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1. Introduction

A fundamental property of scattering amplitudes is factorization. This property may be en-
coded in an auxiliary space such as the moduli space of Riemann spheres with n marked points
M0,n, which is typical in string amplitudes and more recently appears in the Cachazo-He-Yuan
(CHY) formalism [1–3]. In the CHY formalism amplitudes are evaluated on the solutions of the
scattering equations which are points on M0,n. The CHY formula is a contour integral which
schematically reads

An(p,ε) = i
∮

O
I(z, p,ε) dΩCHY, fi(z, p)≡

n

∑
j=1
j 6=i

2pi · p j

zi− z j
= 0, (1.1)

where the contour encloses inequivalent solutions of the scattering equations fi(z, p) = 0. The
integrand I(z, p,ε) is theory-dependent.

A recent approach by Arkani-Hamed-Bai-He-Lam-Yan [4, 5] suggests to rethink amplitudes
directly the kinematic space. This is done by formulating amplitudes as differential forms in pos-
itive kinematic space. Differential forms may also be formulated in the auxiliary space and then
mapped to amplitudes by reinterpreting them as intersection numbers [6], where the ingredients
of these differential forms are the (half) integrands appearing in the CHY formula. In this talk
we will introduce well defined tree-level scattering forms on the compactification of M0,n for bi-
adjoint scalar amplitudes and Yang-Mills amplitudes. These forms satisfy properties that mimic
the properties of the auxiliary space [8].

Results

We define the cyclic and polarization scattering forms in terms of cyclic and polarization fac-
tors, respectively. In order to define them we first introduce a differential form

dnz
dω

, (1.2)

where

dω = (−1)p+q+r dzpdzqdzr

(zp− zq)(zq− zr)(zr− zp)
. (1.3)

The cyclic (or Parke-Taylor) factor is defined by

C(σ ,z) =
1

zσ1σ2zσ2σ3 · · ·zσnσ1

, (1.4)

where zi j = zi−z j. Finally, the polarization factor is constructed using numerators NBCJ
comb associated

with comb diagrams (Fig.3) of the BCJ decomposition of Yang-Mills amplitudes1. The polarization
factor is defined by

E(p,ε,z) = ∑
κ∈S(i, j)n−2

C(κ,z)NBCJ
comb(κ), (1.5)

1See Section 2.2
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where i, j ∈ {1, . . . ,n} and κ is a permutation of {1, . . . ,n} with κ1 = i and κn = j. These factors
allow us to define scattering forms on the full space M̄0,n(C)(the compactification) as follows

Ω
cyclic
scattering(σ ,z)≡C(σ ,z)

dnz
dω

, Ω
pol
scattering(p,ε,z)≡ E(p,ε,z)

dnz
dω

.

These forms satisfy the properties:

1. PSL(2,C) invariance.

2. Twisted intersection numbers give amplitudes [6], e.g., for Yang-Mills primitive amplitudes

An(σ , p,ε) = (Ω
cyclic
scattering(σ ,z),Ωpol

scattering(p,ε,z))η ∼ CHY.

3. Singularities are on M̄0,n \M0,n.

4. Logarithmic singularities.

5. Residues factorize into two scattering forms of lower points.

Some of these properties are similar to those of scattering forms on positive kinematic space [4,5].
E.g., residues of scattering forms on kinematic space factorize into forms of lower points as well.

2. Review of basic facts

2.1 Moduli space of genus zero curves

The moduli space of genus zero curves is an n−3 dimensional variety defined by

M0,n(C) = {(z2, . . . ,zn−2) ∈ Cn−3 : zi 6= z j,zi 6= 0,zi 6= 1}. (2.1)

In order to visualize the space let us consider the real part for n = 5. In this case, we have the space
depicted in Fig.1. Consider the region colored in red bounded by z2 = 0, z3 = 1, and z2 = z3. These
lines do not cross normally at the points (0,0) and (1,1) (three divisors meet at these points).
In order to fix the situation we can blow up these points. Following [20], we consider dihedral
structures (π,z) to achieve this. A dihedral structure can be represented by the identification of the
coordinates z with the sides of an n-gon labeled by the permutation π (See Fig.2). Given a dihedral
structure we define chords as lines joining two vertices of the labeled n-gon and we assign the cross
ratios

ui, j =
(zi− z j+1)(zi+1− z j)

(zi− z j)(zi+1− z j+1)
. (2.2)

These cross ratios define coordinates of a new space called the dihedral extension M π
0,n of M0,n.

By gluing the (n−1)!/2 dihedral structures we obtain the Deligne-Mumford-Knudsen compatifi-
cation2 [16–19]

M̄0,z =
⋃
π

M π
0,z. (2.3)

The boundaries M π
0,z\M0,z now cross normally and thus by constructing the dihedral extension we

have blown up the original space.
2We have M0,n = M0,z.
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Figure 1: M0,5(R) is the complement of five lines(left). Bounded region on M0,5(R) (left, red). The space
M̄0,5(R), obtained from M0,5(R) by blowing up the points (0,0), (1,1), and (∞,∞)(right). After blowing
up these points, the colored region becomes a pentagon.
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Figure 2: Dihedral structure and factorization of the n-gon along u2,5. On the n-gon sides are associated with
the coordinates, chords join two vertices, and a bond connects two sides of the n-gon (left). The dihedral
extension satisfy the property that a divisor is the product of spaces of the same type (right)

2.2 Color-kinematics duality

A well known way of separating the group information from the kinematic information of a
pure Yang-Mills amplitude is the color decomposition (see [12] for a review)

An(p,ε) = gn−2
∑

σ∈Sn/Zn

2Tr(T aσ(1) · · ·T aσ(n))An(σ , p,ε). (2.4)

Similarly, one can show that amplitudes can be decomposed as

An(p,ε) = i gn−2
∑

trivalent graphs G

C(G)NBCJ(G)

D(G)
, (2.5)

where the BCJ numerators NBCJ(G) satisfy antisymmetry and Jacobi-like identities whenever the
color factors do. This concept is known as the color-kinematics duality [13–15]. Using the proper-
ties of the numerators one can show that the BCJ numerators can be decomposed in terms only of
multi-peripheral (comb) diagrams(Fig.3). To these diagrams we associate the BCJ numerators

NBCJ
comb(κ), (2.6)
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where κ labels the external ordering of the diagram. In order to compute these numerators we write
and effective lagrangian [9]

L =
1

2g2

∞

∑
n=2

L (n). (2.7)

For example

L (4) =−gµ1µ3gµ2µ4gν1ν2

∂
ν1
12 ∂

ν2
34

�12
Tr[Aµ1 ,Aµ2 ][Aµ3 ,Aµ4 ]. (2.8)

The above term leads to Feynman rules which can be used to compute the numerators. This is
equivalent to the introduction of auxiliary tensor particles to eliminate 4-gluon vertex [10–12].

1 n

α2 α3 αn−2 αn−1

κ = (1, α, n)

G

Figure 3: Comb diagrams G with the standard ordering κ1 = 1 and κn = n.

3. Scattering forms

Let us now introduce the scattering forms. Without loss of generality let us take π = (1, . . . ,n).
Notice that the dihedral structure defines a patch of M̄0,n and that a given permutation σ contains
the information about the external ordering of the amplitude, so we have two relevant permutations
for our problem.

3.1 Cyclic scattering forms

The scattering form is then defined as

Ω
cyclic
scattering(σ ,z)≡C(σ ,z)

dnz
dω

. (3.1)

For example, in the particular case where π = σ the scattering form in dihedral coordinates may
be written as

Ω
cyclic
scattering(π,u) =

n−2

∏
j=2

1
u j,n(u j,n−1)

dn−3u. (3.2)

In order to establish the properties of the cyclic form we will introduce a useful construction. A
bond connects two edges of the n-gon associated with a dihedral structure π (Fig.2). For a given
chord (i0,n) we say that σ and π are equivalent if exactly two bonds cross the chord (i0,n). In
Fig.4 we have e.g. (1,3,2,4,5,6) ∼(3,6) (1,2,3,4,5,6). This construction allows us to answer the
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Figure 4: Bond diagram for the permutation σ = (1,3,2,4,5,6) and dihedral structure π = (1,2,3,4,5,6)

question of what happens with Ω
cyclic
scattering(σ ,z) when ui0,n goes to zero. The answer is that the num-

ber of bonds counts the powers of ui0,n in Ω
cyclic
scattering(σ ,z). Therefore the logarithmic singularities

and residue factorization will follow from this analysis.
Let us now determine the properties of the cyclic scattering form.

• Under the transformation z→ g(z) = (az+b)/(cz+d) the cyclic factor and measure trans-
form as

C(σ ,z)→
n

∏
j=1

(cz j +d)2C(σ ,z), (3.3)

dnz
dω
→

n

∏
j=1

(cz j +d)−2 dnz
dω

, (3.4)

respectively. Hence PSL(2,C) follows.

• Intersection numbers. Bi-adjoint scalars may be written as twisted intersection numbers of
two cyclic scattering forms, say, with orderings σ and σ̃ . The twist is defined by

η =
n

∑
i=1

fi(z, p)dzi. (3.5)

This twist makes the intersection number of two n− 3 differential forms equivalent to the
CHY formula3.

• The cyclic factor C(σ ,z) is singular when zσi = zσi+1 . These points are on the divisor M̄0,n \
M0.n.

• Analyzing the equivalence between π and σ , we obtain a factor of u1−i0
i0,n from the cyclic

factor and a factor of ui0−2
i0,n from the measure when π and σ are equivalent, i.e., when exactly

two bonds cross the chord (i0,n). In contrast, we obtain fewer powers when π and σ are not
equivalent. Hence singularities of the cyclic scattering form are logarithmic.

σ ∼(i0,n) π u1−i0
i0,n

(
ui0−2

i0,n

)
,

σ /∼(i0,n)
π fewer powers

3The formal statements is that the amplitude is the twisted intersection number of two cocycles, twisted by η . [7]
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• A similar analysis tells us that the residue at ui0,n = 0 is zero if σ and π are not equivalent
and it has a single pole otherwise. Denoting the hypersurface ui0,n = 0 by Y , we have

ResY Ω
cyclic
scattering(σ ,z) =

{
(−1)i0−1Ω

cyclic
scattering(σ

′,z)∧Ω
cyclic
scattering(σ

′′,z), σ ∼(i0,n) π,

0, otherwise
. (3.6)

Cyclic scattering forms have also been studied in [7] and [21, 22].

3.2 Polarization forms

The polarization scattering form is defined by

Ω
pol
scattering(p,ε,z)≡ E(p,ε,z)

dnz
dω

= ∑
κ∈S(i, j)n−2

C(κ,z)NBCJ
comb(κ)

dnz
dω

, (3.7)

where the sum runs over all permutations κ with κ1 = i and κn = j fixed4. This form contains three
main ingredients:

1. A cyclic factor C(κ,z).

2. A BCJ numerator associated with comb diagrams NBCJ
comb(κ).

3. The invariant measure.

In general the polarization factor

E(p,ε) = ∑
κ∈S(i, j)n−2

C(κ,z)NBCJ
comb(κ) (3.8)

differs from the reduced Pfaffian of the CHY formalism. The reduced Pfaffian has been extensively
studied in the literature [23–32]. The reduced Pfaffian

(−1)i+ j

2zi j
PfΨi j

i j, 1 < i, j < n, (3.9)

is independent of the choice of i, j on the support of the scattering equations. In contrast, our
formula is defined on the the full M̄0,n and coincides with the reduced Pfaffian in the subvariety
defined by the scattering equations. Notice that the first and third factors gives us some of the
required properties of the polarization form due to the appearance of the cyclic form. However, its
definition on the full M̄0,n requires that, in general, polarizations are not transverse and momenta
to be off-shell.

In addition, we should define what factorization of numerators mean. Since the numerators
depend on kinematic data and the orderings κ , we should find a definition which performs the
factorization of data (Fig.5). Hence, for each n-gon we should have the data:

4This choice is arbitrary and it can be shown that the polarization factor is permutation invariant [8].
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(2)
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Figure 5: Factorization of data

• ε ′ = (ε1,ε2, . . . ,εi0 ,εe),

• p′ = (p1, p2, . . . , pi0 , pq) ,

• κ ′ = (1,κ ′2, . . . ,κ
′
i0 ,e).

• ε ′′ = (ε∗e ,εi0+1, . . . ,εn),

• p′′ = (pq, pi0+1, pi0+2, . . . , pn),

• κ ′′ = (e,κ ′′i0+1, . . . ,κ
′′
n−1,n).

Factorization of data introduces new off-shell momenta pq and pq. The sum over physical po-
larizations gives us a 4× 4 matrix (in Lorenz indices) of rank 2, which we supplement with two
unphysical polarizations, such that

∑
λ

(ελ
µ )
∗
ε

λ
ν =−gµν . (3.10)

Similarly for the auxiliary particles, e.g., for the tensor particle

∑
λ

(ελ
µν)
∗
ε

λ
ρσ =− 1

2
p2(gµρgνρ −gµσ gνρ). (3.11)

With these definitions, the factorization of numerators reads

N(G) = ∑
f ,λ

N(G1)N(G2), (3.12)

where the sum runs over particles and polarizations. Therefore the polarization factor in terms of
BCJ numerators gives a good definition of a polarization factor. It is permutation invariant, its
dependence on C(κ,z) implies properties 1,3,4 and it reproduces the CHY formula for pure Yang-
Mills amplitudes i

∮
dΩCHYC(σ ,z)E(p,ε,z) for on-shell momenta, physical polarizations and on

the subvariety defined by the scattering equations. Hence the scattering form satisfies property 2 as
expected.

Let us now sketch the proof of the factorization property. First, we have numerator factoriza-
tion, i.e.,

NBCJ
comb((κ

′,κ ′′)) = ∑
f ,λ

NBCJ
comb(κ

′)NBCJ
comb(κ

′′). (3.13)

On the other hand, the residues of a cyclic scattering form factorize, i.e.,

ResY Ω
cyclic
scattering(σ ,z) = (−1)i0−1

Ω
cyclic
scattering(κ

′,z)∧Ω
cyclic
scattering(κ

′′,z). (3.14)
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Therefore combining Eqs.(3.13)-(3.14), we have

ResY Ω
pol
scattering(p,ε,z) =

(−1)i0−1
∑
f ,λ

∑
κ ′,κ ′′

NBCJ
comb(κ

′)Ωcyclic
scattering(κ

′,z)∧NBCJ
comb(κ

′′)Ωcyclic
scattering(κ

′′,z), (3.15)

i.e.,

ResY Ω
pol
scattering(p,ε,z) = ∑

f ,λ
(−1)i0−1

Ω
pol
scattering(p′,ε ′,z)∧Ω

pol
scattering(p′′,ε ′′,z). (3.16)

4. Summary and Outlook

In this talk we have presented the properties of scattering forms Ω
cyclic
scattering and Ω

pol
scattering de-

fined on the full (n− 3) dimensional space M̄0,n away from the solutions of scattering equations.
The factorization property of the polarization form forced us to introduce some non-physical po-
larizations. Properties 1-5 builds a bridge from differential forms from the CHY formalism to
ideas involving associahedra on kinematic and auxiliary space [5]. We have now a clear geomet-
ric picture of tree-level amplitudes within bi-adjoint, Yang-Mills and gravity for any number of
external particles. It would be interesting to extend these ideas to theories which admit a CHY
representation [33–35]. It would be interesting to explore these ideas at loop level.
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