contain elliptic integrals, something that can be determined with certainty using for instance the
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maximal cut as discussed in section 4. The separation between classes 1) and 2) are not, how-
ever, as clear cut. This separation matters, as it determines whether a closed expression in terms
of the well-studied function class of Generalized polylogarithms or equivalently Lin and Li2,2 can
be found, or if a one-fold integral representation has to be accepted as the best representation of
the result. This is very important for the speed and precision of the numerical evaluation. As it
stands, the separation between classes 1) and 2) is determined by whether we are able to find a
variable change that allows for the integration of the differential equation system into GPLs, or
equivalently if we are able to find a basis of such functions to fit the symbol obtained from the
differential equation. To find a definitive mathematical criterion to determine weather or not a dif-
ferential equation in canonical form can be integrated up to Generalized polylogarithms, would be
a interesting endeavor from both a mathematical and practical point of view.

As mentioned in the introduction, obtaining expressions for the integrals discussed in this
proceedings contribution, is the biggest challenge towards the computation of the NLO QCD con-
tribution to H + j production at hadron colliders, but it is not the only one. Once the integrals are
computed, they will need to be analytically continued to the physical regions of parameter space.
Additionally the IR subtraction terms will have to be computed and subtracted before the NLO
cross section can be obtained.
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