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preserves the unitarity cut surfaces. This generally leads to differential equations whose RHS is
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1. Introduction

Dual conformal symmetry is a hidden symmetry of planar N = 4 super-Yang-Mills (sYM)
amplitudes, as well as many individual Feynman integrals [1, 2, 3, 4, 5, 6, 7]. The symmetry is
exact only in integer dimensions, typically 4 dimensions, but the anomalies in general d dimensions
are precisely understood in the case of N = 4 sYM amplitudes [1], which strongly constrains the
infrared structure of the amplitudes in dimensional regularization. Here we will show that the
anomalies for individual integrals also have a rather simple structures, and connect generalized
unitarity with integration-by-parts (IBP) reduction and differential equations (DEs), both of which
are important tools for evaluating multi-loop integrals. This talk is mainly based on Ref. [8].

In Section 2, we introduce recent new approaches to IBP reduction and DEs, which avoid
doubled propagators. The key challenges in these approaches, related to the structures of unitarity
cut surfaces, are discussed. In Section 3, we present unexpected simplifications due to insights from
N = 4 sYM theory, in particular dual conformal symmetry and momentum twistors. Examples
at one and two loops are given. In Section 4, we further exploit the connections between dual
conformal symmetry and unitarity cut surfaces, and identify an analog of dual conformal symmetry
for nonplanar Feynman integrals.

2. IBP relations and differential equations without doubled propagators

In dimensional regularization, total derivatives integrate to zero,

0 =
∫

dd l
∂

∂ lµ

vµ N

∏ j ρ j
, (2.1)

where ρ j are propagator denominators, N is an arbitrary numerator, and vµ is a Lorentz-vector
with polynomial dependence on internal and external momenta. For illustration, the above equation
is written down in the one-loop case, but it is trivial to generalize to the multi-loop case.

Explicitly evaluating the total derivative in the integrand of Eq. (2.1) gives us integration-by-
parts (IBP) relations [9], which are linear relations between Feynman integrals. Solving the linear
system [10], all integrals with a given propagator structure are usually reduced to a small number
of master integrals. This is a ubiquitous step in many multi-loop calculations.

However, there are clear redundancies in this procedure. Because of derivatives acting on
propagator denominators in Eq. (2.1), the IBP relations contain “auxiliary integrals” with doubled
(i.e. squared) propagators, while most integrals that actually arise from Feynman diagrams do not
have doubled propagators.1 To address the problem, Gluza, Kajda, and Kosower (GKK) [11]
proposed the following extra condition on vµ in Eq. (2.1),

vµ ∂

∂ lµ
ρ j = f jρ j, (2.2)

with f j being a polynomial, for every inverse propagator j (no summation). This cancels doubled
propagators and gives IBP relations between integrals with single propagators.

1The exceptions are diagrams with internal self-energy insertions, but they affect only a small subset of diagram
topologies.
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A simple but important geometric interpretation of Eq. (2.2) is pointed out by Ref. [12]: vµ

is a polynomial tangent vector of the unitarity cut surface defined by ρ j = 0.2 This observation
allowed the complete solution of Eq. (2.2) for all one-loop integral topologies as well as a subset
of planar two-loop integral topologies [12]. Beyond these simplest cases, progress has been made
using computational algebraic geometry and linear algebra [11, 13, 14, 15, 16, 17, 18]. But it is
desirable to find analytic solutions, which will be the topic of Section 3.

A related problem, for the purpose of evaluating master integrals, is the construction of dif-
ferential equations in dimensional regularization [19, 20, 21]. Here we compute derivatives of the
master integrals w.r.t. external momenta pµ

i ,

β
µ ∂

∂ pµ

i

∫
dd l

N

∏ j ρ j
, (2.3)

and the resulting integrals are again reduced to the master integrals using IBP. To avoid doubled
propagators generated by differentiation, Refs. [22, 23] modified Eq. (2.3) by adding IBP relations
that integrate to zero, ∫

dd l
[

β
µ

i
∂

∂ pµ

i

N

∏ j ρ j
+

∂

∂ lµ

vµ N

∏ j ρ j

]
, (2.4)

and imposing a generalization of the GKK condition Eq. (2.2),(
β

µ

i
∂

∂ pµ

i
+ vµ ∂

∂ lµ

)
ρ j = f j ρ j , (2.5)

This again has a geometric interpretation: the terms in the bracket on the LHS of Eq. (2.5) is a
tangent vector of unitarity cut surfaces in the space of both internal and external momenta. For
given β

µ

i , finding the “compensating” vµ that solves Eq. (2.5) is again a problem that can be solved
by computational algebraic geometry, but as we will see, interesting analytic solutions arise from
dual conformal transformation.

3. Analytic insights from N = 4 super-Yang-Mills theory

3.1 Dual conformal symmetry and differential equations

Inspired by the Wilson loop-amplitudes duality [1] in N = 4 sYM, a planar Feynman diagram
can be mapped to dual space, where each momentum line becomes a difference between two dual
coordinates. An example is the one-loop box diagram in Fig. 1. The external momenta are mapped
to differences between dual coordinates, as

pµ

1 = xµ

2 − xµ

1 , pµ

2 = xµ

3 − xµ

2 , pµ

3 = xµ

4 − xµ

3 , pµ

4 = xµ

1 − xµ

4 . (3.1)

Similarly, the 4 internal lines are also mapped to difference between dual coordinates,

lµ

1 = yµ

1 − xµ

1 , lµ

1 − pµ

1 = yµ

1 − xµ

2 , lµ

1 − pµ

1 − pµ

2 = yµ

1 − xµ

3 , lµ

1 + pµ

4 = yµ

1 − xµ

4 . (3.2)

2There are different unitarity cuts, depending on which inverse propagators are set to zero. But it is easy to see that
vµ is tangent to all unitarity cut surfaces.
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p1

p2 p3

p4x1

x2

x3

x4y1

l1

Figure 1: The one-loop box diagram with outgoing external momenta p1, p2, p3, p4. We introduce dual
coordinates x1,x2,x3,x4,y1.

Eq. (3.1) guarantees the overall momentum conservation. Momentum conservation at each vertex
is also manifest from Eqs (3.1) and (3.2). Unitarity cuts now have a clear interpretation in dual
coordinate space, as follows: cutting a propagator, i.e. setting a propagator on-shell, is equivalent
to setting two dual coordinates to be light-like separated.

For diagrams that appear in N = 4 sYM, the loop integrand is invariant under conformal
transformation of the dual coordinates.3 This is known as dual conformal symmetry, and is distinct
from the ordinary conformal symmetry of the theory. The momentum-twistor formalism [24] makes
dual conformal symmetry manifest. In this formalism, every dual coordinate corresponds to a
line in momentum twistor space, and two dual coordinates are light-like separated if and only if
they correspond to two lines that intersect each other in momentum twistor space. This gives a
manifestly dual conformal invariant picture of unitarity cuts in 4 dimensions! The implication for
our study is that infinitesimal dual conformal transformations always generate tangent vectors to
unitarity cut surfaces, and give solutions to Eq. (2.5).4

However, the momentum twistor formalism is specific to 4 dimensions. Fortunately, the ar-
gument carries over to d dimensions. Consider a conformal boost in d dimensions with parameter
bµ ,

∆xµ =
1
2

x2bµ − (b · x)xµ . (3.3)

The squared separation between two dual coordinates transforms as

∆(x1− x2)
2 =−b · (x1 + x2)(x1− x2)

2 . (3.4)

Identifying (x1−x2)
2 with ρ j in Eq. (2.5), the transformation generates a solution to Eq. (2.5) with

f j =−b · (x1+x2). On the unitarity cut surface with ρ j(x1−x2)
2 = 0, the RHS of Eq. (3.4) is zero,

so the light-like separation between dual points is maintained. This is not surprising, as conformal
transformations preserve the causal structure of spacetime.

The box diagram actually appears with the numerator

st = (p1 + p2)
2(p2 + p3)

2 = (x3− x1)
2(x4− x2)

2 (3.5)

3The integrand needs to be in an appropriate representation that makes the symmetry manifest.
4In fact, the tangent vectors have polynomial components, as is clear from the explicit forms of the generators, e.g.

in Eq. (3.3)
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in the color-ordered amplitudes in N = 4 sYM. Changing the integration variables from the loop
momentum lµ to the dual coordinate yµ

1 , the box integral is written as

Ibox =
∫

ddy1
(x3− x1)

2(x4− x2)
2

(y1− x1)2(y1− x2)2(y1− x3)2(y1− x4)2 . (3.6)

The numerators and denominators in the integrand all transform with a local weight given in
Eq. (3.4) under a conformal boost in the dual coordinate space. The integration measure varies
as

∆

(
ddy1

)
=−d(b · y1)ddy1 . (3.7)

Adding up all the weights, the box integral transforms as

∆Ibox =
∫

ddy1 (4−d)(b · y1)
(x3− x1)

2(x4− x2)
2

(y1− x1)2(y1− x2)2(y1− x3)2(y1− x4)2 . (3.8)

If we formally set d = 4, ignoring the need to use dimensional regularization to regulate infrared
divergences of the integral, then Eq. (3.8) is exactly the statement that the box integral is dual con-
formal invariant. Keeping full dependence in d and choose a conformal transformation generator
that varies t but leaves s invariant, we derive the following differential equation

2(s+ t)t
∂

∂ t

(
stIbox)= ε

[
−2s

(
stIbox)+4stItri,t−4stItri,s] , (3.9)

where the RHS is proportional to ε = (4−d)/2, and contains a t-channel triangle and an s-channel
triangle. This is exactly Henn’s ε-factorized form of the differential equations [25], which has
proven to be a powerful tool to obtain analytic ε-expansion of Feynman integrals. The standard
derivation of the above DEs involve IBP reduction of integrals with doubled propagators, which is
entirely side-stepped in our method.

The above argument generalizes to any integral that has dual conformal invariance in 4 dimen-
sions, and we always obtain DEs whose RHS is proportional to ε and free of integrals with doubled
propagators. This gives a precise connection between the symmetry properties of the integrals and
analytic properties of the ε expansions of the integrals.

3.2 Stabilizer subgroup and integration by parts

In this section, we will not restrict ourselves to integrals that are dual conformal in 4 dimen-
sions. As a result, the anomalies under dual conformal transformations will no longer be propor-
tional to (d−4), but still will be given by integrals without doubled propagators. To generate IBP
relations instead of DEs, using vµ satisfying Eq. (2.2) instead of Eq. (2.5), we need dual confor-
mal transformations which only act non-trivially on loop momenta but leaves external momenta
unchanged. In terms of dual coordinates, we need the stabilizer subgroup of the conformal group
which leaves the external dual coordinates, e.g. xµ

i in Fig. 1, unchanged.
A simple example is the one-loop triangle integral, shown in Fig. 2 together with the mapping

to dual coordinate space. We fix the translation invariance of dual coordinate space by fixing x2 as
the origin, so the dual coordinates are given by explicit expressions,

xµ

1 =−pµ

1 , xµ

2 = 0, xµ

3 = pµ

2 , yµ = lµ . (3.10)
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p1

p2

l
l − p2

l + p1

x2

x3

x1

y

Figure 2: The one-loop triangle with outgoing external momenta p1, p2,−p1− p2 and dual points x1,x2,x3.
The only massive line is the external leg (p1 + p2)

2 = s.

Now we try to write down a conformal symmetry generator which keeps the external dual coor-
dinates, xµ

1 ,x
µ

2 ,x
µ

3 unchanged. We consider the sum of a conformal boost Eq. (3.3) and a scaling
transformation

∆xµ = βxµ . (3.11)

It can be checked that with the choice

β = s = (p1 + p2)
2, bµ =−2(xµ

1 + xµ

3 ) =−2(pµ

2 − pµ

1 ), (3.12)

all external dual coordinates are invariant, while the internal dual coordinate y transforms as

∆yµ = ∆lµ =−l2(xµ

1 + xµ

3 )+ [s+2l · (x1 + x3)] lµ . (3.13)

Identifying this as vµ in Eq. (2.2), the total divergence Eq. (2.1) evaluates to the following IBP
relation involving the scalar triangle integral Itri and the s-channel bubble integral Ibub

(s) ,

(d−4)s Itri +2(d−3)Ibub
(s) , (3.14)

which is easily verified by explicit evaluation of the triangle and bubble integrals. The IBP relation
is obtained in a clean way, as auxiliary integrals with doubled propagators are avoided.

The above method is only sensitive to the external dual coordinates but is agnostic about the
loop order, and directly applies to e.g. nontrivial two-loop integrals. An example is the double
box integral in Fig. 3. Again we identify conformal transformations that leave the external dual

p1

p2 p3

p4
x1

x2

x3

x4y1 y2

l1 l2

Figure 3: The massless double box integral, and the mapping to dual coordinates.
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coordinates xµ

i invariant. Our results, in a few lines [8], reproduces nearly one page of expressions
in Ref. [11], and reduce all tensor integrals to two master integrals modulo sub-topology integrals.
More complicated two-loop integrals, such as the pentabox, can also be treated with generalizations
of the above method [8].

4. Nonplanar analog of dual conformal symmetry

For nonplanar diagrams, there is no obvious mapping to dual coordinates. However, impor-
tant analytic properties of planar N = 4 sYM loop integrands, such as having only logarithmic
singularity and no poles at infinity, surprisingly carries over to the nonplanar sector of the theory
[26, 27, 28]. So it is natural to speculate that there may be a nonplanar analog of dual conformal
symmetry as well.

In previous sections, we connected the following two concepts, (i) dual conformal symmetry,
and (ii) polynomial tangent vectors of unitarity cut surfaces. Point (ii) makes no direct reference
to planarity, as unitarity cut surfaces are defined for any loop integral. So our strategy to attack
the problem is as follows: find a polynomial tangent vector of unitarity cut surfaces of nonplanar
diagrams, and check whether it generates a hidden symmetry of the integral. An example is the

x1

x2

x′1

x′2
p3

l2

l1

p4

p1

p2

Figure 4: The nonplanar double box integral.

nonplanar double box integral in Fig. 4. We attempt to introduce dual coordinates just as in the
planar case, indicated by blue dots in the figure. A strange new feature appears: the external leg pµ

3
is written as the difference between dual coordinates in two different ways,

pµ

3 = xµ

2 − xµ

1 = x′µ2 − x′µ1 . (4.1)

An infinitesimal conformal boost of the dual coordinates xµ

1 ,x
µ

2 ,x
′µ
1 ,x′µ1 no longer gives a mean-

ingful transformations of the external momentum pµ

3 , unless the second equality in Eq. (4.1) is
maintained. This rules out almost all the conformal boost generators given in Eq. (3.3), except
the one with parameter bµ = pµ

3 , which preserves Eq. (4.1), in fact with ∆pµ

3 = 0, following a
simple calculation starting from Eq (3.4). We thus obtain a consistent transformation of external
and internal momenta while preserving the unitarity cut surfaces. Remarkably, with the numera-
tor (p1 + p2)

2(p1 + p3)
2(l1− p3)

2, the nonplanar double box integral in 4 dimensions is formally
invariant under this transformation.5 We have identified a novel hidden symmetry of a nonplanar

5The above numerator is exactly the one found in Ref. [28] which manifests the simple analytic properties of the
nonplanar N = 4 sYM loop integrand.
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integral that appears in the two-loop amplitudes of N = 4 sYM at finite Nc. Since this talk was
given, the symmetry has been extended to integrals in nonplanar N = 4 sYM amplitudes at 2 loops
and 5 points [29], and implications at the integrated level was investigated by Ref. [30].

5. Conclusions

IBP reduction is a major computational bottleneck in simplifying complicated loop amplitudes
relevant for collider physics, and is an essential step in the differential equation method for com-
puting master integrals. Novel methods based on generalized unitarity and computational algebraic
geometry have shown great promise. Additional analytic understanding is desirable from a theoret-
ical points of view, and compact analytic results are also beneficial for practical calculations. The
unexpected simplification from dual conformal symmetry exactly provides such analytic input, and
simplifies IBP reduction as shown in one- and two-loop examples. On a related front, dual confor-
mal transformations in d dimensions give a simplified construction of differential equations, and
provides an appealing new perspective on Henn’s ε form of differential equations [25], originally
motivated by the polylogarithm structures of many loop integrals.

By exploring the connection between dual conformal transformations and the tangent vectors
of unitarity cut surfaces, we also uncovered a nonplanar analog of dual conformal symmetry. Be-
sides the practical utility of constructing IBPs and DEs for nonplanar integrals in d dimensions, the
new symmetry also suggests possible nonplanar generalizations of the representation of N = 4
sYM integrands related to on-shell diagrams, the positive Grassmannian [31] and the amplituhe-
dron [32, 33].
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