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1. Introduction

1.1 Effective field theory

The goal of many-body physics is to explain and predict macroscopic phenomena. It is, how-
ever, in general not possible to compute macroscopic behavior of a system directly from its mi-
croscopic description due to large number of degrees of freedom involved. Fortunately, for many
questions of interests, one can separate the degrees of freedom into “UV” and “IR” variables, with
characteristic spacetime scales of UV variables much smaller than those of interests. The effects
of UV variables average out and one can then focus on the IR variables. Typically the relevant IR
variables involve a much smaller set of degrees of freedom, and the system is greatly simplified.

Consider, for example, the partition function of a system at some inverse temperature β ,

Z = Tre−βH =
∫

Dψ e−I0[ψ] (1.1)

where ψ denotes collectively all microscopic variables, and I0 is the microscopic (Euclidean) ac-
tion. Now imagine separating the variables into {ψ} = {ϕ}+ {χ} where ϕ and χ represent re-
spectively UV and IR variables, and integrating out ϕ we can write the remaining integrals as

Z =
∫

ε

Dχ e−IEFT[χ;β ] . (1.2)

IEFT is the action for effective field theory (EFT) of slow variables χ . It encodes effects of UV
variables and is valid at length scales larger than some UV cutoff scale ε .

In reality integration from (1.1) to (1.2) cannot be performed directly. In fact, even the de-
composition into UV and IR variables is in general not explicitly known, as the IR variables χ are
often collective in nature and could be related to microscopic variables ψ in a complicated way.
Nevertheless, one could often infer the physical nature of χ from experimental inputs or physical
reasonings. We can then write down IEFT as the most general theory of χ consistent with the sym-
metries (and constraints) of the system. By definition, IEFT is nonlocal at distance scales smaller
than the cutoff scale ε . If we are interested in physical processes with typical scale of variations
L� ε , IEFT can be approximated as a local action in a derivative expansion with dimensionless
expansion parameter ε∂µ ∼ ε

L � 1.
The EFT approach has been tremendously successful for many problems in condensed matter

and particle physics, but has been mostly formulated for systems in equilibrium or near vacuum
state. In these lectures we review some recent progress in developing EFTs for non-equilibrium
processes at a finite temperature, including a new formulation of fluctuating hydrodynamics [1,
2, 3, 4, 5]1 and a new proof of the second law of thermodynamics [6]. At the level of Gaussian
fluctuations, these EFTs share features with the Martin-Siggia-Rose-De Dominicis-Jansses [7, 8, 9]
(sometimes called MSR) functional integral approaches to phenomenological stochastic equations.
However; the EFTs here are derived from first principles, i.e. based on symmetries and action
principle, rather than from phenomenological equations. Furthermore, such EFTs can treat noise
systematically at full nonlinear level.

1There have been many recent activities in an action principle formulation of fluctuating hydrodynamics. See Sec. 6
for other references.
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There are a number of new elements in formulating EFTs for non-equilibrium processes at a
finite temperature. Firstly, the nature of IR variables are very different from those for a system
in equilibrium or near the vacuum. Secondly, while all static properties of an equilibrium system
can in principle be extracted from the partition function (1.1) there appears no such quantity which
can capture all non-equilibrium properties. Thus it is not clear a priori how to set up relevant
path integrals for which an EFT can be defined. Thirdly, non-equilibrium processes often involve
dissipations which are notoriously difficult to deal with using action principle. The purpose of the
review is to explain how to address these issues. For the rest of this introduction, we briefly discuss
the nature of IR variables and connection to hydrodynamics.

1.2 Conserved quantities, local equilibrium, and hydrodynamics

For a system near vacuum, the IR variables can be identified with gapless degrees of freedom:
since it requires a finite amount energy to excite any gapped degrees of freedom, at low energies
only gapless degrees of freedom are relevant. Now suppose we are interested in a macroscopic
dynamical process of the system at a finite temperature, will these gapless degrees of freedom
remain the relevant IR variables? (Throughout this review we restrict to systems in a phase which
is translationally and rotationally invariant, i.e. macroscopically a (quantum) liquid.)

The answer is no. At a finite temperature, there is now a background bath of such gapless
modes. Any additional excitation will quickly be “swallowed” by the bath, and cannot have any
direct macroscopic effect. In other words, while it takes little energy to create such an excitation,
it becomes incoherent quickly. The typical time scale (and length scale) for such an excitation to
become “incoherent” defines the relaxation time τ (and relaxation length `).2 In the dispersion
relation of such an excitation, the frequency should have a finite imaginary part of order 1/τ to
reflect a lifetime of order τ and becomes “gapped,” thus the standard lore that finite temperature
generates a gap for all excitations.

There is, however, a caveat. Consider a long wave length perturbation of a system away
from equilibrium, i.e. with wavelength λ � `. Then at a time of order τ , typical non-conserved
quantities will have relaxed back to equilibrium. But for a conserved quantity, which cannot be
destroyed locally, relaxation back to equilibrium can only be achieved by transports. See Fig. 1
(a) and (b). As a result it will take time tλ � τ for a conserved quantity to relax. In particular, as
λ → ∞, tλ → ∞. Thus for macroscopic physical processes involving spacetime scales much larger
than τ and `, the only relevant IR variables are those associated with conserved quantities, as
non-conserved quantities can be considered as in equilibrium.

More precisely, non-conserved quantities should be considered as in “local equilibrium” de-
fined by the conserved quantities. To see this, consider a region of size δx satisfying `� δx� λ

in a time range τ � δ t � tλ . The variations of conserved quantities in this spacetime region are
small and can be considered as approximately uniform. Recall that an equilibrium state is specified

2For most systems in nature, τ and ` are microscopic, i.e. much smaller than macroscopic spacetime scales of
physical interests. In this review we will focus on such systems. Of course what one means by microscopic and
macroscopic are relative. A somewhat extreme example is the Quark-Gluon Plasma (QGP) created at RHIC or LHC.
The size of a QGP droplet is tiny, of order 10fm, but defines the “macroscopic scale” of interest. The typical relaxation
length of the QGP is about 1fm, which qualifies as being microscopic compared with the size. For a strongly interacting
system, typically τ ∼ 1

β
where β is the inverse temperature.
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Figure 1: Relaxation of different types of excitations. The horizontal direction is along some spatial di-
rection. The straight dashed lines denote the global equilibrium values and the solid lines denote values of
some perturbed quantities. (a) Perturbations in non-conserved quantities can relax back to equilibrium val-
ues locally–deviations separated at length scales larger than the relaxation length ` relax independently–in
a time of order of the relaxation time τ . (b) Conserved quantities can only relax through transports, i.e.
excesses have to be transported to regions with deficits to achieve equilibrium. (c) In a spacetime region
with `� δx� λ ,τ � δ t � tλ a system can be considered as in local equilibrium specified by the local
values of conserved quantities.

by the values of conserved quantities such as energy and charge. Non-conserved quantities in this
spacetime region should then be regarded as relaxing into the local equilibrium state specified by
the local values of conserved quantities. In other words, conserved quantities are low variables
which provide the background for fast relaxing non-conserved quantities. In a non-equilibrium
EFT, we integrate out fast variables and concentrate on the dynamics of slow variables.

So far we talked about generic situations. In certain special situations there can be additional
non-conserved slow variables. For example, when a system is tuned to a (finite temperature) critical
point, the order parameter(s) experiences critical slow-down. Its relaxation scales become much
larger than those of typical non-conserved quantities. Such non-conserved slow variables should
also be kept in the EFT.

To summarize, for a generic system, macroscopic dynamical processes should be controlled
by an EFT of slow variables associated with conserved quantities. Given the generality of the
statement, it should come as no surprise such an effective theory has in fact been widely used
for a long time: it is hydrodynamics, and the variables associated with conserved quantities are
usually called hydrodynamic variables. The EFT perspective explains why hydrodynamics has
been so powerful in describing so many phenomena in nature, not only in classical systems such
as flow of water, patterns of weather, star and galaxy formation, but also many exotic quantum
systems including the Quark-Gluon Plasma created in heavy ion collisions at RHIC and LHC (see
e.g. [10, 11]), ultra-cold atoms (see e.g [12]), electron fluids in graphene [13, 14, 15, 16, 17], black
hole physics and gauge/gravity duality [18, 19, 20], and very recently in quantum many-body
chaos [24, 23, 22, 21].

Despite the long and glorious history of hydrodynamics, in our opinion the potential of such a
universal effective theory has far from being fully utilized. Hydrodynamics has traditionally been
formulated as a phenomenological theory in terms of equations of motion (see Appendix A for a
brief review). Reformulating it from first principles as an EFT based on symmetries and action
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principle breaks new grounds in a number of aspects:

1. As equations of motion, the traditional formulation of hydrodynamics cannot capture fluctu-
ations, including both statistical and quantum fluctuations.3 Yet these fluctuations are crucial
in many physical contexts, especially in far-from-equilibrium situations, including:

(a) Non-equilibrium steady states and non-equilibrium phase transitions. A well known
example is the onset of Rayleigh-Benard convection which is driven by hydrodynamic
fluctuations, see e.g. [25].

(b) Scale dependence of transport coefficients (long time tail), which can be particularly
pronounced near phase transitions (for example, certain transport coefficients can di-
verge near a critical point due to hydrodynamic fluctuations [26, 27]).

(c) There is an ongoing experimental program at Brookhaven National Laboratory to search
for the QCD critical point using heavy ion collisions (see e.g. [28]). The critical point
can be probed through fluctuating properties of the QGP created, as that close to the
critical point experiences large hydrodynamic and order parameter fluctuations (see
e.g. [29] for a recent discussion).

(d) A window into quantum gravitational fluctuations via holographic duality [30].

(e) In chaotic systems such as turbulent flows, tiny differences in initial states grow expo-
nentially with time and can have macroscopic effects. Thermal fluctuations can have
significant effects for turbulent flows [33, 31, 32].

A formulation of hydrodynamics based on effective action will be able to treat these problems
systematically. In particular, one may be able to use powerful field theory techniques to
understand turbulence.

2. In the traditional formulation the hydrodynamic variables associated with conserved quanti-
ties are postulated based on phenomenological considerations. As such the effective theory
can only apply to the regime tλ � τ,λ � `. In [1], the collective degrees of freedom associ-
ated with conserved quantities were formulated in a way which does not depend on any long
wavelength expansion. As a result the corresponding effective field theory can in principle
be valid at any scales, as far as one allows certain level of non-locality. Thus the regime of
validity of a hydrodynamic theory can be significantly extended.4 In [1] a theory for charge
diffusion which does not use derivative expansion has been given near equilibrium, which
agrees with the exact constitutive relations (again not using derivative expansion) extracted
from holography [38]. A quantum hydrodynamic theory which is capable of capturing time
variations of order τ has been instrumental for a recent formulation of an effective theory for
operator scrambling and quantum many-body chaos [21].

3At linear order away from thermal equilibrium this can be partially remedied by including some stochastic “forces”
in the standard hydrodynamic equations, but such a manual fix does not allow systematic generalization to far-from-
equilibrium situations.

4There have been very interesting recent observations of hydrodynamic attractors [34, 35, 36, 37], which also
suggest that hydrodynamics can be extended beyond standard regime of validity.

4



P
o
S
(
T
A
S
I
2
0
1
7
)
0
0
8

Non-equilibrium effective field theories Hong Liu

3. A formulation based on symmetries and action principle makes transparent theoretical struc-
tures which have been obscure in the traditional phenomenological formulation. For exam-
ple, in the traditional formulation, one has to impose by hand the local first law and second
law of thermodynamics, as well as linear Onsager relations due to underlying time rever-
sal. It is also not clear whether these phenomenological constraints are complete. As we
will see in the EFT approach, these all follow from a Z2 dynamical KMS symmetry, which
also generalizes constraints from Onsager relations to nonlinear level [1]. In particular, the
Z2 symmetry together with unitarity constraints leads to a novel proof of the second law of
thermodynamics for fluid systems. More recently, the effective action has also been used
to clarify the connections among discrete symmetries, global quantum anomalies, and trans-
ports [3]. New constraints which lie outside the standard entropy constraints have also been
discussed in [39].

The plan of this review is as follows. In next section we discuss non-equilibrium observables
of interests. In Sec. 3 we discuss general aspects of the formulation of non-equilibrium EFTs. In
Sec. 4–6 we discuss various examples. In particular, in Sec. 5 we discuss a hydrodynamic theory
for diffusion and in Sec. 6 fluctuating hydrodynamics for a relativistic system. We conclude in
Sec. 7 with a discussion of other generalizations. In Appendix A we briefly review the standard
formulation of hydrodynamics and in Appendix B a simple example for path integral computation
on a closed time path is given.

2. Correlation functions on closed time path

In this section we first give a general discussion of observables in non-equilibrium systems
and then focus on properties of generating functionals for correlation functions defined on a closed
time path (CTP), which are the main observables we will focus on in this review. For standard
references on closed time path or Schwinger-Keldysh formalism, see e.g. [40, 42, 41, 43, 45, 44].
This section will set the stage for our formulation of non-equilibrium EFTs in later sections.

2.1 General non-equilibrium observables

Consider an initial state at some time ti described by a density matrix ρ0 whose time evolution
is given by

ρ(t) =U(t, ti)ρ0U†(t, ti) . (2.1)

Here U(t, ti) is the evolution operator from ti to t, and can be expressed as a path integral from ti to
t. It then follows that ρ(t) can be described as two path integrals, one going forward in time from
ti to t and one going backward in time from t to ti (see Fig. 2a). We can probe the system with
expectation values5

Tr(ρ(t)V ) = Tr(ρ0V (t))≡ 〈V (t)〉
ρ0

(2.2)

which can be obtained by inserting operator V at time t along one of the contours for (2.1) and then
taking the trace, which in path integrals corresponds to joining the two segments of Fig. 2a at some

5In (2.2)–(2.3) we have suppressed all spatial dependence, and will often do so below.
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Figure 2: (a) Path integral segments for evolution of a general initial density matrix ρ0. Paths of integra-
tion are indicated by arrows. (b) Equation (2.2) can be obtained by inserting V at time t on either segment,
and joining the future ends at some time t f > t. (c) An example of the path integral contour for a gen-
eral correlation function (2.3). Depending on the relative magnitudes of t1, t2, t3, · · · in (2.3), the path inte-
grals can have different number of segments. Shown in figure is an example which require four segments,
Tr(ρ0W (t4)V (t2)W (t3)V (t1)) with t1 < t2 < t4 < t3. To measure such an observable requires that we evolve
experimental apparatus both forward and “backward” in time. (d) An example of correlation function on
CTP, corresponding to Eq. (2.4).

t f > t as shown in Fig. 2b. The resulting contour is often referred to as a closed time path (CTP).
One could also represent general correlation functions

〈V (t1)W (t2)X(t3) · · ·〉ρ0
= Tr(ρ0U†(t1, ti)VU(t1, t2)WU(t2, t3)X · · ·) . (2.3)

in terms of path integrals as given in an example in Fig. 2c. Depending on the relative values of
t1, t2, t3, · · · in (2.3), the contour for the corresponding path integral may go forward and backward
in time multiple times. Due to (2.1), the number of path integral segments is always even. To
represent a general n-point function one needs at most 2[n

2 ] segments.
A simplest class of non-equilibrium observables corresponding to correlation functions ob-

tained by inserting operators along the contour of Fig. 2b. This is the most general set which do
not need to evolve experimental apparatus “backward” in time, and thus essentially encompasses
all those observables directly accessible in labs.6 An example of correlation functions defined on a
CTP is given in Fig. 2d, which can be written explicitly in operator form as

〈PV1(t1)W1(t2)V1(t3)W2(t4)V2(t5)〉ρ0
=
〈
T̃ (W (t4)V (t5))T (V (t1)W (t2)V (t3))

〉
ρ0

(2.4)

where P on the left hand side indicates that the inserted operators are path ordered with subscripts
1,2 denoting whether an operator is inserted on the first (i.e. upper) or the second (lower) segment.
On the right hand side of (2.4) we have made explicitly that operators inserted on the first segment
are time-ordered (denoted by T ), while those on the second segment are anti-time-ordered (denoted
by T̃ ), and the operators on the second segment always lie to the left of those on the first segment.

2.2 Closed time path integrals and r−a variables

From now on we will restrict to correlation functions defined on a CTP contour. In this subsec-
tion we discuss a convenient basis for them and their physical interpretations in terms of response

6Observables such as those depicted in Fig. 2c, which are called out-of-time-order correlation functions may never-
theless be measured indirectly in labs.
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and fluctuation functions.
Connected correlation functions defined on a CTP contour can be obtained from the generating

functional W defined as (it is convenient to take ti→−∞, t f → ∞ in Fig. 2b)

eW [φ1i,φ2i] = Tr
[

ρ0P exp
(

i
∫

dt (O1i(t)φ1i(t)−O2i(t)φ2i(t))
)]

(2.5)

where Oi denote generic operators and φi their corresponding sources. Note that O1i and O2i are the
same operator, with subscripts 1,2 only indicating the segments of the contour in which they are
inserted, while φ1i and φ2i are two different fields. The minus sign in the second term comes from
the reversed time integration for the second (lower) segment. For definiteness we take all operators
Oi to be Hermitian and bosonic, and external sources φ1i,φ2i are real.

It is useful to write (2.5) in a few other forms

eW [φ1i,φ2i] = Tr
[
ρ0

(
T̃ e−i

∫
dt O2i(t)φ2i(t)

)(
Tei

∫
dt O1i(t)φ1i(t)

)]
(2.6)

= Tr
(
U(+∞,−∞;{φ1i})ρ0U†(+∞,−∞;{φ2i})

)
(2.7)

= Tr
[

ρ0P exp
(

i
∫

dt (φai(t)Ori(t)+φri(t)Oai(t))
)]

. (2.8)

In (2.7), U(t2, t1;{φi}) is the evolution operator of the system from t1 to t2 in the presence of external
sources φi. In the last line (2.8) we introduced the so-called r−a variables

φri =
1
2
(φ1i +φ2i), φai = φ1i−φ2i, Oai = O1i−O2i, Ori =

1
2
(O1i +O2i) . (2.9)

Path ordered functions such as (2.4) are obtained by taking functional derivatives of W with
respect to φ ’s and then set the sources to zero. For example, correlation functions in the r−a basis
are defined as (suppressing i, j indices)

Gα1···αn(t1, · · · tn)≡
1
inr

δ nW
δφᾱ1(t1) · · ·δφᾱn(tn)

∣∣∣∣
φa=φr=0

= ina〈POα1(t1) · · ·Oαn(tn)〉 , (2.10)

where α1, · · · ,αn ∈ (a,r) and ᾱ = r,a for α = a,r. nr,a are the number of r and a-index in
{α1, · · · ,αn} respectively (na +nr = n).

To get some intuition of correlation functions in the r−a basis let us expand (2.5) to quadratic
level in external sources (i.e. consider only two-point functions) in the exponential. We then find
that

W [φ1,φ2] =
i
2

∫
ddx1ddx2

(
φ1i(x1),φ2i(x1)

)( GF
i j −iG−i j

−iG+
i j G̃F

i j

)(
φ1 j(x2)

φ2 j(x2)

)
(2.11)

=
i
2

∫
ddx1ddx2

(
φri(x1),φai(x1)

)( 0 GA
i j

GR
i j iGS

i j

)(
φr j(x2)

φa j(x2)

)
. (2.12)

In the above equations we have used the following definitions

GF
i j(x1,x2) = i

〈
TOi(x1)O j(x2)

〉
, G̃F

i j(x1,x2) = i
〈
T̃Oi(x1)O j(x2)

〉
(2.13)

G+
i j =

〈
Oi(x1)O j(x2)

〉
, G−i j =

〈
O j(x2)Oi(x1)

〉
, (2.14)

∆i j(x1,x2) =
〈
[Oi(x1),O j(x2)]

〉
, GS

i j =
1
2
〈
(Oi(x1)O j(x2)+O j(x2)Oi(x1))

〉
(2.15)

GR
i j = iθ(t1− t2)∆i j(x1,x2), GA

i j =−iθ(t2− t1)∆i j(x1,x2), (2.16)
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where GR,GA and GS are retarded, advanced and symmetric Green functions respectively. See Ap-
pendix B for an explicit evaluation of the CTP path integral at quadratic level in a simple example.

Also note that

G+
i j(x1,x2) = G−ji(x2,x1), GR

i j(x1,x2) = GA
ji(x2,x1) , (2.17)

and the relations

GF + G̃F − i(G++G−) = 0,
1
2
(
GF − G̃F − i(G+−G−)

)
= GA, (2.18)

1
2
(
GF − G̃F + i(G+−G−)

)
= GR,

1
4
(
GF + G̃F + i(G+−G−)

)
= iGS . (2.19)

Some general remarks on (2.12) and W (suppress i, j indices below):

1. From (2.10) and (2.12) we can read that

Gra(x1,x2) = GR(x1,x2), Gar(x1,x2) = GA(x1,x2), Grr(x1,x2) = GS(x1,x2) . (2.20)

We now see the convenience of the r−a basis: correlation functions in this basis are directly
related to response (GR) and fluctuation functions (GS). Going beyond two-point functions,
one can show that the r−a correlation functions in fact correspond to the full set of nonlinear
response and fluctuating functions [40, 41, 46, 47, 48]. More explicitly, the expectation value
of an operator O in the presence of external sources of φ can be expanded in powers of φ as

〈O〉
φ
= 〈O〉+

∫
dt2 Gra(t1, t2)φ(t2)+

1
2!

∫
dt2dt3 Graa(t1, t2, t3)φ(t2)φ(t3)+ · · · (2.21)

with Gra···a (with n a’s) describing the response of 〈O〉
φ

to external sources at n-th order.
Gr···r (with m r’s) is the fully symmetric m-point function characterizing m-th moment fluc-
tuations of O , while Grman (with m r’s and n a’s) describes the response of m-th moment
fluctuations to external sources at n-th order, e.g. with m = 2, we have

1
2
〈{O(t1),O(t2)}〉φ = Grr(t1, t2)+

∫
dt3 Grra(t1, t2, t3)φ(t3)+ · · · . (2.22)

Written explicitly in terms of operators Grman has a nested structure consisting of n commu-
tators and m anti-commutators, see [41, 1] for some explicit examples.

2. In (2.12) there is no φ 2
r term, i.e. Gaa = 0, which is due to the first identity of (2.18). This in

fact persists for general n-point functions. In (2.7) taking φ1 = φ2 = φ , we then find that

Tr
(
U(+∞,−∞;φ)ρ0U†(+∞,−∞;φ)

)
= Tr(ρ0) = 1 (2.23)

and thus W should satisfy the normalization condition

W [φ1 = φ ,φ2 = φ ] = 0 or W [φa = 0,φr] = 0 . (2.24)

From (2.10), equation (2.24) implies that for all n

Ga···a = 0 . (2.25)
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3. Taking complex conjugate of (2.7) leads to a reflectivity condition

W ∗[φ1,φ2] =W [φ2,φ1] or W ∗[φa,φr] =W [−φa,φr] . (2.26)

4. By applying the Cauchy-Schwarz inequality to (2.7) one finds that [6]

ReW [φ1,φ2]≤ 0 (2.27)

for arbitrary φ1,2. More explicitly, writing the density matrix as ρ0 = ∑n cn|n〉〈n|, where
{|n〉} is a basis for the Hilbert space, and 0≤ cn ≤ 1, ∑n cn = 1, one finds, from (2.7),∣∣∣eW [φ1i,φ2i]

∣∣∣= ∣∣∣∣∑
n

cn
〈
n
∣∣U†(+∞,−∞;{φ2i})U(+∞,−∞;{φ1i})

∣∣n〉∣∣∣∣≤∑
n

cn = 1 . (2.28)

Equation (2.27) can also beeb checked explicitly at quadratic level in (2.12) using that
GR,GA,GS are real in coordinate space and the definition of GS in (2.15).

Note that (2.24), (2.26), and (2.27) all have their origin from unitarity of time evolution, i.e.
from U(+∞,−∞;φ) being a unitary matrix.

2.3 Thermal equilibrium and KMS conditions

The discussion of the above subsection applies to any density matrix ρ0. When ρ0 is given by
a thermal density matrix, i.e.

ρ0 =
1
Z0

e−β0H , Z0 = tr(e−β0H) , (2.29)

where β0 = 1
T0

is the inverse temperature, the generating functional W in addition satisfies the
so-called Kubo-Martin-Schwinger (KMS) condition [49, 50, 51]. More explicitly, using (2.29)
in (2.6), we have

eW [φ1i,φ2i] =
1
Z0

Tr
[
e−(β0−θ)H

(
T̃ e−i

∫
O2iφ2i

)
e(β0−θ)He−β0HeθH

(
Tei

∫
O1iφ1i

)
e−θH

]
=

1
Z0

Tr
[
e−β0H

(
Tei

∫
O1iφ1i(t+iθ)

)(
T̃ e−i

∫
O2iφ2i(t−i(β0−θ))

)]
(2.30)

≡ eWT [φ1i(t+iθ),φ2i(t−i(β0−θ))] (2.31)

where θ ∈ [0,β0] is a constant, and in the second line we have used that for arbitrary a ∈ [−β0,β0]

e−aH
(

T̃ ei
∫

O(t)φ(t)
)

eaH = T̃ ei
∫

O(t)φ(t−ia), (2.32)

and similarly for the T ordering factor. Equation (2.32) should be understood as being applicable
under thermal averages and its validity is a consequence of analytic properties of thermal correla-
tion functions. Note that the second line (2.30) has time ordering before anti-time ordering which
is different from (2.6). So in the third line (2.31) we have introduced a new notation to denote it.

Expanding (2.30) to quadratic order in external sources as in (2.11)–(2.12), one finds that WT

can also be expressed in terms of GR,GA,GS. From (2.31), one finds the standard fluctuation-
dissipation theorem (FDT) for two-point functions which in momentum space has the form

GS
i j(k) =

1
2

coth
β0ω

2
∆i j(k) . (2.33)

9
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But for three-point functions and higher, the KMS condition (2.30) does not by itself impose any
constraints on W , as WT is expressed in terms of a different set of correlation functions from W .
Translating (2.30) to path integrals we find that WT corresponds to the generating functional for the
contour indicated in Fig. 3, with ρ0 being the final state. Hence, the KMS condition (2.30) relates
correlation functions with ρ0 as the initial state to those with ρ0 as the final state. It can be readily
checked that (2.30) is a Z2 operation; when acting twice one simply gets back W itself up to an
overall time translation, which does not lead to any constraint.

Figure 3: (a) Integration contour corresponding to W . (b) Integration contour corresponding to WT as
defined in (2.30).

Now let us assume that at microscopic level the system has an underlying discrete symmetry
Θ which includes time reversal, i.e. [Θ,H] = 0. Here Θ can be the time reversal T itself, or any
combinations of C ,P with T , such as C PT . Then combing Θ and (2.30) we can obtain a
constraint on W [1]

W [φ1(x),φ2(x)] =W [φ̃1(x), φ̃2(x)] (2.34)

where we have restored spatial dependence with x denoting xµ = (x0,xi) = (t,~x), and

φ̃1(x) = Θφ1(t + iθ ,~x), φ̃2(x) = Θφ2(t− i(β0−θ),~x) (2.35)

for arbitrary θ ∈ [0,β0]. In the above equation, the action of Θ on a spacetime tensor field G(x)
should be understood as

ΘG(x)≡ ηGG(ηx), Θ
2G(x) = G(x) (2.36)

where we have suppressed spacetime indices of G and ηG should be understood as a collection of
phases (±1)–one for each spacetime component for G. See Appendix C for how various variables
transform under different choices of Θ. For examples, suppose Θ = C PT and φ1,2 are neutral
scalars with ηφ = 1, then (2.35) can be written more explicitly as

φ̃1(x) = φ1(−t + iθ ,−~x), φ̃2(x) = φ2(−t− i(β0−θ),−~x) . (2.37)

Below we will simply refer to (2.34) as the KMS condition, but it should be kept in mind it also
encodes consequences of microscopic time-reversal symmetry.

We emphasize that (2.34) is fully non-perturbative in external sources. Given that the pres-
ence of finite external sources takes the system far away from the thermal equilibrium, (2.34) thus
constrains the system in far-from-equilibrium situations.

For two-point functions, equation (2.34) with (2.37) implies, in addition to (2.33)

GS
i j(k) = GS

i j(−k), GR
i j(k) = GR

ji(k), (2.38)

10
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the second of which are Onsager relations. Note that the first equation implies that

GS
i j(k) = GS

ji(k) (2.39)

as GS
i j is real in coordinate space and is Hermitian in momentum space.

2.4 Nonlinear Onsager relations and connection to partition function

For higher-point functions the implications of (2.34) become increasingly complicated (see
[41, 1] for some examples). In general it relates nonlinear response functions to various response-
fluctuation functions and thus can be considered the nonlinear generalizations of the FDT (2.33).
It was found in [1] that (2.34) also imposes a set of constraints on nonlinear response functions,
i.e. functions Gra···a with only one r-index. Those constraints can be separated into two classes:
one class can be interpreted as corresponding to nonlinear generalization of the Onsager relations
while the other class tells us how to extract the equilibrium partition function (1.1) (in the presence
of sources) from the generating functional (2.5).

1. Consider a system in the presence of external sources φi for operators Oi, with one-point
functions of Oi in the presence of sources given by 〈Oi〉φ . The two-point response functions
in the presence of sources are given by

GR
i j(x,y;φk(x)] =

δ 〈Oi(x)〉φ
δφ j(y)

(2.40)

where the notation G(· · · ] highlights that G is a function of x,y, but a functional of φi’s. The
nonlinear generalizations of Onsager relations can then be written as

GR
i j(x,y;φi(~x)] = ηφiηφ j G

R
ji(ηy,ηx;Θφi(~x)], (2.41)

where GR
i j(x,y;φi(~x)] denotes GR

i j is the presence of time-independent of sources φk(~x) and Θ

here should be understood as the extension of (2.36) to time-independent field configurations.

2. Taking the external sources φr,φa in the generating functional (2.5) to be time-independent,
then to first order in φa, the generating functional W can be “factorized,”

W [φr,φa] = i
∫

dd−1~x〈Oi(ω = 0,~x)〉
φ

φai(~x)+ · · ·= iW̃ [φ1]− iW̃ [φ2]+ · · · (2.42)

where W̃ [φi(~x)] is some functional defined on the spatial part of the full spacetime, and
satisfies

W̃ [φ(~x)] = W̃ [Θφ(~x)] . (2.43)

From (2.42), W̃ [φ(~x)] generates the zero-frequency limit of nonlinear response functions,
thus it can be identified as the partition function logZ of (1.1).7

7Note that in W̃ the sources are still Lorentzian sources, so to relate to logZ one should also analytically these
sources to Euclidean signature [3] (see also sec. IV B there for some examples).
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3. General structure of EFTs for local equilibrium

We now proceed to formulate the general structure of EFTs for observables defined on a CTP.
We restrict our attention to physical processes whose characteristic spacetime scales are much
larger than typical relaxation scales, i.e. local equilibrium systems.

3.1 The non-equilibrium effective action

Consider the generating functional (2.5) expressed in terms of path integral of microscopic
variables

eW [φ1,φ2] =
∫

ρ0

Dψ1Dψ2 eiI0[ψ1,φ1]−iI0[ψ2;φ2] (3.1)

where ψ1,2 denote microscopic dynamical variables for the two segments of the CTP and I0[ψ;φ ]

the microscopic action in the presence of external sources. The minus sign in the second term
comes from the reversed time integration for the second segment. The trace in (2.5) is implemented
by imposing in the path integrals

ψ1(t f ) = ψ2(t f ) = ψ f , (3.2)

at some t f → ∞ and integrating over all values of ψ f .
Now imagine separating the degrees of freedom in terms of UV and IR variables and integrat-

ing out UV variables, we obtain an effective action of IR variables χ1,2 where now should come in
two copies, one for each segment of the contour,

eW [φ1,φ2] =
∫

ε

Dχ1Dχ2 eiIEFT[χ1,φ1;χ2,φ2;ρ0] (3.3)

where ε is the UV cutoff of the effective theory. In (3.3), we should also impose

χ1(t f ) = χ2(t f ) = χ f , t f → ∞ (3.4)

and integrate over χ f . As before it is convenient to introduce r-a variables for χ1,2

χr =
1
2
(χ1 +χ2), χa = χ1−χ2 (3.5)

which we will take to be real.
One can write down IEFT as the most general theory after specifying appropriate dynamical

variables χ1,2, and symmetries/constraints to be satisfied. Compared with (1.2), the effective action
for a non-equilibrium system in (3.3) has some new features:

1. While the fundamental action in the path-integral in (3.1) is factorized in terms of 1 and 2
variables (i.e. it has the form I0[ψ1,φ1]− I0[ψ2,φ2]), due to the initial condition from the state
ρ0 and the future boundary condition (3.2), integrating out the UV variables in general results
in couplings between the IR variables χ1 and χ2, so that IEFT[χ1,χ2] is no longer factorized.

2. After integrating out the UV variables, the dependence on ρ0 is also encoded in IEFT. In
particular, that the system is in local equilibrium should be reflected in the structure of IEFT.

12
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3. There are also additional constraints due to unitary time evolution. From similar arguments
which lead to the unitarity constrains (2.24), (2.26) and (2.27) on the generating functions,
we find that IEFT should satisfy

I∗EFT[χ1,φ1; χ2,φ2] =−IEFT[χ2,φ2; χ1,φ1] (3.6)

Im IEFT ≥ 0, for any χ1,2 (3.7)

IEFT[χr,φr; χa = φa = 0] = 0 . (3.8)

The derivations for (3.6)–(3.8) parallel those for (2.24), (2.26) and (2.27) as one can treat
slow modes χ’s as “backgrounds” for the fast modes. For more details on their derivation,
see Appendix A of [6]. Equation (3.6) implies that terms in IEFT which are even under
exchange of 1,2 indices must be purely imaginary.8 As one expects such even terms will
generically be generated when integrating out fast variables, IEFT is hence generically com-
plex. Equation (3.7) then says the imaginary part of IEFT is non-negative which ensures that
path integrals (3.3) are well defined as |eiIEFT | ≤ 1. Finally equation (3.8) implies that all
terms in IEFT must contain at least one factor of a-fields.

4. Any symmetry of the fundamental action I0 which is preserved by the state ρ0 should also be
imposed in the effective action IEFT. For a global symmetry whose transformation parame-
ters are spacetime independent, the boundary condition (3.4) implies χ1,2 must transform at
the same time, i.e. there is only a single copy of global symmetry in IEFT. For example if I0

is parity invariant, then IEFT should be invariant only under a simultaneous parity transfor-
mation on χ1 and χ2. Note that (3.4) does not constrain local transformations which vanish
at future infinity, so for local symmetries, χ1,2 should be able to transform independently, i.e.
there can be two copies of them.

5. The only exception to the general statement of the last item is time reversal symmetry. Sup-
pose both I0 and ρ0 are invariant under some time reversal transformation Θ.9 IEFT includes
dissipative and retardation effects from integrating out fast modes which can be considered
as a bath for slow variables. Thus in general IEFT cannot be invariant under Θ. It turns out
that the time reversal can be imposed along with the local equilibrium condition to which we
will turn now.

3.2 Dynamical KMS symmetry

Now let us consider ρ0 given by the thermal density matrix (2.29). The action IEFT should
be such that W obtained from (3.3) satisfies the condition (2.34) which encodes both time reversal
symmetry Θ and the KMS condition for thermal equilibrium. This can be achieved by requiring
IEFT to satisfy an anti-linear Z2 symmetry, to which we will refer as the dynamical KMS symmetry
(or local KMS symmetry).

The explicit form of the Z2 dynamical KMS transformation of a slow variable depends on
whether it corresponds to a conserved quantity and whether there is a dynamical local temperature.

8Note that the original factorized form of the action in (3.1) is real and is odd under exchange of 1,2 indices.
9As discussed before equation (2.34) Θ can be the time reversal T itself, or any combinations of C ,P with T ,

such as C PT .
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As an illustration let us consider here the simplest case. Consider a system with ρ0 given by a ther-
mal density matrix with inverse temperature β0, and suppose the couplings between IR variables χ

and the sources φ can be written in a linear form

IEFT[χ1,φ1; χ2,φ2] = · · ·+
∫

ddx (χ1φ1−χ2φ2) (3.9)

where · · · denotes terms in the action which depend on χ’s and φ ’s separately. It can be read-
ily checked by formal manipulations of path integrals10 that the generating functional (3.3) satis-
fies (2.34) if we require that IEFT satisfy

IEFT[χ1,φ1; χ2,φ2] = IEFT[χ̃1, φ̃1; χ̃2, φ̃2] (3.10)

where φ̃1,2 are given by (2.35) and

χ̃1(x) = Θχ1(t + iθ ,~x), χ̃2(x) = Θχ2(t− i(β0−θ),~x) . (3.11)

For the case of (2.37) we then have

χ̃1(x) = χ1(−t + iθ ,−~x), χ̃2(x) = χ2(−t− i(β0−θ),−~x) . (3.12)

A symmetry like equation (3.10) is sometimes called a spurious symmetry as one relates the action
for one set of sources to another. In the absence of external sources (3.11) becomes a genuine Z2

symmetry of the action. The quantum form (3.11) as a symmetry to impose thermal equilibrium
was recently also advocated in [52].

The simple form of the coupling (3.9) applies only to non-conserved IR variables, such as
order parameters near a critical points. For χ’s associated with conserved quantities, as we will
see in later sections, the couplings are more complicated, especially in cases with local dynamical
temperature. The corresponding forms of dynamical KMS symmetry are also more intricate [1, 2].
We will discuss in detail the explicit forms of the dynamical KMS transformations for those cases
in Sec. 4–Sec. 6, and work out explicitly the constraints the dynamical KMS symmetry imposes on
IEFT.

One remarkable consequence of the Z2 dynamical KMS symmetry–which does not depend on
the specific form of the transformations and class of theories, is that when combined with unitarity
constraints (3.6)–(3.8) it implies the existence of an “emergent” entropy current whose divergence
is non-negative [6]. We will review this story in Sec. 3.7.

3.3 Example: Brownian motion

Before proceeding with a further discussion of the general structure of IEFT, let us consider a
simple example.

Consider a free particle placed in contact with a bath of harmonic oscillators [53]. The micro-
scopic action of the system is I0 =

∫
dt L0, with

L0 =
M
2

ẋ2 +
n

∑
i=1

mi

2
(q̇2

i −ω
2
i q2

i )+ x
n

∑
i=1

λiqi (3.13)

10In reality one will encounter divergences which may spoil the validity of formal manipulations. One should make
sure that there exists a regularization procedure which is compatible with the Z2 symmetry.
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where dot denotes time derivative and the sum ∑i should be understood as an integral in the case
that the bath has a continuous spectrum. The CTP path integral for the system is then given by

Z =
∫

Dx1Dx2

∫
ρ0

n

∏
i=1

(Dq1iDq2i) eiI0[x1,q1]−iI0[x2,q2] . (3.14)

where ρ0 is the thermal density matrix with inverse temperature β0. Now let us assume M is big
such that the motion of the particle is much slower than those of the bath of oscillators, and we can
then integrate out the bath to obtain

Z =
∫

Dx1Dx2 eiIEFT[x1,x2] , (3.15)

where IEFT[x1,x2] is the resulting effective action for slow modes x1,x2.
Since I0 is quadratic, the integrals for qi can be performed explicitly.11 Here we will deduce

the form of IEFT[x1,x2] as an EFT from symmetries: (i) Since the I0 is quadratic, IEFT should also at
most be quadratic in xr =

1
2(x1 +x2) and xa = x1−x2; (ii) Since I0 is invariant under x→−x,qi→

−qi, IEFT should be invariant under xr,a → −xr,a (recall item 4 of Sec. 3.1); (iii) for large M we
should be able to expand IEFT in time derivatives. With these considerations, the most general
IEFT =

∫
dt LEFT satisfying (3.6) and (3.8) can be written as

LEFT =−cxaxr−νxaẋr + M̃ẋrẋa +
i
2

σx2
a + · · · (3.16)

where · · · denote terms with higher derivatives. Furthermore (3.7) requires that

σ ≥ 0 . (3.17)

Finally we should impose the dynamical KMS symmetry. Applying (3.11) to x1,2 and expanding it
to leading order in derivatives we find that

x̃r(−t) = xr(t)+ · · · , x̃a(−t) = xa(t)+ iβ0∂txr(t)+ · · · . (3.18)

Requiring (3.16) to be invariant under (3.18) leads to

ν =
1
2

σβ0 ≥ 0 (3.19)

where in the second inequality we have used (3.17).
To see the connection of (3.16) with the standard description in terms of Langevin equation,

let us consider a Legendre transformation with respect to xa, i.e. write

i
2

σx2
a =

i
2

1
σ

ξ
2 +ξ xa, (3.20)

where ξ is a new dynamical variable, and the path integral (3.15) becomes∫
DxaDxrDξ ei

∫
dt(−cxaxr−νxaẋr+M̃ẋr ẋa+

i
2

1
σ

ξ 2+ξ xa) . (3.21)

11See Sec. 3.2 of [45] for details on the exact evaluation.
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The dependence on xa in the exponent is now linear, i.e. it is a Lagrange multiplier. Integrating it
out reduces the path integral to∫

Dξ Dxr δ (M̃ẍr +ν ẋr + cxr−ξ )e−
∫

dt 1
2σ

ξ 2
, (3.22)

which is equivalent to the Langvin equation

M̃ẍr +ν ẋr + cxr = ξ , (3.23)

with a stochastic force ξ which is Gaussian distributed with variance σ ,

〈ξ (t)ξ (0)〉= σδ (t) . (3.24)

Note that:

• xr corresponds to physical position of the particle, while xa is the Legendre conjugate of the
stochastic force and thus should be interpreted as position “noise”.

• M̃ can be interpreted as the effective mass of the particle (which is in principle renormalized
from its “bare” value M due to interactions with the bath). cxaxr term is an induced potential
from coupling to the bath (notice that the coupling (3.13) is not invariant under a translation
of x).

• ν is the friction coefficient, i.e. in general there are dissipative terms.

• The imaginary part of the action (3.16) describes fluctuations, with 1
σ

controls the scale of
fluctuations of position noise xa (equivalently σ controls the magnitude of fluctuations of the
stochastic force).

• The relation (3.19) is precisely the Einstein relation which relates the dissipative coefficient
to the variance of the fluctuating force, here arising as a consequence of the dynamical KMS
symmetry.

• Non-negativity of Im IEFT together with the dynamical KMS symmetry implies non-negativity
of ν , which in turn guarantees causality.12

Finally we should mention that there is no ν or σ term generated if the number n of bath oscillators
is finite. There is a nonzero σ and ω only when there is a continuous spectrum of oscillators with
frequencies starting from ω = 0, i.e. to generate dissipations one needs a continuum of low fre-
quency modes. Physically this makes sense: only when there is a continuum of modes, can energy
disappear without a trace, thus having genuine dissipations. Note that when there are nonlinear
interactions among bath degrees of freedom or nonlinear couplings between the heavy particle and
the bath, in general nonlinear terms will be induced and · · · in (3.16) could have cubic and higher
order terms in xr,a.

12Here causality simply means responses come after disturbances.
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3.4 General structure of equations of motion

The Brownian motion example we discussed in last section is very simple, but the structure
is completely general. Now we show that a general theory (3.3) has a parallel structure. In par-
ticular, one can identify χr as representing standard physical quantities, while χa the stochastic
counterparts (noises). For convenience let us set the sources to zero.

Equation (3.8) implies that all terms in the action should contain at least one factor of χa. To
make this manifest, we can expand the Lagrangian in χa as

LEFT = E[χr]χa +
i
2

χaF̂ [χr,∂ ]χa +O(χ3
a ) (3.25)

where E[χr] is a local function of χr and their spacetime derivatives, and similarly for F̂ [χr,∂ ]

except that it can also contain derivatives acting on the second factor of χa, i.e. F̂ is a local
differential operator. By definition, F̂ should be a non-negative operator following (3.7), and can
be taken to satisfy (up to total derivatives)

F̂ [χr,∂ ] = F̂∗[χr,∂ ] (3.26)

where F̂∗ denotes the differential operator obtained by shifting all derivatives from the second χa

to the first χa in (3.25). From (3.6) the first term in (3.25) is real while the second term is pure
imaginary. Now equations of motion from variations of χa can be written as

E[χr]+O(χa) = 0 (3.27)

while those from variations of χr will contain at least one factors of χa for all terms. Considering
also the boundary condition (3.4), we can thus consistently set

χa = 0 . (3.28)

In this case we will then have χ1 = χ2 = χr ≡ χ and equations of motion reduce to

E[χ] = 0 . (3.29)

In other words, in equations of motion there is only one copy of dynamical variables and thus χr

can be identified as representing standard physical quantities.
Following similar steps as (3.20)–(3.24) one again finds that to quadratic order in χa expan-

sion, (3.3) is equivalent to a stochastic equation with a multiplicative noise13

E[φ ,χ] = F̂
1
2 [χ,∂ ]ξ , 〈ξ (x)ξ (0)〉= δ

(d)(x) . (3.30)

Stochastic equations such as (3.30) are usually written down phenomenologically. Except for
near equilibrium situations, the structure of multiplicative factor F̂

1
2 could only be deduced by

guesswork. The EFT formalism provides a systematic way to derive such factors for far-from-
equilibrium situations. Furthermore, the action (3.25) provides full non-Gaussian structure for
noises in terms of O(χ3

a ) and higher, which cannot be captured using (3.30).

13Since F̂ is a non-negative operator, it is well-defined to take its “square root.”
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In the MSR formalism [7, 8, 9], a path integral is obtained by introducing a Lagrange multiplier
to exponentiate the stochastic equation (3.30), and thus the physical content of the resulting theory
is exactly the same as (3.30).14

The above discussion completely goes through with physical sources turned on, which have
φ1 = φ2 (i.e. φa = 0). Turning on φa will source the equations for χa and thus χa will no longer be
zero. Thus φa can be interpreted as stochastic sources.

3.5 Classical limits

So far our discussion is at full quantum level with a finite h̄. The path integrals (3.3) include
both statistical and quantum fluctuations. In many situations, say at a sufficiently high temperature,
quantum fluctuations may be neglected. One could then restrict to the classical limit h̄→ 0.

Before discussing how to take the classical limit in the effective action IEFT, let us first consider
how to take the classical limit in the full generating functional (2.5). Here are the basic inputs:

1. Restoring h̄, the exponent on right hand side of (2.5) should have an overall factor of 1
h̄ .

2. Expanding W in powers of φr,φa, schematically (we suppress all spacetime integrations and
index summations, etc.)

W =
∞

∑
m,n=0

Grmanφ
m
a φ

n
r (3.31)

where Grman denotes a Green function with n a-subscripts and m r-subscripts and has the
schematic form

Grman =
1

h̄m+n 〈O
m
r On

a 〉 . (3.32)

As discussed below (2.20), when written in terms of standard operator orderings, Grman con-
tains n commutators. In the classical limit each commutator becomes h̄ times the correspond-
ing Poisson bracket, and as a result Grman scales with h̄ as

Grman ∼ 1
h̄m+n h̄n ∼ 1

h̄m . (3.33)

Thus in order for (3.31) to have a sensible classical limit we need to scale

φr→ φr, φa→ h̄φa . (3.34)

i.e. we take the external sources to be

φ1 = φ +
h̄
2

φa, φ2 = φ − h̄
2

φa, h̄→ 0, φ ,φa finite . (3.35)

This makes sense as φr correspond to physical sources we turn on and thus should not scale in the
classical limit.

Now the slow dynamical variables χ’s must have the same scaling

χ1 = χ +
h̄
2

χa, χ2 = χ− h̄
2

χa, h̄→ 0, χ,χa finite . (3.36)

14See [45] for a nice introduction of the MSR formalism, and its relation with the Schwinger-Keldysh formalism.
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There are two ways to argue for this. The first is that slow variables themselves can be viewed as
“external sources” for fast variables. The second is that presence of φ ’s induces χ’s, e.g. through
couplings like (3.9), and thus they should have the same h̄ scaling. Similarly with IEFT written
schematically as

1
h̄

IEFT = ∑
m,n

gmnΛ
n
r Λ

m
a (3.37)

where Λa,r denote collectively both sources and dynamical variables, then gmn should have the
same “semi-classical” expansion as Grmrn in (3.31), i.e.

gmn ∼
1

h̄m
(
1+O(h̄)+O(h̄2)+ · · ·

)
, h̄→ 0 . (3.38)

Thus in the limit (3.35)–(3.36), 1
h̄ IEFT should have a finite limit, and the path integral (3.3) survive

the h̄→ 0 limit.
That the path integral (3.3) should survive in the h̄→ 0 limit should come as no surprise as

the system still has statistical fluctuations. This is also familiar in the equilibrium context in the
Euclidean path integral (1.1) for a partition function with the Euclidean action I0 having the form

1
h̄

I0 =
1
h̄

∫ h̄β

0
dτ

∫
dd−1xL0 (3.39)

In the h̄→ 0 limit with β fixed, the range of Euclidean time τ goes to zero and to lowest order we
can take all fields in L0 to be independent of τ , i.e.

1
h̄

I0 =
1
h̄

h̄β

∫
dd−1xL0 = β Iclassical, h̄→ 0, Iclassical =

∫
dd−1xL0 . (3.40)

In the classical limit, there is some effective h̄EFT which controls the loop expansion of the path
integral (3.3). Again the equilibrium situation should yield a hint: in equilibrium the statistical
fluctuations are controlled by

h̄eff ∝
1

N
(3.41)

with N is the number of degrees of freedom.
Finally note that since equations of motion ignore all fluctuations including both quantum and

statistical ones, thus they should be interpreted as describing the thermodynamic limit.

3.6 Dynamical KMS symmetry in the classical limit

In this subsection we elaborate on the general structure of the EFT action under the dynamical
KMS symmetry in the class limit. Such a structure plays an important role in many subsequent
discussions.

In the classical limit, the dynamical KMS transformations has a particularly simple structure.
As an example, consider (2.35) and (3.11) in the classical limit (3.35)–(3.36) for which we should
also restore h̄ in β0 as h̄β0. Taking h̄→ 0 with β0 finite we then find that

φ̃r(x) = Θφr(x), φ̃a(x) = Θφa(x)− iΘβ0∂0φr(x) (3.42)

χ̃r(x) = Θχr(x), χ̃a(x) = Θχa(x)− iΘβ0∂0χr(x) , (3.43)

19



P
o
S
(
T
A
S
I
2
0
1
7
)
0
0
8

Non-equilibrium effective field theories Hong Liu

where Θ is the anti-linear time-reversal transformation described earlier. Note that the above equa-
tions are exact in the limit h̄→ 0: it is a finite transformation and we did not perform derivative
expansion.

More generally, as will be discussed explicitly in later sections, the dynamical KMS transfor-
mations have the following structure in the classical limit

Λ̃r = ΘΛr, Λ̃a = ΘΛa− iΘΦr (3.44)

where again Λr,a denote both dynamical variables and sources, and Φr denotes some expression of
r-variables which transforms under Θ the same way as the corresponding Λ except with an addi-
tional minus sign, and contains a single derivative. It can be readily checked with these properties
and Θ2 = 1, the transformation is Z2,

˜̃
Λa = ΘΛ̃a− iΘΦ̃r = Θ

2
Λa + iΘ2

Φr− iΘ2
Φr = Λa . (3.45)

An important feature of (3.44) is that it preserves the sum of the numbers of a-indices and
derivatives. This motivates us to introduce the expansion

LEFT =
∞

∑
l=1

Ll, Ll ≡ ∑
n+m=l

L (n,m) , (3.46)

where L (n,m) contains precisely n factors of a-variables and m spacetime derivatives. For example,
L1 = L (1,0) contains one factor of a-variables with no derivatives, L2 = L (2,0) +L (1,1) con-
tains either two facotors of a-variables with no derivatives, or one factor of a-variables with one
derivative, and so on.15

Under (3.44), Ll transforms to itself, thus each Ll must be separately invariant. That is, under
the dynamical KMS transformation it must change by a total derivative

L̃l−Ll = ∂µW µ

l , L̃l ≡Ll[ΘΛ̃a,ΘΛ̃r] . (3.47)

In examples of later sections we will always organize LEFT in terms of (3.46).
The Z2 structure of the dynamical KMS symmetry also implies the following important struc-

ture. Consider a Lagrangian L which satisfies all the unitarity constraints (3.6)–(3.8) and we want
to impose the dynamical KMS symmetry. Due to the Z2 nature of the dynamical KMS transforma-
tion, then

LEFT =
1
2
(
L + L̃

)
, L̃ ≡L [ΘΛ̃a,ΘΛ̃r] (3.48)

automatically satisfies dynamical KMS invariance. Note, however, that L̃ contains terms with r-
fields only due to the −iΘΦr term in Λ̃a. Thus constructed LEFT violates the condition (3.8). We
must then further require that pure r-terms in L̃ must be a total derivative,

L̃
∣∣
Λa=0 = i∂µV µ

0 , (3.49)

15As noted below equation (3.30), the MSR formalism for stochastic equations can only treat Gaussian noises and
thus does not capture Ll for l > 2.
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where V µ

0 is some vector (it is real) which does not contain any a-fields. The form (3.48) together
with (3.49) is enough to ensure LEFT is invariant under both unitarity constraints and dynamical
KMS.

To conclude this discussion we mention by passing that interestingly one can show equa-
tion (3.49) is equivalent to the condition that L is supersymmetrizable [5].

3.7 Second law, emergent entropy and non-dissipative theories

The combination of unitarity constraints (3.6)–(3.8) and dynamical KMS symmetry leads to
a remarkable consequence: there exists an “emergent” entropy which satisfies the second law,
through a Noether-like procedure [6]. The result only depends on the general structure exhibited
in (3.44), not the the specific form of the dynamical KMS transformations. We will review the
main results whose derivation we will refer readers to [6].

Invariance under dynamical KMS symmetry

IEFT[Λr,Λa] = IEFT[Λ̃r, Λ̃a] (3.50)

implies that the corresponding Lagrangian density should change as a total derivative

L̃EFT = LEFT +∂µV µ (3.51)

where L̃EFT = LEFT[ΘΛ̃a,ΘΛ̃r]. V µ can be expanded in the number of a-fields as

V µ = iV µ

0 +V µ

1 + · · · (3.52)

where V µ

k contains k factors of a-fields. Now with the Lagrangian written in the form of (3.48) and
satisfying (3.49), one has V µ

k = 0 for k > 0, i.e. only V µ

0 survives and given by (3.49). However, it
is often convenient to use integration by parts to write terms linear in χa as in the first term of (3.25)
with no derivatives acting on χa. This may generate a nonzero V µ

1 . Thus it is possible to write the
Lagrangian density of the form (3.25) and to have all the V µ

k = 0 for k > 1.
For such a Lagrangian consider the current

sµ =V µ

0 −V̂ µ

1 (3.53)

where V̂ µ

1 is obtained from V µ

1 by replacing all the Λa by Φr. Then one can show upon using
equations of motion (3.29)

∂µsµ =
1
2

ΦrF̂(χr,∂ )Φr + · · · (3.54)

where · · · denote terms which depend on coefficients of terms of order χ3
a and higher in (3.25).

One can show by using (3.7) that the right hand side of (3.54) is non-negative order by order in
derivative expansion.

Furthermore, it is in fact possible to resum all terms on the right hand side of (3.54) to all
derivative orders, and by using Z2 dynamical KMS symmetry over and over, to show

∆S≡
∫

t=t f

dd−1xs0−
∫

t=ti
dd−1xs0 = R ≥ 0, t f > ti (3.55)
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where R is an integral transform of Im IEFT which preserves its non-negativity (3.7):

R ≡
∫

dz
π

sinh2(πz)

[
1
2
(cosh(πz)−1)(F(z)+FΘ(z))+F(z)

]
, (3.56)

and
F(z)≡ Im IEFT[Λr,zΦr], FΘ(z)≡ Im IEFT[ΘΛr,zΘΦr] . (3.57)

The non-negativity of R clearly follows from (3.7). The conclusion (3.55) thus holds non-perturbatively
in derivatives.

This result implies that there exists a monotonically increasing quantity with time. In next
few sections we will apply the procedure to various classes of theories and show that the quantity
coincides with the standard thermodynamic entropy in the equilibrium limit.

With an off-shell definition of the entropy current (3.53) and its divergence (3.54), we can
define a non-dissipative theory as one which satisfies ∂µsµ = 0. In other words, for such a theory
all the coefficients of the Lagrangian which contribute to the right hand side of (3.54) have to
vanish. In the Brownian motion example of Sec. 3.3 this corresponds to ν and σ being zero. More
generally, from (3.54) one sees that this non-dissipative condition is equivalent to the statement that
the Lagrangian can be written as

LEFT = ENP[χr]χa (3.58)

which is invariant under dynamical KMS symmetry by itself. In such a Lagrangian there are no
terms which are quadratic order in χa and higher. In contrast, for a general Lagrangian (3.25),
dynamical KMS symmetry relates certain coefficients in E[χr] with those in F̂ [χr,∂ ] and higher
order terms of χa. It is precisely those coefficients in E[χr] which are dissipative. In the absence of
O(χ2

a ) and higher order terms one could also see that the dynamical KMS transformation essentially
enhances to a continuous symmetry. The conservation of sµ can then be understood from the
standard Noether procedure.

Given the structure (3.58) it is tempting to conjecture that for a non-dissipative theory one
could factorize the Lagrangian (3.58) in a form

LEFT = ENP[χr]χa = Ls[χ1]−Ls[χ2]+O(χ3
a ) (3.59)

for some local Lagrangian Ls. We will present support for such a factorization in various examples
in later sections, including ideal fluids. But we note that this statement appears to be not true for
systems with anomalies. It can be shown that the action in [3] cannot be factorized even in non-
dissipative limit.

3.8 Role of ghosts and supersymmetry

While it can be readily seen that (3.8) leads to (2.24) at tree-level of the path integral, in [1] it
was realized that loop corrections could potentially violate (2.24). Anticommuting ghost variables
and BRST symmetry were then introduced to make sure the unitarity constraint (2.24) is maintained
to all loops [1] (see also [55, 56, 54]). Intriguingly, it can be further shown that when the BRST
symmetry is combined with the condition (3.49) from the Z2 dynamical KMS symmetry, there is
always an emergent supersymmetry [1, 5] and, on the converse, supersymmetry can be used to
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impose (3.49) [5, 54].16 The presence of BRST and supersymmetries in EFTs can be considered as
natural extensions of their appearance in earlier work on functional approach to stochastic systems
and others [63, 64, 65, 66, 59, 60, 61, 62, 57, 58], where connections between supersymmetries
and fluctuation-dissipation relations as well as Onsager relations have been long recognized.

In the context of stochastic systems, the introduction of ghost variables in the functional ap-
proach is not needed when one uses the Ito procedure to discretize the stochastic equation and
thus the path integral.17 The procedure ensures that the Jacobian for exponentiating a stochastic
equation is upper triangular and thus has unit determinant. For an EFT defined in the continuum,
such a procedure cannot be used. Recently a new regularization procedure was introduced in [4]
and it was shown to all loop orders that: (i) Even in the absence of ghost variables, unitarity is
maintained; (ii) Integrating out the ghost action results in no contributions. Thus ghost variables
can be neglected. One key element in the discussion of [4] is the retarded nature of certain class of
propagators in an EFT.18

In the formulation of [6, 1, 2], the retarded nature of the propagators is a consequence of the
Z2 dynamical KMS symmetry and unitarity constraints, and reflects the coincidence of thermody-
namic and causal arrow time [6]. More explicitly, it means that dissipative coefficients of the action
must have the “right” signs–for example, friction coefficients, viscosities, conductivities must be
non-negative–which ensures that on the one hand entropy increases monotonically with time, and
on the other hand the system is causal. We will see these features in explicit examples in the
following sections.

Ghosts and supersymmetry could still be useful if one prefers to use other type of regulators
which break the retarded structure of various propagators or dynamical KMS symmetry. They
will help to ensure the normalization condition and part of the dynamical KMS symmetry to be
manifestly preserved. In this manner, they are pure book-keeping devices, not playing any role in
low energy dynamics.

3.9 Organization of examples

We now proceed to discuss explicit formulations of EFTs for various quantum statistical sys-
tems. We will consider systems with spacetime translational and rotational symmetries, i.e. in a
liquid phase. Energy and momentum are always conserved. Energy density disturbances lead to
local temperature variances, i.e. a dynamical temperature. We will organize our discussion into
three class of systems (recall the discussion of slow variables in Sec. 1.2):

1. With fixed background temperature and no conserved quantities. In this class of examples,
one considers a system near a (finite temperature) critical point whose order parameters do
not involve conserved quantities. If the fluctuations of conserved quantities are neglected, the

16See also [55, 56] which used supersymmetry as an input for constructing an action principle for hydrodynamics.
But note that since supersymmetry only imposes (3.49) it is not enough to ensure the full dynamical KMS symmetry.

17There are further ambiguities when performing field redefinitions in the path-integral, see [45] for a detailed dis-
cussion.

18Note that the retarded structure of the propagator causes ghost diagrams to vanish is well-understood in the context
of the Langevin equation, see e.g. [67, 68]. Also the importance of retarded nature of propagators in perturbation theory
for a microscopic theory defined on a CTP was also well known, see e.g. [45].
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macroscopic dynamics of the system is then controlled solely by that of the order parameters
at a constant temperature. As an example in Sec. 4 we will discuss model A of [27], which
describes an O(n) vector model near its critical point. The corresponding non-equilibrium
EFT can be used to study dynamical critical phenomena [27, 69].

2. With conserved quantities and a fixed background temperature. Consider, for example, a
system with a U(1) global symmetry, and we are interested in transports associated with
conserved U(1) charge. When one neglects effects from energy and momentum disturbances,
the macroscopic dynamics of the system is then captured by that for the U(1) current at a
fixed background temperature, which we will examine in Sec. 5. This approximation is
sometimes referred to as the probe limit. The probe limit works well, for example, for a
system with particle-hole symmetry, in which case charge flow and momentum flow are
decoupled.

3. With conserved quantities and dynamical temperature. One now considers the full energy-
momentum disturbances. As an illustration in Sec. 6 we will consider the resulting fluc-
tuating hydrodynamics assuming the only conserved quantities are the stress tensor for a
relativistic system.

With these representative examples, it is straightforward to combine the elements of Sec. 4–6 to
general situations involving multiple conserved quantities and also non-conserved order parame-
ters. For technical details regarding the formulation of a charged fluid the reader should consult the
original papers [1, 2].

4. EFTs I: critical O(n) model

In this section we consider the critical dynamics of a n-component real order parameter χi, i =
1, · · · ,n (i.e. model A [27, 69]) at a fixed inverse temperature β0. As an illustration we will consider
the classical limit and Θ = C PT for which the dynamical KMS transformation (3.11) simplifies
to

χ̃ri(x) = χri(−x), χ̃ai(−x) = χai(x)+ iβ0∂0χri(x) . (4.1)

The discussion below follows that of Appendix D of [6] where readers may find more details.
Since (4.1) only involves time derivative we can treat time and spatial derivatives separately.

The Lagrangian can be then expanded in powers of a-fields and time derivatives as in (3.46)

LEFT = L1 +L2 + · · · (4.2)

where the subscripts count the total number of a-fields and time derivatives. More explicitly, the
most general form for L1 can be written as

L1 = E i
0χai (4.3)

where E i
0 is a local functions of χri and their spatial derivatives (but no time derivative). Invariance

under (4.1) then requires that there exists a local function F from which E i
0 can be obtained as
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(in (4.4) there are only spatial integrations)

E i
0 =−

δF

δ χri
, F (t; χr] =

∫
dd−1~xF(χr(x),∂iχr(x), · · ·) . (4.4)

In the first equation of (4.4), the minus sign is for later convenience. For L2, after imposing the
dynamical KMS symmetry, one finds at zeroth order for spatial derivatives

L2 =−β0 f ij
∂0χrjχai + i f ij(χr)χaiχaj + · · · (4.5)

where · · · denotes terms with higher spatial derivatives and f ij = f ji are functions of χr. Note that
the dynamical KMS symmetry relates the coefficients of the first term which is dissipative (as it
contains only one time derivative) with that of the second term which controls fluctuations of χai.
Equation (3.7) also requires that for arbitrary ai(x)

f ij(χr)ai(x)aj(x)≥ 0 (4.6)

which in turn implies that the dissipative coefficients in (4.5) are non-negative and the propagators〈
χriχaj

〉
are retarded. The total derivative term in (3.51) in this case is

V 0
0 =−β0F + · · · , 1

β0
V i

0 =
∂F

∂∂iχri
∂0χri +

∂F
∂∂ 2

i χri
∂i∂0χri−∂i

∂F
∂∂ 2

i χri
∂0χri + · · · (4.7)

with V µ

1 = 0 to the order of derivative considered.
We can now readily write the entropy current to the order exhibited by applying equation (3.53),

which gives

sµ =V µ

0 . (4.8)

One can readily check that after using equations of motion

∂µsµ = β
2
0 fij∂0χrj∂0χri ≥ 0 . (4.9)

At zeroth order in time derivatives we have

s0 =−β0F, si = 0 (4.10)

which has the standard form with F interpreted as the (static) free energy density of the scalar
system.

Note that from our discussion of (3.58)–(3.59), L1 as given in (4.3)–(4.4) is non-dissipative
and can be factorized as

I1 =
∫

ddxL1 =−
∫

ddxF(χ1,∂iχ1, · · ·)+
∫

ddxF(χ2,∂iχ2, · · ·) . (4.11)

Of course at this order the non-dissipative statement is almost triviality as F does not contain any
time derivatives.

25



P
o
S
(
T
A
S
I
2
0
1
7
)
0
0
8

Non-equilibrium effective field theories Hong Liu

5. EFTs II: a theory of diffusion

In the presence of conserved quantities, the formulation of an EFT has new elements. The
first issue to address is how to identify collective degrees of freedom with conserved quantities
from first principle. There are also additional symmetries one has to impose and new elements
associated with imposing the dynamical KMS symmetry. In this section we shall illustrate the
basic idea in the simplest case: a single conserved current Jµ associated with some global U(1)
symmetry at a fixed inverse temperature β0, i.e. we ignore disturbances in energy and momentum.

We would like to identify the collective variable(s) associated with conservation of Jµ in a uni-
versal manner, without relying any phenomenological assumptions or details of specific systems.
For this purpose let us consider the generating functional of the conserved current along the CTP

eW [A1µ ,A2µ ] = Tr
(

ρ0Pei
∫

ddxA1µ Jµ

1 −i
∫

ddxA2µ Jµ

2

)
, (5.1)

where ρ0 denotes a thermal state of inverse temperature β0, and A1µ and A2µ are external vector
fields which act as sources for the two copies of the current Jµ

1 and Jµ

2 , respectively. The advantage
of considering W is that the conservation of Jµ can now be converted into a “symmetry” statement
of W [A1,A2]. Namely, given that Jµ

1,2 are conserved, we have

W [A1µ ,A2µ ] =W [A1µ +∂µλ1,A2µ +∂µλ2] (5.2)

for arbitrary functions λ1,λ2,19 i.e. W is invariant under independent “gauge” transformations of
A1µ and A2µ .

In order to obtain an effective action of collective variables associated with Jµ

1,2, we would like
to “integrate them in,” i.e. write W [A1µ ,A2µ ] as

eW [A1µ ,A2µ ] =
∫

Dϕ1Dϕ2 eiIEFT[ϕ1,ϕ2;A1µ ,A2µ ], (5.3)

where ϕ1,2 are currently place holders, whose nature we will elucidate in a moment. IEFT should
be such that: (i) Equation (5.2) is satisfied regardless of details of specific systems; (ii) Equations
of motion of ϕ1,2 should be equivalent to conservations of Jµ

1,2. These two conditions essentially
fix the nature of ϕ1,2 completely: they should be scalar fields and they should always appear with
external fields through the combinations

B1µ ≡ A1µ +∂µϕ1, B2µ ≡ A2µ +∂µϕ2 . (5.4)

In other words, ϕ1,2 are the Stueckelberg fields associated with the “gauge” symmetries (5.2). As a
result (5.3) can be written as

eW [A1µ ,A2µ ] =
∫

Dϕ1Dϕ2 eiIEFT[B1µ ,B2µ ] . (5.5)

By construction, B1,2µ and so the action, are invariant under the following transformations,

A1,2µ → A1,2µ −∂µλ1,2, ϕ1,2→ ϕ1,2 +λ1,2 . (5.6)

19We take λ1,2 to vanish at spacetime infinities.
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The integrations over ϕ1,2 then remove the longitudinal part of A1,2µ , and thus W obtained from (5.5)
automatically satisfies (5.2).

Now define the “off-shell hydrodynamic” currents as

δ IEFT

δA1µ(x)
≡ Ĵµ

1 (x),
δ IEFT

δA2µ(x)
≡−Ĵµ

2 (x) . (5.7)

It then immediately follows from (5.5) that equations of motion for ϕ1,2 are equivalent to the con-
servation equations for Ĵµ

1,2, i.e.

δ IEFT

δϕ1,2(x)
=−∂µ Ĵµ

1,2(x) = 0 . (5.8)

Note that correlation functions of currents Jµ

1,2 for the full theory are given by those of Ĵµ

1,2 in the
effective field theory (5.5). For example,

〈PJµ

1 (x)J
ν
2 (y)〉=−

δW
δA1µ(x)δA2µ(y)

∣∣∣∣
A1=A2=0

=
∫

Dϕ1Dϕ2 eiIEFT[∂µ ϕ1,∂µ ϕ2] Ĵµ

1 (x)Ĵ
ν
2 (y) . (5.9)

So far the discussion is very general, and can in principle apply to any systems, zero temper-
ature or finite temperature, normal fluids or superfluids. In general, IEFT is nonlocal. It can be
considered as a mathematical device to automatically capture whatever constraints coming from
current conservation. Now as discussed in the Introduction, for a generic system at a finite temper-
ature, the only relevant slow variables are associated with conserved quantities. In this case (when
we ignore other conserved quantities), the only source of non-locality of W at large distance and
time scales must come from integrating over ϕ1,2, thus we expect IEFT has a well defined local
derivative expansion, with the effective expansion parameter `∂µ ∼ `

λ
� 1, where ` is the relax-

ation scale discussed in Sec. 1.2 and λ is the typical wave length of macroscopic processes we are
interested in. One could also choose not to perform derivative expansion, then IEFT is non-local,
with non-locality controlled by relaxation scale `.20

Now let us restrict to a finite temperature system (with no other conserved quantities), and
assume that the system is in a liquid phase. There is still a distinction of a normal phase, and
a superfluid phase where the U(1) symmetry is spontaneously broken. It is interesting that if
one directly writes down the most general local derivative expansion of IEFT[B1,B2], the theory
describes a superfluid phase. To describe a normal phase one needs to impose a further symmetry,
as follows.

Physically we can view the system as a continuum of fluid elements, and interpret Bsµ (s= 1,2)
as the “local” external sources for the fluid elements, which include not only external fields Asµ ,
but also contributions from dynamical variables ϕs. For example, we can define the local chemical
potentials as

µs(x) = Bs0(x), s = 1,2 . (5.10)

20In contrast for a zero temperature system, there exist in general other gapless modes. To obtain IEFT, they are
integrated out. In that case IEFT is non-local to arbitrary long distance and time scales, i.e. there is no well-defined
derivative expansion.
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Now to describe a system for which the U(1) symmetry is not spontaneously broken, we require
IEFT to be invariant under a time-independent, diagonal gauge transformations of B1,2µ (to which
we will refer as the diagonal shift symmetry)

B1i→ B′1i = B1i−∂iλ (xi), B2i→ B′2i = B2i−∂iλ (xi), (5.11)

or equivalently

ϕr→ ϕr−λ (xi), ϕa→ ϕa, ϕr =
1
2
(ϕ1 +ϕ2), ϕa = ϕ1−ϕ2 . (5.12)

The origin of (5.11) can be understood as follows. Given the U(1) symmetry, each fluid element
should have the freedom of making a phase rotation. As we are considering a global symmetry, the
phase cannot depend on time t, but since fluid elements are independent of one another, they should
have the freedom of making independent phase rotations, i.e. we should allow phase rotations of
the form eiλ (xi), with λ (xi) an arbitrary function of xi only. As Bsa are the “gauge fields” coupled to
charged fluid elements, thus the system should be invariant under (5.11). When the U(1) symmetry
is spontaneously broken, i.e. the system in a superfluid phase, the phase freedom for all fluid
elements are locked together, and (5.11) should be dropped.

Let us now consider the dynamical KMS symmetry. From (2.34)–(2.35) the generating func-
tional should satisfy

W [A1,A2] =W [Ã1, Ã2] (5.13)

with
Ã1µ(x) = ΘA1µ(t + iθ ,~x), Ã2µ(x) = ΘA2µ(t− i(β0−θ),~x) . (5.14)

To achieve this, we require the action IEFT to satisfy

IEFT[B1,B2] = IEFT[B̃1, B̃2] (5.15)

with
B̃1µ(x) = ΘB1µ(t + iθ ,~x), B̃2µ(x) = ΘB2µ(t− i(β0−θ),~x) (5.16)

which in turn requires

ϕ̃1(x) = Θϕ1(t + iθ ,~x), ϕ̃2(x) = Θϕ2(t− i(β0−θ),~x) . (5.17)

In the classical limit (5.16)–(5.17) become

B̃rµ(x) = ΘBrµ(x), B̃aµ(x) = ΘBaµ(x)− iβ0Θ∂tBrµ(x), (5.18)

ϕ̃r(x) = Θϕr(x), ϕ̃a(x) = Θϕa(x)− iβ0Θ∂tϕr(x) . (5.19)

See Appendix C for how Aµ and ϕ transform under various choices of Θ.
To summarize, in order to write down the effective theory for slow variables corresponding to

a conserved current in a normal phase, we need to impose on IEFT[B1,B2] the following conditions:
(i) Diagonal shift symmetry (5.11); (ii) (3.6)–(3.8); (iii) (5.15); (iv) Rotational and translation
symmetries.
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As an illustration here we quote the final action at quadratic order in Br,a, and to linear order
in derivatives

LEFT = i
σ

β0
B2

ai +χBa0Br0−σBai∂0Bri, (5.20)

with σ ≥ 0 and χ constants. The off-shell currents (5.7) have the form

Ĵ0
r = χµ, Ĵi

r = σ(Ei−∂iµ)+ i
σ

β0
Bai, (5.21)

J0
a = χBa0, Ji

a = σ∂0Bai (5.22)

where we have introduced local chemical potential µ = Br0 = Ar0 +∂0ϕr and background electric
field Ei = ∂iAr0−∂0Ari. Clearly σ corresponds to conductivity and χ to charge susceptibility.

The equations of motion are simply the conservation equations ∂µ Ĵµ
r,a = 0. In the absence of

unphysical sources, Aaµ = 0, we have ϕa = 0 from ∂µ Ĵµ
a = 0. We then find that Ĵµ

a = 0 and Bai = 0.
The conservation equation ∂µ Ĵµ

r = 0 can then be written as

∂0n−D∂
2
i n =−σ∂iEi, n = Ĵ0

r (5.23)

where the diffusion constant D is given by

D =
σ

χ
. (5.24)

Note that in (5.21) at leading order in the a-field expansion Ĵµ
r are expressed in terms of µ and

Ei, i.e. Bri does not appear. This is not an accident and in fact persists to all derivative orders and
nonlinear level. The diagonal shift symmetry (5.11) means that Bri can only appear either with a
time derivative ∂0Bri =−Ei +∂iµ or through Fri j = ∂iBr j−∂ jBri = ∂iAr j−∂ jAri.

The above discussion can be generalized to all derivative orders and also nonlinear in B’s, see
Sec. IV of [1]. See also [5, 70] for a superspace formulation.

Applying the discussion of Sec. 3.7 to (5.20), one finds (with external fields turned off)

V 0
0 =

1
2

β0χµ
2, V i

0 = 0, V̂ 0
1 = β0χµ

2, V̂ i
1 =−σβ0µ∂iµ . (5.25)

and from (3.53) we obtain the entropy density and flux

s0 =−1
2

β0χµ
2, si = σβ0∂iµ , (5.26)

One can verify using equations of motion that

∂µsµ = β0σ(∂iµ)
2 ≥ 0 . (5.27)

The non-dissipative regime can be obtained by setting σ = 0. We find that the resulting action
can be factorized as

L = χBr0Ba0 = L0(B1)−L0(B2), L0(B) = χ(A0−∂0ϕ)2 . (5.28)
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6. EFT III: action for hydrodynamics

Let us now consider the effective field theory for collective variables corresponding to conser-
vations of energy and momentum. The resulting theory gives fluctuating hydrodynamics. Tradi-
tional formulation of hydrodynamics is based on phenomenological equations of motion which we
briefly review in Appendix A. Here we shall formulate it in an action form, from first principles
based on symmetry.

Compared with examples of earlier sections, since now local energy density can vary, there is
an emergent local temperature, which leads to new elements in the formulation of dynamical KMS
symmetry. For illustration purpose, we will consider a relativistic system whose only conserved
quantities are the stress tensor, and only present the basic ideas and formalism. For a more complete
treatment and generalization to a charged fluid readers should consult the original papers [1, 2].

The search for an action principle for fluids has a long history, dating back at least to [71]
and subsequent work including [72, 73] (see [74, 75, 76] for reviews), all of which were for ideal
fluids. Recent interests in this problem started with [77] where the ideal fluid formulation of [71]
was rediscovered and extended in various ways (see also [78]). These works made it clear that
the Lagrange type variables are natural for an action principle formulation of hydrodynamics (see
also [79, 81, 80] for discussions in holography). The first attempts to generalize the formalism
of [77] to a doubled version in the closed time path formalism to include dissipation were made
in [83, 82]. More recent works are [85, 86, 84, 56] which have some overlaps with our formulation.
Further developments have been pursued in [88, 89, 91, 90, 54, 87, 39].

6.1 Fluid spacetime formulation

We would like to first identify the collective variables associated with conservation of the stress
tensor T µν of a system from first principle. The idea is very similar to that of Sec. 5 for a conserved
current.

Turning on external sources for the stress tensor corresponds to putting the system in a curved
metric gµν . Thus the generating functional for the stress tensor on a CTP has the form

eW [g1µν ,g2µν ] = Tr
[
U(+∞,−∞;g1µν)ρ0U†(+∞,−∞;g2µν)

]
(6.1)

where U(t2, t1;gµν) denotes the quantum evolution operator of the system from time t1 to time t2
in the presence of spacetime metric gµν . From the conservation of T µν

1,2 , the generating functional
is invariant under independent diffeomorphisms acting on g1µν and g2µν ,21

W [g1,g2] =W [gξ1
1 ,gξ2

2 ] , (6.2)

where gξ denote diffeomorphisms of g with parameters ξ µ , e.g.22

gξ1
1AB(σ) = g1µν(ξ1(σ))

∂ξ
µ

1
∂σA

∂ξ ν
1

∂σB . (6.3)

21For simplicity, we will restrict to systems without gravitational anomalies. For treatment of systems with anomalies
see [3].

22ξ
µ

1,2 are assumed to vanish at spatial and time infinities.
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Now following exactly the same logic as the discussion around equations (5.3)–(5.5) in Sec. 5, we
obtain collective variables for the stress tensor by promoting diffeomorphism parameters ξ

µ

1 ,ξ
µ

2
to dynamical variables. More explicitly, we introduce dynamical variables X µ

1,2(σ
A), and write the

generating functional (6.1) as

eW [g1µν ,g2µν ] =
∫

DX1DX2 eiIEFT[h1AB,h2AB] , (6.4)

where

h1AB(σ) =
∂X µ

1
∂σA g1µν(X1)

∂Xν
1

∂σB , h2AB(σ) =
∂X µ

2
∂σA g2µν(X2)

∂Xν
2

∂σB (6.5)

are counterparts of B1,B2 in (5.5) for diffeomorphisms.
In order to promote diffeomorphism parameters to dynamical variables we need to introduce

a new auxiliary space-time with coordinates σA, A = 0,1, . . . ,d−1, to which we refer as the “fluid
space-time” and whose interpretation will be given momentarily. X µ

1 and X µ

2 are the coordinates of
the two copies of physical space-time, where the background metrics g1µν and g2µν live. Imagining
the system as a continuum of “fluid” elements23, it appears natural to interpret the spatial part σ i of
σA as labels for fluid elements, while the time component σ0 serves as an “internal clock” carried
by a fluid element. In this interpretation, X µ

1,2(σ
A) then corresponds to the Lagrangian description

of a continuous medium. With a fixed σ i, X µ

1,2(σ
0,σ i) describes how a fluid element labeled by σ i

moves in (two copies of) physical spacetime as the internal clock σ0 changes. The relation between
σA and X µ

1,2(σ) is summarized in Fig. 4. With this interpretation, then

−d`2
s = gsµν

∂X µ
s

∂σ0
∂Xν

s

∂σ0 (dσ
0)2, s = 1,2 (6.6)

are the proper time square of the respective motions, and the corresponding velocities are given by

uµ
s (σ) =

δX µ
s

δ`s
=

1
bs

∂X µ
s

∂σ0 , bs =

√
−∂X µ

s

∂σ0 gsµν

∂Xν
s

∂σ0 , gsµνuµ
s uν

s =−1 . (6.7)

By construction, h1,2AB are pull-backs of the space-time metrics to the fluid spacetime, and are
invariant under

gsµν → gsαβ

∂Xα
s

∂X
′µ
s

∂Xβ
s

∂X ′νs
, X µ

s → X
′µ
s = f µ

s (X
µ
s ), s = 1,2 (6.8)

which immediately implies that W obtained from (6.4) satisfies (6.2). Introducing the “off-shell
hydrodynamical” stress tensors as

1
2
√
−g1T̂ µν

1 (x)≡ δ IEFT

δg1µν(x)
,

1
2
√
−g2T̂ µν

2 (x)≡− δ IEFT

δg2µν(x)
, (6.9)

one can readily show from the structure of h1,2 that equations of motion of X µ

1,2 are equivalent to

∇sµ T̂ µν
s = 0, s = 1,2 (6.10)

23As will be commented below, at this stage our discussion is completely general, not necessarily restricted to fluid
systems. Here we use term “fluid” for later convenience.
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Figure 4: Relations between the fluid spacetime and two copies of physical spacetimes. The red straight line
in the fluid spacetime with constant σ i is mapped by X µ

1,2(σ
0,σ i) to physical spacetime trajectories (also in

red) of the corresponding fluid element.

where ∇sµ are the covariant derivatives associated with g1,2 respectively. Correlation functions of
the stress tensor in the full theory are obtained from those of T̂ µν

1,2 in the effective theory (6.4) in
complete parallel with (5.9).

The comments we made after (5.9) for the U(1) case should be repeated here. The above
discussion is so far very general, applicable to any systems, zero temperature or finite temperature,
solids or liquids. X µ

1,2 can be considered as a mathematical device whose dynamics automatically
captures whatever constraints coming from the conservation of stress tensor.

Now let us specify to a generic finite temperature system in a fluid phase (i.e. with unbroken
translational and rotational symmetries), for which X µ

1,2 are then the only relevant slow variables,
and IEFT should have a well defined local derivative expansion, with the effective expansion param-
eter `∂µ ∼ `

λ
� 1. In particular, IEFT[h1,h2] should recover the standard formulation of hydrody-

namics as its equations of motion. For comparison with the standard formulation, it is convenient
to introduce an additional scalar field τ(σA), which gives the local proper temperature associated
with each fluid element

T (σ) =
1

β (σ)
= T0e−τ(σ) , (6.11)

where T0 = β
−1
0 is some reference temperature scale (say the temperature at infinity). With the

introduction of τ , the path integrals (6.4) become

eW [g1µν ,g2µν ] =
∫

DX1DX2Dτ eiIEFT[h1AB,h2AB,τ] . (6.12)

Now in order to describe the system in a fluid phase, in contrast to e.g. solids or liquid crystals,
we have to impose additional symmetries. In a fluid phase, a fluid element can move freely. To
reflect this we require that I should be invariant under:

1. time-independent reparameterizations of spatial manifolds of σA, i.e.

σ
i→ σ

′i(σ i), σ
0→ σ

0 ; (6.13)
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2. time-diffeomorphisms of σ0, i.e.

σ
0→ σ

′0 = f (σ0,σ i), σ
i→ σ

i . (6.14)

Equation (6.13) corresponds to a (time-independent) relabeling of fluid elements, while (6.14)
can be interpreted as reparameterizations of the internal time associated with each fluid element.
Note that in (6.14) we allow time reparameterizations to have arbitrary dependence on σ i, which
physically can be interpreted as each fluid element having its own choice of time. These symmetries
“define” what we mean by a fluid. Note that there is no covariance between σ0 and σ i as the fluid
itself “defines” a frame. Two copies of physical space-time, together with an auxiliary, fluid space-
time (which was called worldvolume), and similar diffeomorphisms were also discussed in [84].

Given that the theory should be invariant under separate spatial and time diffeomorphisms
(6.13)–(6.14), it is convenient to decompose h1,2 into objects which have good transformation
properties under them

hsABdσ
Adσ

B =−b2
s (dσ

0− vsidσ
i)2 +asi jdσ

idσ
j, s = 1,2 (6.15)

Again symmetric combinations of various components represent physical variables, while the an-
tisymmetric combinations are interpreted as the corresponding noises. For example, introducing

Er =
1
2
(b1 +b2) , Ea = log

(
b−1

2 b1
)

(6.16)

we may interpret dσ̂ = Erdσ0 as the local proper time for each fluid element.
From (6.11) the local temperature (associated with σ0) for each fluid element can then be

written as
Tlocal(σ) = T (σ)Er = T0Ere−τ . (6.17)

Note that one could use the time diffeomorphism (6.14) to fix

Er = eτ (6.18)

for which we have
Tlocal(σ) = T0 = const . (6.19)

Physically this means that by properly choosing the fluid time σ0 can make the local temperature
associated with each fluid element to be a constant. In the gauge (6.18), eq. (6.14) still has some
residual freedom left, reducing to

σ
0→ σ

0 + f (σ i) (6.20)

for an arbitrary function f . Thus instead of having both (6.13) and (6.14), with τ as an independent
field, one can instead have (6.13) and (6.20), while interpreting

T (σ) =
T0

Er
(6.21)

as an emergent local proper temperature which is expressed in terms of X µ

1,2 through Er. It can be
shown that the Fadeev-Popov determinant in fixing the gauge (6.18) in the path integral (6.12) is
unity and thus the two formulations are equivalent at full path integral level.
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Finally we need to specify the dynamical (local) KMS symmetry. Let us first suppose ρ0

in (6.1) is given by a thermal density matrix with inverse temperature β0 =
1
T0

. Then the generating
functional (6.1) should satisfy

W [g1µν ,g2µν ] =W [g̃1µν , g̃2µν ] , (6.22)

with
g̃1µν(x) = Θg1µν(t + iθ0,~x), g̃2µν(x) = Θg2µν(t− i(β0−θ0),~x) . (6.23)

Compared with (3.11) and (5.16), the additional complication here is that the dynamical KMS con-
dition must be specified with respect to the local temperature, which is now spacetime dependent.
In the gauge (6.19), the expression simplifies and the dynamical KMS transformation particularly
is easy to state.24 We require IEFT to be invariant under

IEFT[h̃1, h̃2] = IEFT[h1,h2] (6.24)

with

h̃1AB(σ) = Θh1AB(σ
0 + iθ ,σ i), h̃2AB(−σ) = Θh2AB(σ

0− i(β0−θ),σ i) . (6.25)

Equations (6.23) and (6.25) in turn imply that X µ

1,2 should transform as

X̃ µ

1 (σ) = ΘX µ

1 (σ
0 + iθ ,σ i)+ iθδ

µ

0 , X̃ µ

2 (σ) = ΘX µ

2 (σ
0− i(β0−θ),σ i)− i(β0−θ)δ

µ

0 . (6.26)

See Appendix C how various quantities transform under different choices of Θ. It can be read-
ily checked that in (6.4), equation (6.24) leads to (6.22).25 Given the residual time diffeomor-
phism (6.20), in (6.25)–(6.26), the parameter θ can in fact be generalized to an arbitrary function
θ(σ i) which approaches θ0 at infinity. Equations (6.25) and (6.26) are manifestly Z2.

Combining all these elements and the unitarity constraints (3.6)–(3.8), we then have the com-
plete formulation of fluctuating hydrodynamics which is valid at quantum level. It can be checked
explicitly that, at the level of equations of motion, this formulation completely reproduces the stan-
dard formulation of hydrodynamics, with all the phenomenological constraints such as the local
first law, the local second law and Onsager relations automatically incorporated. Furthermore, it
generalizes constraints from Onsager relations to nonlinear level and provides a derivation of the
relation between thermal partition function and entropy constraints observed in [92, 93]. For details
see Sec. V of [1].

We will present the explicit action to first derivative order in Sec. 6.4 after discussing various
other aspects.

6.2 Physical spacetime formulation

Alternatively, we can use the inverse functions σA
1,2(x) of X µ

1,2(σ
A) as dynamical variables and

rewrite the fluid spacetime action in the physical spacetime. Now there is only a single copy of

24See Sec. IV of [2] for a general discussion.
25Note a general fact: suppose an action has a symmetry I[χ;φ ] = I[χ̃; φ̃ ] where tilded variables are related to the

original variables by some transformation, then W [φ ] =W [φ̃ ] where eW [φ ] =
∫

DχeiI[χ;φ ].
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physical spacetime xµ as the arguments of σA
1,2 are dummy variables. The background metrics are

g1µν(x),g2µν(x).
With general background sources, the action appears to be complicated and not very trans-

parent written in physical spacetime. A reason for the complications is the following. In the fluid
spacetime we can use the symmetric combination of the induced metric

hrAB =
1
2
(h1AB +h2AB) (6.27)

as the “physical metric” and use it to raise and lower indices. This makes sense as h1,2 have the
same transformation properties under (6.13)–(6.14). But there does not exist a canonical definition
of the “physical” spacetime metric. The obvious candidate gµν = 1

2(g1µν + g2µν) does not make
sense as g1 and g2 transform under independent diffeomorphisms (6.8). Thus it is not a good thing
to add them. This problem does not exist in the classical limit as we will see in next subsection.

6.3 Classical limit

So far the discussion applies to any quantum system and includes quantum fluctuations. In this
section we consider the classical limit h̄→ 0, which simplifies the structure of the hydrodynamical
action as well as the dynamical KMS transformation. Now there is a canonical physical spacetime
metric (even when g1 6= g2), and the fluid spacetime and physical spacetime quantities–including
actions–are now simply related by pullbacks.

Following the discussion of Sec. 3.5, reinstating h̄ we can write various background and dy-
namical fields as

g1µν = gµν +
h̄
2

gaµν , g2µν = gµν −
h̄
2

gaµν , X µ

1 = X µ +
h̄
2

X µ
a , X µ

2 = X µ − h̄
2

X µ
a , (6.28)

where now gµν and X µ are interpreted as the physical spacetime metric and coordinates (note there
is only one copy of them). In (6.8), the transformation parameters f µ

1,2 can be written as

f µ

1 = f µ +
1
2

h̄ f µ
a , f µ

2 = f µ − 1
2

h̄ f µ
a . (6.29)

In the h̄→ 0 limit, the two diffeomorphisms (6.8) then become: (i) physical space diffeomor-
phisms

X µ → X ′µ(X) = f µ(X), (6.30)

under which X µ
a transform as a vector and gµν ,gaµν as symmetric tensors, and (ii) noise diffeo-

morphisms under which various quantities transform as

X ′µa (σ) = X µ
a (σ)+ f µ

a (X(σ)), g′aµν = gaµν −L fagµν , (6.31)

where Lw denotes Lie derivative along a vector wµ . We emphasize that (6.31) are finite transfor-
mations. They are exact as h̄→ 0, and do not have derivative corrections. Note that gµν is naturally
interpreted as the physical spacetime metric.

In this limit
h1AB = hAB(σ)+

h̄
2

haAB, h2AB = hAB(σ)− h̄
2

haAB (6.32)
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where

hAB(σ)≡ ∂AX µ
∂BXνgµν(X), haAB = ∂AX µ

∂BXνGaµν(X), (6.33)

Gaµν(X)≡ gaµν +LXagµν . (6.34)

It can be readily checked that Gaµν is invariant under (6.31) and transforms as a symmetric tensor
under (6.30). We now have

1
h̄

IEFT[h1,h2,τ] = IEFT[hAB,haAB,τ]+O(h̄) . (6.35)

One also has a natural definition of “physical” velocity field (rather than two copies of them as
in (6.7)) as

uµ(σ) =
1
b

∂X µ

∂σ0 , b =
√
−h00 . (6.36)

Going to physical spacetime formulation, we treat σA(xµ), the inverse of X µ(σA), and X µ
a (x)=

X µ
a (σA(x)) (now understood as a vector in the physical spacetime) as dynamical variables. Sim-

ilarly, the velocity field (6.36) should now understood as defined in physical spacetime through
σA(x), more explicitly,

uµ(x) =
1
b
(K−1)

µ

0 , KA
µ = ∂µσ

A, b2 =−gµν(K−1)
µ

0 (K
−1)ν

0 . (6.37)

Invariance under (6.13)–(6.14) implies that the only invariant which can be constructed from KA
µ is

the velocity field uµ and the projector to directions transverse to uµ

∆
µν = gµν +uµuν . (6.38)

Thus the invariance under (6.31) and (6.13)–(6.14) implies that the only variables which can appear
in the action of physical spacetime are:

Gaµν , uµ , ∆
µν , β (x) = β (σ(x)) (6.39)

and their covariant derivatives. The action should also be invariant under physical spacetime dif-
feomorphisms (6.30). The fluid spacetime action is obtained by that of the physical spacetime by
pulling back all quantities to the fluid spacetime.

To discuss the classical limit of the dynamical KMS transformation it is convenient to intro-
duce the combination

β
µ(x) = β (x)uµ , β (x) = β0eτ (6.40)

and its pull back in fluid space

β
A(σ) = β

µ ∂σA

∂xµ
= β0

eτ

b

(
∂

∂σ0

)A

= βlocal

(
∂

∂σ0

)A

(6.41)

where we have used (6.17) and that in the classical limit Er = b. In the gauge (6.21), we have

β
µ(x) = β0

∂X µ

∂σ0 = β0buµ , β
A(σ) = β0

(
∂

∂σ0

)A

. (6.42)
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In the gauge (6.21), the remaining symmetry (6.20) is no longer enough to reduce σA to uµ as is the
case for (6.14), there is one more invariant variable b. Thus in physical spacetime, β (x) is always
treated an independent variable.

In the h̄→ 0 limit (6.28), with θ ,β0 in (6.23)–(6.26) becoming h̄θ , h̄β0. those equations can
be written as

g̃µν(x) = Θgµν(x), g̃aµν(x) = Θgaµν(x)− iβ0Θ∂0gµν(x) (6.43)

X̃ µ(σ) = ΘX µ(σ), X̃ µ
a (σ) = ΘX µ

a (σ)− iΘβ
µ(σ)+ iβ0δ

µ

0 , (6.44)

h̃ab(σ) = Θhab(σ), h̃(a)ab (σ) = Θh(a)ab (σ)− iΘLβ hab(σ) . (6.45)

In fact it can be shown that (6.44)–(6.45) are valid without choosing the gauge (6.21) [2].
Using (6.43)–(6.45) together with the pull-backs (6.33), we find the dynamical KMS transfor-

mation for physical spacetime quantities

ũµ(x) = Θuµ(x), β̃ (x) = Θβ (x), G̃aµν(x) = ΘGaµν(x)− iΘLβ gµν(x) . (6.46)

Notice that in (6.46), the dynamical KMS transformation is expressed solely in terms of a local
temperature β (x). This suggests that it can be extended to general density matrices for which
the concept of a local temperature makes sense. In fact, we can turn the logic around to use the
invariance under (6.46) as a mathematical definition of a local equilibrium state.

6.4 Explicit action and field redefinitions

Finally let us give the explicit form of the action. We can expand the action IEFT in terms of the
number of a-variables and derivatives. For simplicity we will write the action in physical spacetime
in the classical limit.

We need to write down the most general covariant action using variables in (6.39) and impose
unitarity conditions (3.6)–(3.8) as well as invariance under (6.46). Writing IEFT =

∫
ddx
√
−gL ,

we will organize the Lagrangian as (3.46), where now the derivatives are counted as acting on
variables in (6.39), and work to the level of L2.26

At order L1, the most general covariant action built from (6.39) with zero derivative is

L1 =
1
2

T µν

0 Gaµν , (6.47)

with
T µν

0 = ε0(β )uµuν + p0(β )∆
µν (6.48)

where for now ε0, p0 are arbitrary functions of β . Imposing invariance under (6.46) requires

ε0 + p0 =−β
∂ p0

∂β
(6.49)

which is equivalent to the local first law of thermodynamics. L2 can be written as

L2 =
1
2

T µν

1 Gaµν +
i
4

W µα,νβ

0 GaµνGaαβ , (6.50)

26To this level, one can check that the full quantum action in fact coincides with that in the classical limit.
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where T µν

1 and W0 contain first and zero derivative respectively. More explicitly, T µν

1 can be written
as

T µν

1 = hεuµuν +hp∆
µν +2u(µqν)−ησ

µν , (6.51)

with

hε = f11β
−1

∂β + f12θ , hp = f21β
−1

∂β − f22θ , qµ =−λ1∂uµ +λ5∆
µν

β
−1

∂νβ , (6.52)

∂ ≡ uµ
∇µ , θ ≡ ∇µuµ , σ

µν ≡ ∆
µλ

∆
νρ

(
∇λ uρ +∇ρuλ −

2
d−1

gλρ∇αuα

)
(6.53)

and

W µα,νβ

0 = s11uµuνuαuβ + s22∆
µν

∆
αβ − s12(uµuν

∆
αβ +uαuβ

∆
µν)

+2r11

(
uµu(α∆

β )ν +uνu(α∆
β )µ
)
+4r

(
∆

α(µ
∆

ν)β − 1
d−1

∆
µν

∆
αβ

)
, (6.54)

where all coefficients are functions of β . Imposing the dynamical KMS symmetry gives three sets
of conditions. The first set is equivalent to requiring the existence of equilibrium, and give

λ1 = λ5 . (6.55)

The second set of conditions can be shown to be equivalent to the non-linear Onsager relations
(2.41), and give

f21 =− f12 . (6.56)

The third set of conditions relate coefficients of T µν coefficients of W :

r =
η

2β
, r11 =

λ1

β
, s11 =

f11

β
, s12 =

f12

β
, s22 =

f22

β
. (6.57)

Taking derivative with respect to gaµν we then find the symmetric part of the off-shell hydro-
dynamic stress tensor is given by

T̂ µν = T µν

0 +T µν

1 (6.58)

with T µν

0 for ideal fluids and T µν

1 the leading dissipative corrections. Applying (3.53) of Sec. 3.7
to the above action we find that to first order in derivative the entropy current takes the form

Sµ = pβ
µ −T µν

βν , p = p0 +hp (6.59)

which recovers the standard result.
To the order of L2, the structure of (6.47) and (6.50) parallels that of the MSR action. This

was anticipated in [85], where the near-equilibrium form of L2 was obtained from the knowledge
of two-point functions, and its full non-linear expression was found using Lorentz invariance. Sub-
sequently, [86] took an important step to formulate the action based on symmetries, and obtained
the near equilibrium form of W0. Note however that those works did not capture L3, which is
important when second derivative terms in the stress tensor are relevant.
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As usual, in an EFT, one can reduce the number of terms using field redefinitions. In the
current theory, possible redefinitions are27

uµ → uµ +δuµ , β → β +δβ , X µ
a → X µ

a +δX µ
a , (6.60)

where δuµ ,δβ are local expressions in uµ ,β and Gaµν which contain at least one derivatives or
one factors of Gaµν , while δX µ

a contains at least one factors of Gaµν .
The redefinitions (6.60) leave L1 invariant, but will modify Ll , for l > 1. Redefinitions of

X µ
a allow one to set to zero terms which are proportional to the ideal fluid equations of motion

∂µT µν

0 = 0 or its derivatives, while redefinitions of uµ and β can be used to further simplify the
action by writing it in a specific “frame.” These field redefinitions generalize those in the traditional
formulation of hydrodynamics, which are used to simplify one-point function of T̂ µν . Here the
frame choice is applied to the full action, providing simplifications also for higher-point functions
of the stress tensor. See [2] for more detailed discussion.

In the generalized Landau frame introduced in [2], equations (6.51)–(6.54) simplify to

T µν

1 =−ησ
µν −ζ θ∆

µν

W µα,νβ

0 = 2β
−1

η

(
∆

α(µ
∆

ν)β − 1
d−1

∆
µν

∆
αβ

)
+β

−1
ζ ∆

µα
∆

νβ
(6.61)

where η and ζ are shear and bulk viscosities. In particular, the full L2 can be written in a compact
form

L2 =
i
4

β
−1

ζ ∆
µνĜaµν∆

αβ Gaαβ +
i
2

β
−1

η

(
∆

α(µ
∆

ν)β − 1
d−1

∆
µν

∆
αβ

)
ĜaµνGaαβ , (6.62)

where Ĝaµν ≡ΘG̃aµν with G̃aµν the dynamical KMS transformation (6.46).
Terms at order L3 or higher can in principle be written down straightforwardly, but one sees a

proliferation of terms, which render the analysis quite lengthy. See [2] for a discussion of conformal
fluids.

The action for fluctuating hydrodynamics has been generalized in a number of directions, in-
cluding systems with quantum anomalies. It has been widely recognized that systems with quantum
anomalies exhibit novel transport behavior in the presence of rotation or in a magnetic field (for a
recent review see [94]). The action principle formulation provides a systematic way to derive such
anomalous effects, makes manifest the relations between parity-odd transport and underlying dis-
crete symmetries, and elucidates connections between anomalous transport coefficients and global
anomalies [3].

6.5 Ideal fluids: factorization and equivalence with single copy action

As a support for the conjecture (3.59) that generic non-dissipative action should be factoriz-
able, in this subsection we show that the ideal fluid action (6.47) can be factorized. Interestingly, the
factorized action corresponds to the “single-copy” ideal fluid action of [77] (see also [79, 78, 84]).

27The corresponding redefinitions for σA may be non-local, but this does not matter as the action only depends on
uµ .

39



P
o
S
(
T
A
S
I
2
0
1
7
)
0
0
8

Non-equilibrium effective field theories Hong Liu

For this purpose it is convenient to work in the fluid spacetime, in which (6.47) can be written
as

I1 =
1
2

∫
dd

σ
√
−hT AB

0 haAB, T AB
0 = ∂µσ

A
∂νσ

BT µν

0 . (6.63)

We would like to show that with T µν

0 given by (6.48)–(6.49), the above action can be written as

I1 = I0[h1]− I0[h2]+O(h3
a) (6.64)

for some local action I0. This is equivalent to the statement that there exists I0[hAB] such that

1
2

√
−hT AB

0 =
δ I0

δhAB
(6.65)

which in turn is equivalent to the integrability condition

δ (
√
−hT AB

0 )

δhCD
=

δ (
√
−hTCD

0 )

δhAB
. (6.66)

Note that we shall use the gauge (6.18) so that β (σ) = β0
√
−h00. It can be readily checked (6.66)

is indeed satisfied, and I0 can be written as28

I0 =
∫

dd
σ
√
−h p0(β (σ)) . (6.67)

Note that (6.67) is invariant under (6.13) and (6.20). This action is of the form discussed in [79,
84] which may be considered as a covariant generalization of that in [77]. To obtain the form
given in [77], one can write it in the physical spacetime by inverting X µ(σ) and integrating out
σ0(x), after which one obtains an action of σ i(x). When solving σ0 in terms of other variables,
one finds an arbitrary integration function, which can be fixed to be unity and in turn breaks the
symmetry (6.13) down to volume-preserving spatial diffeomorphisms

σ
i→ f i(σ j), det

(
∂ f i

∂σ j

)
= 1 . (6.68)

7. Conclusion

In these lectures we reviewed the basic formalism for constructing EFTs for non-equilibrium
systems at a finite temperature, and discussed a few examples as illustrations, including a theory of
diffusion and fluctuating hydrodynamics. The key points are:

• Non-equilibrium EFTs satisfy a set of universal conditions and symmetries: (a) the con-
straints from unitarity (3.6)-(3.8), and (b) the Z2 dynamical KMS invariance (3.10) which
characterizes local equilibrium. These, in turn, imply Onsager relations, fluctuation-dissipation
theorem, existence of equilibrium and second law of thermodynamics. While some of there
conditions have been traditionally imposed at phenomenological level, here they follow from
first principles.

28Note that this analysis is in fact identical to that of Sec. V F 1 of [1], which worked with a charged fluid. So this
analysis can be immediately generalized to a charged fluid from the results there.
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• Systems with conserved quantities are characterized by additional symmetries. For example,
charge diffusion of Sec. 5 requires additional diagonal shift symmetries, and hydrodynamics
of Sec. 6 requires additional diffeomorphism invariance.

• Physical effects from thermal and quantum fluctuations can be treated systematically by
applying standard field theory methods to non-equilibrium EFTs.

As discussed in the Introduction, we expect these EFTs to have rich applications to a large
variety of physical problems. The formalism also admits generalizations in many directions. For
example, it would be interesting to find EFTs for other continuous media, such as solids and liquid
crystals. Furthermore, one may be able to adapt the formalism to systems where the concept of
local equilibrium breaks down, but which still admit a separation of scales. Finally, the collective
degrees of freedom associated with conserved quantities are formulated in a way which does not
depend on any long wavelength expansion or local equilibrium. We thus expect that they have
much wider applications, e.g. to systems at very low or zero temperatures.
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A. Review of standard formulation of hydrodynamics

In this section we give a brief review of the standard formulation of hydrodynamics (for a more
extensive, modern review see [95]. For simplicity, we shall consider relativistic normal fluids. The
equations of motion are the conservation of the stress tensor T µν , i.e.

∂µT µν = 0 , (A.1)

and if there is an additional global U(1) symmetry we also have the conservation of the corre-
sponding current

∂µJµ = 0 . (A.2)

Consider first the system in thermal equilibrium, where the density matrix ρ0 has the general
form

ρ0 =
1
Z

e−βV(uµ T 0µ−µJ−) , uµuµ =−1 , (A.3)

where uµ constitutes the choice of a Lorentz frame, and V is the volume of the system. The
one-point functions 〈T µν〉 ,〈Jµ〉 are functions of β , uµ and µ . For example, in the rest frame
uµ = (1,0, · · · ,0), 〈T µν〉= diag(ε0, p0, · · · , p0) and 〈Jµ〉= (n0,0, · · · ,0) where ε0(β ,µ), p0(β ,µ)

and n0(β ,µ) are respectively the energy, pressure and charge densities. From now on for notional

41



P
o
S
(
T
A
S
I
2
0
1
7
)
0
0
8

Non-equilibrium effective field theories Hong Liu

simplicity we shall drop the brackets from 〈T µν〉 and 〈Jµ〉. In a general frame uµ they can be
written as

T µν = ε0uµuν + p0∆
µν , Jµ = n0uµ , (A.4)

where ∆µν is the projector transverse to the velocity,

∆
µν = η

µν +uµuν . (A.5)

Now consider a non-equilibrium configuration where T µν and Jµ are slowly varying in space-
time. More explicitly, if L is the typical scale of variation of T µν and Jµ , and ` is the typical
microscopic relaxation scale we have L� `. As discussed in Sec. 1.2, each spacetime point can
then be considered as in local equilibrium defined by local values of the conserved quantities, or
equivalently local values of β ,µ,uµ . In other words, the system can be specified by β (x), µ(x)
and uµ(x). We can then write T µν and Jµ as

T µν = ε0(x)uµ(x)uν(x)+ p0(x)∆µν(x)+ T̂ µν , Jµ = n0(x)uµ(x)+ Ĵµ , (A.6)

where ε0(x)≡ ε0(β (x),µ(x)) and similarly with p0(x),n0(x). T̂ µν and Ĵµ denote corrections from
non-uniformity of β (x),µ(x),uµ(x). They can be expanded in terms of the number of derivatives
acting on β ,µ,uµ , with an effective expansion parameter `∂µ ∼ `

L � 1. The hydrodynamical
variables β (x), µ(x) and uµ(x) constitute a set of d+1 unknowns, whose evolutions are determined
by (A.1) and (A.2), which are d +1 equations. We thus have a closed set of dynamical equations.

The explicit expressions for T̂ µν and Ĵµ are called constitutive relations. Naively, one just
writes down the most general local expressions which are consistent with Lorentz symmetry. More
explicitly, one finds to first derivative order (after using field redefinition freedom),

T̂ µν = −ησ
µν −ζ ∆

µν
θ + · · · (A.7)

Ĵµ = −σT ∆
µν

∂ν(µ/T )+χT ∆
µν

∂νT + · · · , (A.8)

where

∂ ≡ uµ
∂µ , θ ≡ ∂µuµ , σ

µν ≡ ∆
µλ

∆
νρ

(
∂λ uρ +∂ρuλ −

2
d−1

ηλρ∂αuα

)
(A.9)

and η , ζ , σ and χT are transport coefficients (they are functions of β and µ). In (A.7)–(A.8) one
in fact gets more transport coefficients than desired; while η ,ζ ,σ corresponds respectively to shear
viscosity, bulk viscosity and conductivity, χT is not observed in nature.

So one needs to impose further constraints. A phenomenological constraint which appears to
do the job is the local second law of thermodynamics: there exists an entropy current

Sµ = s0(β (x),µ(x))uµ(x)+ Ŝµ , (A.10)

which upon using equations of motion (A.1) and (A.2) satisfies

∂µSµ ≥ 0 (A.11)

order by order in derivative expansion. In (A.10), s0(β ,µ) is the equilibrium entropy density,
which is related to ε0, p0 and n0 via standard thermodynamic relations, whereas Ŝµ represents
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derivative (i.e. non-equilibrium) corrections to Sµ . In practice, one writes down the most general
local expression of Ŝµ which are consistent with Lorentz symmetry, then sees whether it is possible
to choose coefficients of Ŝµ such that (A.11) is satisfied upon using (A.1) and (A.2). One finds that
this is only possible if

η , ζ , σ ≥ 0 , χT = 0 . (A.12)

One should also impose by hands the linear Onsager relations (from time reversal symmetry),
i.e. the response matrix for the external sources must be symmetric. The Onsager relations do
not lead to any new constraints at the level of (A.7)–(A.8), but in general do at higher order in
derivatives or more complicated systems (e.g. superfluids).

In summary, to obtain consistent hydrodynamic equations need to impose the following con-
straints:

1. The coefficients ε0, p0,n0,s0 are not independent, they satisfy the standard thermodynamic
equilibrium relations. In other words, we need to impose local first law of thermodynamics.

2. Local second law of thermodynamics (A.11).

3. Onsager relations.

In the EFT approach discussed in Sec. 5–6, there is an action principle for obtaining the constitutive
relations and all the above constraints are consequences of the Z2 dynamical KMS symmetry.

B. A simple example of path integrals on CTP

In this example we use a simple example to illustrate the role of boundary condition (3.2) in
generating couplings between two segments of a CTP.

Consider the microscopic action for the harmonic oscillator

S =
1
2

∫ t f

ti
dt(ẋ2−ω

2x2 + xJ) , (B.1)

where we included a linear coupling to the external source J(t). Below we shall evaluate explicitly
the generating functional (2.5) with ρ0 given by the vacuum state, i.e.

ρ0 = |Ω〉〈Ω| . (B.2)

In order to do this, we break up the generating functional into a forward and a backward time
evolutions,

eW [J1,J2] =
∫

dx f 〈Ω|U†
J2
(t f , ti)|x f 〉〈x f |UJ1(t f , ti)|Ω〉

=
∫

dx f (〈x f |UJ2(t f , ti)|Ω〉)∗〈x f |UJ1(t f , ti)|Ω〉 ,
(B.3)

where UJ(t f , ti) is the evolution operator from ti to t f associated to the action (B.1), and x(t f ) = x f .
Recall that for a harmonic oscillator the amplitude in going from position xi at t = ti to position

x f at t = t f is
〈x f |UJ(t f , ti)|xi〉= N e

i
h̄ A [J,xi,x f ] , (B.4)
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where N is a constant which does not depend on xi,x f (which we will suppress below), and

A [J,xi,x f ] =
1
2

∫ t f

ti
dtdt ′J(t)G(t, t ′)J(t ′)

+
1

sinω(t f − ti)

∫ t f

ti
dt[xi sinω(t f − t)+ x f sinω(t− ti)]J(t)

+
ω

2sinω(t f − ti)
[(x2

f + x2
i )cosω(t f − ti)−2x f xi] ,

(B.5)

with

G(t, t ′) =
cosω(t f − ti−|t− t ′|)− cosω(ti + t f − t− t ′)

2ω sinω(t f − ti)
. (B.6)

Now in (B.4)–(B.5) take the initial time ti = −∞, and use the standard trick to substitute ω →
ω(1− iε), with an infinitesimal ε > 0. We then find that

〈x f |UJ(t f ,−∞)|Ω〉= e
i
h̄ A [J,x f ], (B.7)

where

A [J,x f ] =
1
2

∫ t f

−∞

dtdt ′J(t)Ḡ(t, t ′)J(t ′)+
∫ t f

−∞

dt x f eω(i+ε)(t−t f )J(t)+
i
2

ωx2
f , (B.8)

Ḡ(t, t ′) =
i

2ω
(e−(i+ε)ω|t−t ′|− e(i+ε)ω(t+t ′−2t f )) . (B.9)

Eq. (B.3) can then be written as

eW [J1,J2] =
∫

dx f e
i
h̄ (A [J1,x f ]−A ∗[J2,x f ]) . (B.10)

Integrating out x f in (B.10) we find

W [J1,J2] =
1
2

∫ t f

−∞

dtdt ′ (J1(t)Ḡ(t, t ′)J1(t ′)− J2(t)Ḡ∗(t, t ′)J2(t ′))

+
i

4ω

(∫
dt(eω(i+ε)(t−t f )J1(t)− eω(−i+ε)(t−t f )J2(t))

)2

.

(B.11)

First taking ε = 0 and then t f → ∞, Eq. (B.11) becomes

W [J1,J2] =
1
2

∫
∞

−∞

dtdt ′
(

J1(t)GF(t, t ′)J1(t ′)− J2(t)G∗F(t, t
′)J2(t ′)−

i
2ω

J1(t)J2(t ′)eiω(t−t ′)
)
,

(B.12)
where

GF(t, t ′) =
i

2ω
e−iω|t−t ′|. (B.13)

This illustrates that the boundary condition x1(t = t f ) = x2(t = t f ) = x f induces a coupling between
J1 and J2 in the generating functional W [J1,J2]. Note that, had we taken t f → ∞ before taking
ε → 0 in (B.11), we would have obtained (B.12) without the cross-term. This is because taking
t f → ∞ with ε nonzero corresponds to putting the system in the ground state at t f = ∞, leading to
a decoupling of the two copies of the system.
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C. Various discrete transformations

In this Appendix we list transformations of various tensors under various discrete symmetries.
They are important for obtaining the explicit forms of dynamical KMS transformations of various
tensors in Sec. 5–6. For definiteness, we take d = 4. For notational simplicity we have suppressed
the transformations of the arguments of all the functions, which are given in the first line of each
table.

Discrete transformations in 3+1-dimension
T PT C PT

xµ (−x0,xi) −(x0,xi) −(x0,xi)

uµ (u0,−ui) (u0,ui) (u0,ui)

Aµ (A0,−Ai) (A0,Ai) −(A0,Ai)

∂µ (−∂0,∂i) −(∂0,∂i) −(∂0,∂i)

∂ = uµ∂µ −∂ −∂ −∂

gµν (g00,−g0i,gi j) gµν gµν

ϕ −ϕ −ϕ ϕ
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