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1. Introduction

The effective potential [1, 2] plays a very important role in investigating spontaneous symme-
try breaking. In the Standard Model it was a topic of numerous studies over the years [3, 4, 5, 6, 7]
with partial results at three [8] and four-loop order [9]. The analysis of the effective potential at the
two-loop order brings us to the conclusion that the electroweak vacuum can be at least metastable
up to very high energies of the order of Planck scale [10, 11, 12]. Such analysis at the three-loop
order would require apart from four-loop renormalization group functions [13, 14, 15, 16, 17, 18]
also the matching conditions, which are known only up to the two-loop order [19]. The impor-
tant step, however, is the recent result for a general renormalizable theory [20], with loop-integrals
known numerically [21, 22, 23].

In this work we consider the pure scalar sector of a general renormalizable theory and evaluate
the effective potential up to three loops analytically. The integrals that appear in our calcualtion
can have up to two different mass scales. In the case of O(n) symmetry we reproduce the scalar ϕ4

theory with spontaneous symmetry breaking. This theory is a matter of interest for the theory of
the phase transitions and has been calculated in the series of papers [24, 25]. The results presented
here reproduce the contribution of the scalar sector of the Standard Model to the effective potential.

2. Effective potential in the scalar theory and the three-loop master integrals

Consider the scalar potential constructed from one Higgs field H and several Goldstone fields
Gi

VS = µ1H2 +µ2G2
i +

τ0

6
H3 +

τi

6
HG2

i +
λ0

24
H4 +

λi

12
H2G2

i +
λi j

24
G2

i G2
j , (2.1)

where τi, λi and λi j are couplings. This scalar potential can describe as well some scalar theories
(e.g. O(n) scalar model with spontaneous symmetry breaking) as the Standard Model. In the
Standard Model in the broken phase the parameters are expressed as

τ0 = τi = λφ , λ0 = λi = λi j = λ , µ1 = m2 +
λ

2
φ

2, µ2 = m2 +
λ

6
φ

2 , (2.2)

where λ is the scalar self-coupling, φ is the vacuum expectation value and m is the mass parameter
of the theory.

In the calculation of the potential, given by (2.1), at the three-loop level we should consider
three-loop vacuum Feynman integrals with two different masses. All integrals which appear in this
calculation can be mapped depending on the masses on internal lines on one of the three auxiliary
topologies JA ,JB and JC shown in Fig. 1. We set m2 = 1 and denote the ratio x = m2

1/m2
2. After this

rescaling we write

JA
n1...n6

=
∫ d[k1]d[k2]d[k3]

(k2
1 +1)n1(k2

2 +1)n2(k2
3 +1)n3(k2

12 +1)n4(k2
23 +1)n5(k2

31 +1)n6
, (2.3)

JB
n1...n6

=
∫ d[k1]d[k2]d[k3]

(k2
1 + x)n1(k2

2 + x)n2(k2
3 + x)n3(k2

12 +1)n4(k2
23 +1)n5(k2

31 +1)n6
, (2.4)

JC
n1...n6

=
∫ d[k1]d[k2]d[k3]

(k2
1 +1)n1(k2

2 + x)n2(k2
3 + x)n3(k2

12 + x)n4(k2
23 +1)n5(k2

31 + x)n6
, (2.5)

1



P
o
S
(
L
L
2
0
1
8
)
0
7
7

Three-loop massive scalar effective potential O. L. Veretin

where kab = ka− kb and loop integration measure d[ki] = ddk/πd/2eεγE , with d = 4−2ε being the
dimension of the space-time and γE is the Euler constant.

The integrals from the topology A are single scale integrals and are known for a long time
[26]. Recently they have been evaluated up to weight six [27].

1

23

4

5

6

A
1

23

4

5

6

B
1

23

4

5

6

C
Figure 1: Master topologies. Solid lines have masses equal to one and dashed lines — mass squared equal
to x.

The other two topologies B and C have two mass scales and depend on the ratio x. For each of
these topologies we have constructed a set of reduction rules with the help of LiteRed package
[28] and identified the set of the master integrals. Differentiating with respect to x all the master
integrals and reducing the right hand sides to the set of master integrals we obtain the systems of
differential equations.

∂Jb
i

∂x
= Mb

i jJ
b
j ,

∂Jc
i

∂x
= Mc

i jJ
c
j . (2.6)

The elements of the matrices Mb and Mc are rational functions of the mass ratio x and the space
time dimension d. It is convenient to switch from the original basis {Jb,Jc} to the new canonical
basis {gb,gc} of the master integrals introduced in [29]. The integrals in the canonical basis have
uniform transcendentality weights of the coefficients of their expansion in ε and the matrix of the
differential equation have the special so called ε-form.

To find the explicit form of the transformation matrices and the matrix of the differential
equations in the ε-form we use public tools Fuchsia [30] and CANONICA [31]. Both of these
tools implement different algorithms, which rely heavily on the polynomial rational form of the
transformation matrices. Our matrices become rational after the following change of variable

x =
y2

(1+ y2)2 , (2.7)

after which we can successfully find the transformation matrices T and the corresponding DE
systems take the form

∂gb
i

∂y
= εBi jgb

j ,
∂gc

i
∂y

= εCi jgc
j . (2.8)

Now the matrices B and C do not depend on the space-time dimension d. We can proceed further
and decompose them into the sums of the constant matrices with all dependence on the kinematical
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vairable y factorized out. These decompositions read

B(y) =
(

f 0
0 B0,0 + f 0

1 B1,0 + f 0
2 B2,0 + f 0

3 B3,0 + f 1
3 B3,1

+ f 1
4 B4,1 + f 0

6 B6,0 + f 1
6 B6,1 + f 1

12B12,1 + f 3
12B12,3

)
(2.9)

C(y) =
(

f 0
0 C0,0 + f 0

1 C1,0 + f 0
2 C2,0 + f 0

3 C3,0 + f 1
3 C3,1 + f 1

4 C4,1 + f 0
6 C6,0 + f 1

6 C6,1 + f 3
8 C8,3

)
(2.10)

The matrices Ba,b and Ca,b are pure numerical (rational numbers) and all dependence on y is
hidden in the functions f b

a (y), defined as

f 0
0 (y) =

1
y
, f b

a (y) =
yb

Φa(y)
(2.11)

where Φn(y) denotes the n-th cyclotomic polynomial. In our calculation the following cyclotomic
polynomials appear

Φ1 = y−1 , (2.12)

Φ2 = y+1 , (2.13)

Φ3 = y2 + y+1 , (2.14)

Φ4 = y2 +1 , (2.15)

Φ6 = y2− y+1 (2.16)

Φ8 = y4 +1 , (2.17)

Φ12 = y4− y2 +1 . (2.18)

Such functions have a nice property to have the transparent integration rules leading to the
special type of functions representing the iterated integrals generalizing harmonic polylogarithms.
Such functions are cyclotomic harmonic polylogarithms and were introduced earlier in [32].

The system of differential equations in the ε-form has a nice property that after expansion of
all master integrals in ε , DE’s for the series coefficient completely decouple and can be written in
the form

gb
i {εn}(y) =

1∫
0

dyBi jgb
i {εn−1}(y)+Ci,n , (2.19)

where g{εn}(y) denotes the O(εn) coefficient of the ε-expansion of g(y). Using (2.9) we can
construct the iterative integrals of functions (2.11). Starting from the lowest order of expansion
in ε , which is just a constant, we can integrate order by order using the rule (2.19) and obtain the
following definition of CHPL

H
[

a
b ; a1

b1
; . . . ; ak

bk

]
(y) =

∫
dy f b

a H
[

a1
b1

; . . . ; ak
bk

]
(y), (2.20)

with H
[ ]

(y) = 1.
At each step of integration we need to fix an integration constant. This is done using the

expansions of the integrals in the small x aproximation. These expansions are not naive and contain
on top of power like terms also logarithms due to subgraphs.
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3. Conclusions

The functions, defined in (2.20), were enough to find all the master integrals and present the
three-loop effective potential (2.1) in the analytic form.

At high energy scales the strength of φ is much higher than the mass parameter m of the
lagrangian and we can neglect it in the formulae (2.2). Thus the ratio x = m2

1/m2
2 is equal to 1/3.

This limit corresponds to the value y = e−iπ/6. For this massles version of the theory (2.1) some
partial results are known [33, 34]. We have checked whether the expressions for all master integrals
at this point can be expressed in terms of the basis constructed in [27] or more general basis of sixht
root of unity [35]. The result is that at weight two it is still possible (this has been achived already
in [33, 34]), while at higher weights it is not possible. Looking at the cyclotomic polynomials one
can expect that the basis, constructed from the twelveth root of unity would be apropriate.

In the present work we have evaluated the thee-loop effective potential in the scalar sector
analytically. The result is expressed in terms of the cyclotomic polylogarims of degrees 1,2,3,4,6,8,
and 12 up to the weight six. The general three loop-vacuum master integral with two different mass
scales does not apparently lie in the class of polylogarithmic functions, while the particular subset,
relevant to the scalar sector does.
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