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1. Introduction

F-theory [1–3] occupies a remarkable sweetspot in the landscape of geometric, large radius
compactifications of string theory: It is general enough to incorporate the regime non-perturbative
in the string coupling gs while at the same time it is sufficiently well-controlled for reliable compu-
tations to be performed. As a result, F-theory offers a number of fascinating connections between
physics in various dimensions and mathematics, most notably algebraic (and even arithmetic) geo-
metry. Recent years have seen significant progress in our understanding of this correspondence
between geometry and physics, along with numerous applications ranging from particle physics
model building to quantum gravity to non-perturbative quantum field theory and back to mathem-
atics. It is the purpose of these lectures to give a pedagogical introduction to some of the techniques
to describe compactifications of F-theory and its manifold applications.

From its outset, F-theory can be understood as a supersymmetric compactification of Type IIB
string theory with 7-branes. The backreaction of the 7-branes generates a holomorphically varying
profile of the axio-dilaton τ =C0 + i/gs on the compactification space. Since the imaginary part of
τ is the inverse string coupling, the resulting compactifications inevitably include regions that are
inherently strongly coupled. The variation of the string coupling can be made sense of thanks to the
non-perturbative SL(2,Z) invariance of Type IIB string theory [4]. This formulation naturally leads
to the structure of an elliptic fibration over the compactification space and hence makes contact
with most beautiful concepts in algebraic geometry. Duality with M-theory [1, 5] is a crucial tool
to analyze the resulting compactification at a quantitative level much in the spirit of the geometric
engineering programme of Type II string theory. The dual M-theory probes an a priori singular
geometry, which is identified with the same elliptic fibration over the physical compactification
space of Type IIB string theory. Wrapped M2-branes along vanishing cycles in the geometry
engineer massless matter states which give rise to non-abelian degrees of freedom. These complete
the spectrum obtained from the supergravity modes in the long wavelength limit. In special cases,
the F-theory compactification enjoys yet another duality with the heterotic string [1–3]. Indeed, it
is often quoted that F-theory combines two attractive properties of both Type II compactifications
with branes and compactifications of the heterotic string: From the first the hierarchy of localisation
of gauge degrees of freedom along the branes compared to gravitational physics in the bulk of
spacetime, and from the second the appearance of exceptional gauge symmetry. This has been
exploited heavily amongst other things in the context of string model building [6–9], and was
one of the motivations for the revived interest in F-theory in the past decade which has lead to
significant, ongoing activities with numerous far-reaching insights.

It is probably fair to say that its - in many ways ideal - location at the intersection of vari-
ous dual M-theory corners makes F-theory the most generic currently controllable framework for
studying string vacua in their geometric regime. At the same time, it must be kept in mind that F-
theory is by definition most powerful in the long wavelength limit; here truly stringy effects, which
appear at higher order in an expansion of `s/R (with R a typical radius and `s the string length), are
suppressed and other techniques are required to analyze this parameter regime. In this sense, F-
theory addresses string vacua in their supergravity limit, and furthermore in their geometric regime.
Interestingly enough, though, such compactifications can encapsulate properties of non-geometric
string vacua by duality with the heterotic string [10–13].
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Physics of effective theory in R1,9−2n Geometry of elliptic fibration Yn+1

non-abelian gauge algebra codim.-one singular fibers (sec. 4)
localised charged matter representation codim.-two singular fibers

(sec. 5)
localised uncharged matter Q-factorial terminal singularities in codim. two
triple Yukawa interactions (4d/2d) codim.-three singular fibers

(sec. 6)
quartic Yukawa interactions (2d) codim.-four singular fibers
abelian gauge algebra free part of Mordell-Weil group

(sec. 7)
global structure of gauge group torsional part of Mordell-Weil group

discrete abelian gauge group
torsional cohomology/

(sec. 8)
Tate-Shafarevich group

gauge background Deligne cohomology group
(sec. 9)

matter multiplicities sheaf cohomology groups

Table 1.1: Dictionary between the physics of F-theory compactified on an elliptic fibration Yn+1 of
complex dimension n+1 and the geometry of the fibration Yn+1.

Among the many fascinating aspects of F-theory is the emergence of a clear dictionary, sum-
marized in Table 1.1, between fundamental concepts in theoretical physics and beautiful structures
in algebraic geometry. Further developing this dictionary has been a source of continuous inspira-
tion both for physics and mathematics: Many challenging considerations about the physics of string
compactifications can be translated into purely geometric questions, which are, in favorable circum-
stances, solvable! An example of this is the classification of six-dimensional superconformal field
theories in F-theory via the classification of F-theory base spaces with contractible curves [14–17].
A long-term goal is to put such potential classification schemes to direct use for physics in lower
dimensions. This is particularly exciting when it comes to distinguishing between the landscape of
string theory compactifications and the potential swampland of seemingly consistent field theories
without a UV completion coupled to quantum gravity, as discussed at TASI in particular in [18,19].

The dictionary of Table 1.1 gives a direct meaning to sophisticated concepts in algebraic and
arithmetic geometry and can therefore also act as a source of inspiration for physical mathem-
aticians. As an example of this reverse use of the dictionary, let us note that studying anomalies
can lead to interesting new insights on the algebraic geometry of F-theory and reveal new geometric
identities which may be difficult to prove in generality in pure mathematics [20–23].

The purpose of these lecture notes is to flesh out the dictionary between geometry and physics
via F-theory in an introductory, pedagogical manner that can serve as an entry point to this active
and ever-growing field of research. Given the maturity of the field on the one hand, which has
seen more than 20 years of constant progress, and the limitation of space on the other, such an
introduction is necessarily far from a complete account of the material worth covering and hence
reflects a certain choice of topics rather than the actual state of the literature. We begin by intro-
ducing F-theory both from the perspective of Type IIB string compactifications with general [p,q]
7-branes and via the duality to M-theory in section 2. In either of the two approaches, the oc-
currence of an elliptic fibration encoding the physics of the compactification is very natural, even
though it appears for completely different reasons. The mother of all F-theory compactifications

2



P
o
S
(
T
A
S
I
2
0
1
7
)
0
1
6

F-theory Timo Weigand

is the Weierstrass model, which is further introduced in section 3, focussing, for starters, on the
smooth case and its interpretation as a compactification with 7-branes carrying a trivial gauge al-
gebra. We then move on to discussing, in section 4, the origin of non-abelian gauge algebras in
F-theory due to singular fibers over codimension-one loci in the base of the elliptic fibration. An
important role is played by the resolution of the singularities, which is always possible crepantly in
codimension one. This process is interpreted in the dual M-theory as moving along the Coulomb
branch of the gauge theory. Non-abelian gauge bosons and matter are most directly understood
via wrapped M2-branes in M-theory. This is also key to understanding the appearance of localised
matter at the intersection of two 7-brane stacks: The weight lattice of representations is in one-to-
one correspondence with the fibral curves of the resolution including the codimension-two singular
fibers, see section 5. However, beginning with codimension two, the singularities of the Weierstrass
model are not always resolvable without breaking the Calabi-Yau condition of the elliptic fibration,
leading to interesting new effects. Localised charged matter interacts in a holomorphic way via
Yukawa couplings, whose structure can be read off from the higher codimension fibers as reviewed
in section 6. The structure discussed up to this points has been mostly local, in the sense that it is
associated with the different strata of the discriminant locus of the fibration in codimension one,
two and higher. By contrast, understanding both the abelian sector of a compactification and the
structure of its gauge group (as opposed to merely the algebra) requires global data. The data in
question is furnished by the Mordell-Weil group of rational sections, which is the topic of section
7. This group is a freely generated abelian group; its non-torsional part encodes the abelian gauge
symmetries, and together with its torsional part it determines in addition the global structure of
the gauge group. Discrete gauge symmetries can likewise be traced back to geometric structure in
F-theory: As we will explain in section 8, an abelian Zk gauge symmetry arises if the Weierstrass
model has a suitable torsional cohomology group Tor(H3(Y,Z)) = Zk; such a Weierstrass model
is necessarily singular, and related to k− 1 smooth genus-one fibrations without a section which
together form a Zk Tate-Shafarevich group. In section 9, we discuss aspects of the important topic
of gauge backgrounds in F-theory. These backgrounds are necessary to stabilize complex structure
moduli and crucially determine the spectrum of massless matter in compactificaitons to four and
two dimensions. We conclude in section 10 with a brief overview of some of the applications of
F-theory in the more recent literature to particle physics model building, string landscape analysis,
non-perturbative quantum field theory in various dimensions and to mathematics.

2. Setting the stage for F-theory

There are three ways to approach F-theory [1–3]. By definition, F-theory is a non-perturbative
formulation of Type IIB compactifications with general [p,q] 7-branes backreacting on the geo-
metry. This theory can be described, in full generality, via duality with M-theory [1, 5]. Further-
more, a subset of F-theory compactifications are dual to a special class of heterotic compactifica-
tions [1–3].1

1F-theory on an elliptic fibration Yn+1 which is also a K3-fibration over a base Bn−1 is dual to the heterotic string
on an elliptic fibration over Bn−1 with a suitable vector bundle. For reasons of space (and time) we will, unfortunately,
not be discussing this duality further in the following lecture notes.
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This introductory chapter approaches F-theory from the perspective of Type IIB compactific-
ations and from the M-theory viewpoint. This foundational material has been explained in many
reviews and books in the literature, including [18, 24–28].

2.1 Type IIB string theory, SL(2,Z) duality and pq 7-branes

Consider type IIB string theory, approximated in the long wavelength regime by the ten-
dimensional (10d) Type IIB supergravity action with bosonic part

1
2π

SIIB,dem. =
∫

d10x e−2φ
√
−g
(
R+4∂µφ ∂

µ
φ
)
− 1

2

∫
e−2φ H3∧∗H3

−1
4

4

∑
p=0

∫
F2p+1∧∗F2p+1−

1
2

∫
C4∧H3∧F3 .

(2.1)

We set the string length `s = 2π
√

α ′ ≡ 1. The field strengths appearing in the above democratic
formulation are defined as

H3 = dB2, F1 = dC0, F3 = dC2−C0 dB2,

F5 = dC4−
1
2

C2∧dB2 +
1
2

B2∧dC2 , F9 = ∗F1, F7 =−∗F3 .
(2.2)

This action is a pseudo-action to the extent that it must be supplemented by the duality relation

F5 = ∗F5, (2.3)

at the level of equations of motion.
Of prime interest for us are D7-branes, which are magnetic sources for the IIB Ramond-

Ramond (RR) axion C0. The effective action of a D7-brane is the sum of the usual Dirac-Born-
Infeld action and the Chern-Simons action controlling in particular its coupling to the RR fields
C2p. In the above conventions2,

SCS =−2π

2

∫
D7

TreiF
∑
2p

C2p

√
Â(TD7)
Â(ND7)

(2.4)

with F = i(F+ 2πB2) the gauge invariant combination of the Yang-Mills field strength F along
the brane and the Kalb-Ramond 2-form B2 (pulled back to the brane). The terms in brackets refer
to the A-roof genus of the tangent and normal bundle.

The most important aspect of this action for us is that a D7-brane is an electric source for the
IIB RR 8-form C8 and hence a magnetic source for its magnetic dual, the axion C0. Together with
the dilaton φ , C0 appears in the complex axio-dilaton field

τ =C0 + ie−φ , gs = eφ . (2.5)

2The factor of 1
2 in front of (2.4) is needed because we are working in the democratic formulation where the kinetic

terms for the RR fields are normalised as in (2.1). The overall minus sign is chosen such that the 7-brane couples to the
complex field τ =C0 + ie−φ rather than to −C0 + ie−φ . The CS-action of a D3-brane has a relative overall minus sign
with respect to that of the D7-brane.
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With the above conventions, the Bianchi identity for F9 in the presence of a D7-brane along R1,7 ⊂
R1,9 ' R1,7×C implies ∫

S1
∗F9 =

∫
S1

dC0 = 1 . (2.6)

Here S1 is a circle around the 7-brane in the normal space C. The location of the D7-brane in the
normal C-plane with complex coordinate z be at z = z0. As a non-trivial input to determine the
behaviour of τ(z) in the presence of such a magnetic source, we need use the fact that a D7-brane
in flat space preserves sixteen supercharges, and that supersymmetry requires C0 to appear holo-
morphically in the complex field τ such that ∂̄ τ = 0 away from the source [29]. This determines

τ(z) =
1

2πi
ln(z− z0)+(terms regular at z0) . (2.7)

The logarithmic branch-cut induces a monodromy

τ → τ +1 (2.8)

as we encircle z0.
To understand the meaning of the monodromic behaviour, we need to recall that the Type

IIB supergravity action is invariant under an SL(2,R) duality group, whose SL(2,Z) subgroup is
conjectured to be preserved in the full non-perturbative Type IIB string theory. This duality group
is manifest if we write the Type IIB effective action in a slightly different form, abandoning the
democratic formulation (2.1) with both electric fields and their magnetic duals appearing in favour
of the (Einstein frame) action

1
2π

SIIB =
∫

d10x
√
−g
(

R−
∂µτ∂ µ τ̄

2(Imτ)2 −
1
2
|G3|2

Imτ
− 1

4
|F5|2

)
+

1
4i

∫ 1
Imτ

C4 +G3∧ Ḡ3 (2.9)

with G3 = dC2 − τdB2 and |Fp|2 = 1
p! Fµ1...µpFµ1...µp . This action is indeed invariant under an

SL(2,Z) transformation [4] 3

τ → aτ +b
cτ +d

,

(
C2

B2

)
→M

(
C2

B2

)
, M =

(
a b
c d

)
∈ SL(2,Z) (2.10)

C4 → C4, gµν → gµν . (2.11)

The monodromy (2.8) in the presence of one D7-brane can therefore be made sense of by
interpreting it as an SL(2,Z) monodromy with

M[1,0] =

(
1 1
0 1

)
. (2.12)

Consistency requires that this monodromy acts not only on τ , but also on B2 and C2 as dictated by
(2.10).

3The action (2.9) is even invariant under a corresponding SL(2,R) transformation, and the breaking to SL(2,Z) is
due to D(−1)-instanton effects, which involve terms of the form e2πiτ .
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There are different types of 7-branes which induce a more general SL(2,Z) monodromy on
the background. Let us call the D7-brane with Chern-Simons couplings (2.4) a [1,0] brane. By
definition, it is the object on which a fundamental string, called (1,0) string, ends. In this notation,
a D1-brane is a (0,1) string, and a (p,q) string is a BPS bound state of p fundamental strings and
q D1-strings, which exists as a supersymmetric bound state for p and q coprime [30]. A (p,q)
string therefore couples to the combination pB2 +qC2. If we assemble C2 and B2 into a row vector
Φa as in (2.9), then it is natural to associate to a (p,q) string a column vector Qa = (q, p) such
that the coupling is described by QaΦa = εabQbΦa. Here we have used the SL(2,Z) invariant 2-
tensor εab (with ε12 =−1 =−ε21) to raise and lower SL(2,Z) indices. This coupling is manifestly
SL(2,Z) invariant if the objects Qa and Φa (with indices up) both transform as SL(2,Z) vectors by
multiplication from the left. To summarize, a (p,q) string is associated with the SL(2,Z) charge
vector

Qa = (q, p) = εabQb, Qb =

(
p
−q

)
. (2.13)

A (p,q) string ends, by definition, on a [p,q] 7-brane. The monodromy induced by a more
general [p,q] 7-brane can be derived by noting that a (p,q) string can be reached from a (1,0)
string by acting on the corresponding SL(2,Z) doublet vector Qa with an SL(2,Z) matrix g[p,q],(

p
−q

)
= g[p,q]

(
1
0

)
g[p,q] =

(
p r
−q s

)
. (2.14)

Here r,s are not determined uniquely by the requirement that g[p,q] ∈ SL(2,Z) [31], but this am-
biguity drops out of all physical quantities. The SL(2,Z) monodromy induced by a general [p,q]
7-brane is then given by

M[p,q] = g[p,q]M[1,0]g
−1
[p,q] =

(
1+ pq p2

−q2 1− pq

)
. (2.15)

Consistently, a (p,q) string is invariant under the monodromy induced by a [p,q] 7-brane. It is
important to keep in mind, when one compares with results in the literature, that the specific form
of the monodromy matrices depends on the chosen definition of the charge vectors, which in our
case is as in (2.13).

Note that every [p,q] 7-brane can be transformed into a [1,0] 7-brane by the SL(2,Z) trans-
formation inverse to (2.15). In this sense, locally every single 7-brane can be thought of as a D7-
brane, but two 7-branes of different [p,q] type can in general not be simultaneously transformed
into a [1,0] brane. If a (p,q) string undergoes a non-trivial monodromy around a [p′,q′] 7-brane,
the [p,q] and [p′,q′] brane are said to be mutually non-local. This is the case if and only if their
monodromy matrices do not commute. Two such mutually non-local 7-branes in flat space can
in general not be brought on top of each other in a supersymmetric way, but certain bound states
exist and realise in particular the simply laced ADE Lie groups in flat space. A basis of 7-branes
sufficient to generate all ADE groups in eight dimensions (i.e. along the 7-branes) can be taken to
be [32] (modulo some arbitrariness due to an overall SL(2,Z) transformation and changes in the
conventions)

A : [1,0] , B : [3,1] , C : [1,1] , (2.16)

6



P
o
S
(
T
A
S
I
2
0
1
7
)
0
1
6

F-theory Timo Weigand

whose monodromies can be read off from (2.15). With this notation, the ADE groups are obtained
from 7-brane stacks of the following types [33]:

SU(N) : AN SO(2N) : ANBC , Ek : Ak−1BC2 , k = 6,7,8 . (2.17)

The monodromies are obtained by multiplying the monodromies of the individual 7-branes in the
given order. As will be elaborated on more below, this identifies a BC bound state, whose mono-
dromy is

MBC = M[3,1]M[1,1] =

(
−1 4
0 −1

)
, (2.18)

with the perturbative O7-plane [32].4 The exceptional brane stacks were first discussed in [35].
Much more information on the rules which allow us to combine mutually non-local 7-branes and
the nature of (p,q) strings furnishing the adjoint representation of the associated Lie algebras can
be found in [33].5

Out of the many interesting properties of these [p,q] brane systems let us merely stress the
following: The monodromy around an A4BC brane stack, corresponding to 4 D7-branes on top of an
O7-plane, is easily seen to be M = diag(−1,−1). This generates a Z2 subgroup of SL(2,Z) which
reverses the orientation of a (1,0) string and correspondingly sends (C2,B2)

T → (−C2,−B2)
T .

This is nothing but the Z2 involution of a perturbative Type IIB orientifold. The charge and tension
of the 4 D7 (i.e. A-type) branes is locally cancelled by the negative charge and tension of the O7-
plane system corresponding to the BC stack. Therefore C0 does not shift, and this action leaves the
axio-dilaton τ invariant. On the other hand, the monodromy matrices induced by brane stacks of
the form E6, E7, E8 give rise to SL(2,Z) monodromies of the following form:

SO(8) : M =

(
−1 0
0 −1

)
〈M〉= Z2, τ0 = arbitrary (2.19)

E6 : M =

(
−1 −1
1 0

)
〈M〉= Z3, τ0 = eπi/3 (2.20)

E7 : M =

(
0 −1
1 0

)
〈M〉= Z4, τ0 = e2πi/4 = i (2.21)

E8 : M =

(
1 −1
1 0

)
〈M〉= Z6, τ0 = eπi/3 . (2.22)

Here 〈M〉 denotes the finite order SL(2,Z) subgroup generated by M and τ0 is the value of the axio-
dilaton fixed under the associated SL(2,Z) transformation (2.10). The theory around an exceptional
brane stack can hence locally be described as a non-perturbative generalisation of an orientifold
[36]. The gauge coupling is in the truly non-perturbative regime where |τ| = 1; from a Type IIB
perspective, all D(−1) instanton effects contribute without any suppression.

4More precisely, this object is the O7+-plane; for an F-theory interpretation of other types of O7-planes see [34]
and references therein.

5Our conventions differ slightly from [33], and agree with those used in section 18.6 of [28], to which we also refer
for more details.
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2.2 Elliptic curves, SL(2,Z) bundle and elliptic fibrations

The most important conclusion from the previous section is that due to the backreaction the
axio-dilaton varies in the directions normal to a 7-brane as in the local expression (2.7). This forces
us to study compactifications with non-trivial field profiles, which is the hallmark of F-theory [1].6

As we will now review, the variation of the axio-dilaton gives rise, in a most natural way, to an
elliptic fibration over the physical spacetime.

Let us structure the discussion in two parts. First we will give a geometric interpretation to
the supergravity field τ as the complex structure of an elliptic curve. Second, we will turn in more
detail to the variation of τ over spacetime to pass from elliptic curves to elliptic fibrations.

Elliptic curves and SL(2,Z)

Formally, the transformation (2.10) of the Type IIB field τ under an SL(2,Z) duality trans-
formation is identical to the behaviour of the complex structure of an elliptic curve Eτ under a
modular transformation. At this stage, this is merely a mathematical analogy, but we will see in
section 2.3 that this identification is deeply rooted in duality with M-theory [4].

An elliptic curve Eτ with complex structure τ is a torus with a marked point called the origin
O . It can be represented as the lattice C/Λ,

Eτ = C/Λ = {w ∈ C : w' w+(n+mτ)} , n,m ∈ Z, τ = τ1 + iτ2 ∈H . (2.23)

The origin O of Eτ is identified with the point w = 0, and the complex structure parameter τ

takes values in the complex upper half-plane H. A transformation τ → aτ+b
cτ+d with ad−bc = 1 and

a,b,c,d ∈ Z leaves the lattice Λ and hence the shape of the torus invariant. This transformation of
course defines an SL(2,Z) matrix M as in (2.10). More information on this modular group action
on the torus can be found e.g. in section 6.2 of [28]. The message to take away from this is that we
can think of the Type IIB supergravity field τ as representing the shape modulus of an elliptic curve
Eτ , and identify an SL(2,Z) duality transformation (as far as its effect on the field τ is concerned)
by a modular transformation of Eτ .

There are many other ways to represent an elliptic curve, for instance as a hypersurface in a
suitable complex space of complex dimension two or as a complete intersection within a higher-
dimensional ambient space. A representation which will play a particularly important role for
reasons explained later is the so-called Weierstrass form. In Weierstrass form, the elliptic cure
Eτ = C/Λ is described as the vanishing locus of the polynomial

PW := y2− (x3 + f xz4 +gz6) (2.24)

within P231. Here [x : y : z] are homogeneous coordinates of P231, defined as the space C3 \
{(0,0,0)} modulo the equivalence relation

(x,y,z)' (λ 2x,λ 3y,λ z), λ ∈ C∗ . (2.25)

6Models with constant τ are very special, but they do exist. For instance, there exist globally consistent compac-
tifications to eight dimensions involving only brane stacks of the type (2.19). These are globally of (non-perturbative)
orientifold form and τ is constant [36].
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Many details on elliptic curves can be found in standard works in the mathematics literature, for
instance in the review [37] and references therein. In the sequel we collect some facts of particular
relevance for us without proof.

The map from C/Λ to the Weierstrass model is as follows:

• There exists a unique meromorphic function ℘(w;τ) doubly periodic on C/Λ with double
poles at the lattice points,

℘(w;τ) :=
1

w2 + ∑
(m,n)∈Z 6=(0,0)

(
1

(w+m+nτ)2)
− 1

(m+nτ)2

)
. (2.26)

The fact that it is doubly period means that it has the property

℘(w;τ) =℘(w+ τ;τ) . (2.27)

It satisfies the differential equation

(℘(w;τ)′)2 = 4℘(w;τ)3−g2(τ)℘(w;τ)−g3(τ) (2.28)

where g2 and g3 are the Eisenstein series

g2(τ) = 60 ∑
(m,n)∈Z6=(0,0)

(m+nτ)−4 (2.29)

g3(τ) = 140 ∑
(m,n)∈Z 6=(0,0)

(m+nτ)−6 . (2.30)

• We can now consider the map

C → P231

w 7→

{
[42/3℘(w;τ) : 2℘(w;τ)′ : 1] w /∈ Λ

[1 : 1 : 0] w ∈ Λ
(2.31)

and define

f (τ) :=−41/3g2(τ), g(τ) :=−4g3(τ) . (2.32)

Then the identity (2.28) translates into the Weierstrass equation

y2− (x3 + f xz4 +gz6) = 0 . (2.33)

• Conversely, given a Weierstrass model, we can deduce τ from f and g via the Jacobi j-
function

j(τ) = 4
243 f (τ)3

∆
, ∆ = 4 f 3(τ)+27g2(τ) . (2.34)

This function is a bijection from the fundamental domain of SL(2,Z) to the upper half plane
and enjoys the expansion

j(τ) = e−2πiτ +744+196884e2πiτ + . . . . (2.35)
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Note that τ can also be expressed as the ratio

τ =

∮
B Ω1∮
A Ω1

, (2.36)

where

Ω1 =
dx
y

=
dx√

x3 + f xz4 +gz6
(2.37)

represents the holomorphic 1-form (which is unique up to rescaling) on the elliptic curve
and A and B denote a symplectic basis of 1-cycles on the elliptic curve. These two one-
cycles transform as an SL(2,Z) doublet, i.e. the transformation τ→ aτ+b

cτ+d corresponds to the
transformation (

B
A

)
=

(
a b
c d

)(
B
A

)
. (2.38)

• Importantly, under an SL(2,Z) transformation τ → aτ+b
cτ+d , the functions f and g transform as

f → (cτ +d)4 f

g→ (cτ +d)6g .
(2.39)

To summarize this first part of the discussion, specifying the value of the axio-dilaton τ of
a Type IIB background is equivalent to specifying the complex structure of an elliptic curve Eτ ,
which in turn is equivalent to specifying the complex parameters f and g of a Weierstrass model.
If we consider a background with varying axio-dilaton, this correspondence must be applied point-
wise and hence defines a family of elliptic curves with varying complex structure. This is what will
concern us next.

Varying τ , SL(2,Z) bundle and elliptic fibrations

Consider a Type IIB compactification on a spacetime of the form

M 1,9 = R1,9−2n×Bn , (2.40)

where Bn is a compact manifold of complex dimension n. Our background includes spacetime
filling 7-branes wrapping a suitable cycle Σn−1 ⊂ Bn of complex codimension one. The 7-brane
worldvolume therefore takes the form

7−brane : R1,9−2n×Σn−1 . (2.41)

We are interested in compactifications which preserve the maximal possible amount of supersym-
metry in the respective dimensions. On general grounds this requires that Bn be a complex Kähler
manifold and that the 7-brane cycle Σn−1 be a holomorphic cycle. Furthermore, as noted already,
τ must vary in a holomorphic way, i.e. ∂̄ τ = 0 away from the 7-brane sources. The Einstein equa-
tions relate the curvature of Bn to the variation of the dilaton φ , which appears in the imaginary
part of τ , as

Rab̄ = ∇a∇b̄φ 6= 0 . (2.42)
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The last inequality holds in the presence of 7-branes. In particular, the compactification space Bn

cannot be Calabi-Yau. This is a consequence of the gravitational backreaction of the 7-branes.
The holomorphic variation of τ defines a holomorphic line bundle L over Bn. Let us sketch

this construction, following the lucid presentation in [38] (see also [39] for related aspects).

• Given the holomorphically varying field τ on Bn we can define a 1-form

A =
i
2

d(τ + τ̄)

τ− τ̄
=

i
2
(∂̄ φ −∂φ) . (2.43)

Since τ transforms under an SL(2,Z) transformation as in (2.10), also the 1-form A trans-
forms accordingly. By explicit computation one verifies that A transforms in the correct way
such that one can identify it with the connection of a complex line bundle L over Bn with
transition function exp(iarg(cτ +d)). This means the following: As we encircle a 7-brane in
its normal space, the Type IIB supergravity fields transform in a manner dictated by the type
of the 7-brane. As a result we cannot define the Type IIB fields as global functions on Bn, but
only as local functions. I.e. we can cover Bn with open neighborhoods Uα such that the Type
IIB supergravity fields in each Uα are in a certain SL(2,Z) frame (they are locally defined
functions on Uα ). The fields in different open patches differ by an SL(2,Z) transformation.
To take this into account, in the overlap Uα ∩Uβ we transform the fields from one frame to
another by an SL(2,Z) transformation (2.10) with matrix Mαβ , which is determined by the
7-brane background. Let us parametrise this matrix as in (2.10) as

Mαβ =

(
aαβ bαβ

cαβ dαβ

)
. (2.44)

On the other hand, a complex line bundle on Bn is defined by specifying its complex transition
functions for the transformation t̂αβ on each overlap Uα ∩Uβ such that a section ĥ of the line
bundle transforms as

ĥ|Uα
= t̂αβ ĥ|Uβ

. (2.45)

If we parametrise the SL(2,Z) transformation on the overlap Uα ∩Uβ by the above matrix
Mαβ , then we can define a complex line bundle L by setting

t̂αβ = exp(iarg(cαβ τ +dαβ )) . (2.46)

One can check that a connection of this complex line bundle L transforms in the same way
as the 1-form A transforms under an SL(2,Z) duality transformation on τ induced by Mαβ .

• To every complex line bundle with a connection whose curvature is of (1,1) type, one can
associate a holomorphic line bundle (see e.g. [40], p. 454ff) with the properties that it allows
for holomorphic sections transforming with holomorphic transition functions. Since dA is a
(1,1) form, our background therefore defines a holomorphic line bundle L with transition
function cαβ τ + dαβ : If ĥ is a section of L, i.e. it transforms as in (2.45) with transition
function (2.46), then

h := Im(τ)−1/2ĥ (2.47)

11
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transforms from patch to patch as

h|Uα
= tαβ h|Uβ

, hαβ = cαβ τ +dαβ . (2.48)

This transition function is indeed holomorphic.

Furthermore, the Einstein equation (2.42) can be shown to be equivalent to the relation [38]

c1(Bn) = c1(L ) , (2.49)

where c1(L ) = 1
2π

F ∈ H1,1(Bn) is the first Chern class of L .
The crucial insight is now that the line bundle L over Bn together with a choice of a section

of L 4 and of L 6 uniquely defines an elliptic fibration over Bn with varying elliptic parameter
τ . Indeed, (2.48) rings a bell - it is (up to the powers) the transformation behaviour (2.39) of the
Weierstrass parameters f and g of a Weierstrass model (2.24) under an SL(2,Z) transformation.
To construct the elliptic fibration associated with L , we promote the coordinates [x : y : z] of the
Weierstrass model as well as the complex parameters f and g to sections of a suitable line bundle
over Bn such that Eτ varies over Bn to form an elliptic fibration over Bn. Comparison with the
transformation behaviour (2.48) for a section of the line bundle L identifies f and g as holomorphic
sections of L 4 and L 6, i.e.

f ∈ Γ(Bn,L
4), g ∈ Γ(Bn,L

6) . (2.50)

Let us furthermore make the ansatz x ∈ Γ(Bn,Lx), y ∈ Γ(Bn,Ly), z ∈ Γ(Bn,Lz) with Lx,y,z holo-
morphic line bundles over Bn. Then consistency, i.e. homogeneity, of the Weierstrass equation PW

in (2.24) requires

Lx = L 2⊗L2
z

Ly = L 3⊗L3
z

Lz = O⊗Lz .

(2.51)

In this sense a choice of f and g as in (2.50) and (2.51) defines an elliptic fibration

π : Eτ → Yn+1

↓
Bn (2.52)

We have shown that the elliptic fibration Yn+1 is in one-to-one correspondence with a holomorphic
SL(2,Z) bundle L over Bn together with a choice of sections of L 4 and L 6. By standard methods
in algebraic geometry one shows that for general duality bundle L , its first Chern class is related
to the curvature on Bn via

c1(Yn+1) = c1(Bn)− c1(L ) . (2.53)

Since supersymmetry and the Einstein equations require (2.49) this implies that Yn+1 in F-theory is
Calabi-Yau,

c1(Yn+1) = 0 . (2.54)
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To sketch the proof of (2.53) note that Yn+1 is a hypersurface PW = 0 in a P231-bundle over Bn given
by

P231(E ) = P231(L
2⊕L 3⊕O) . (2.55)

The three summands are associated with the homogenous fiber ambient coordinates [x : y : z], which
transform as the sections (2.51), and the notation means that we have to take the projectivisation of
this bundle. The total Chern class of this bundle is

c(P231(E )) =
(
(1+ c1(L

2)+ c1(L2
z ))(1+ c1(L

3)+ c1(L3
z ))(1+ c1(Lz))

)
c(B) , (2.56)

and by the adjunction formula, the total Chern class of the hypersurface PW = 0 therein follows
from this as

c(Yn+1) =
c(P231(E ))

1+6(c1(Lz)+ c1(L ))
. (2.57)

In particular,

c1(Yn+1) = c1(P231(E ))− c1([PW ]) = (2.58)

= c1(Bn)+6c1(Lz)+5c1(L )−6(c1(Lz)+ c1(L )) (2.59)

= c1(Bn)− c1(L ) . (2.60)

The F-theory paradigm consists in using this one-to-one correspondence between supergrav-
ity backgrounds with 7-branes and Calabi-Yau elliptic fibrations in order to study the first using
insights on the latter. Remarkably, the F-theory geometry automatically sums up the effect of
D(−1) instantons [41]. We will come back to this in section 10.2, where we will point out that the
holomprphically varying profile of τ over the base Bn as determined by the elliptic fibration gives
the full quantum corrected answer e.g. for the gauge coupling on a D3-brane probing this geometry.
This can be checked in particular in 8d F-theory compactifications on K3, where the profile of τ on
the base P1 can, in favorable circumstances, be explicitly extracted from the fibration.

The idea of reading off the physics of 7-branes from the geometry of elliptic fibrations becomes
particularly powerful if we use duality with M-theory as will be introduced in the next section.

2.3 From M-theory to elliptic fibrations

The duality between Type IIB string theory compactified on a circle and M-theory on a torus
provides a useful viewpoint on the origin and meaning of the elliptic fibration [4]. To appreciate
this, consider M-theory in its long-wavelength limit of 11d supergravity with bosonic field content
the metric gMN and the 3-form gauge potential C3. The theory is invariant under a 3-form gauge
transformation C3→C3 +dΛ2 which leaves the field strength G4 = dC3 unchanged. The bosonic
part of the action is - up to the most relevant order in the 11d Planck length `11 -

S =
2π

`9
11

(∫
R1,10

√
−gR− 1

2

∫
R1,10

dC3∧∗dC3−
1
6

∫
R1,10

C3∧G4∧G4 + `6
11

∫
R1,10

C3∧ I8

)
,(2.61)

with the topological higher curvature term [42]

I8 =
1

(2π)4

(
− 1

768
(trR2)2 +

1
192

trR4
)
. (2.62)
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The gauge potential C3 couples electrically to M2-branes via

SM2 =
2π

`3
11

∫
M2

√
−g+

2π

`3
11

∫
M2

C3 . (2.63)

The magnetically dual potential C6 couples electrically to M5-branes.
The duality with Type IIB theory involves compactifying M-theory on R1,8×T 2 with

T 2 = S1
A×S1

B. (2.64)

In very broad brushes, the picture is as follows: First, we interpret the circle S1
A with coordinate x

as the M-theory circle with radius RA. As RA→ 0 we approach Type IIA string theory on R1,8×S1
B.

In particular the metric components gx∗ become the RR field C1 of Type IIA supergravity, while gxx

is related to the Type IIA dilaton. T-duality along S1
B with coordinate y takes us to Type IIB string

theory on R1,8× S̃1
B. The dual circle S̃1

B with dual coordinate ỹ has radius

R̃B =
`2

s

RB
(2.65)

in terms of the string length `s. In the limit R̃B→∞ we recover Type IIB string theory on R1,9. The
components (C1)y of the Type IIA 1-form dualize to the Type IIB axion C0.

In all we arrive at the duality

M− theory on R1,8× (S1
A×S1

B)|RA,RB→0 ' Type IIB theory on R1,9 . (2.66)

In particular the limit requires that V := vol(T 2)→ 0 with T 2 = S1
A×S1

B. A very careful tracing of
the effective action and the metric in M-theory and Type IIB through the limit can be found on p.
23-25 of [26] and reveals, in more detail, a duality between the two theories as follows:

M-theory on R1,8×T 2 Type IIB on R1,8× S̃1
B

• T 2 complex structure τ = τ1 + iτ2 • axio-dilaton τ =C0 + ie−φ

• T 2 volume V • Einstein frame metric

ds2
IIB = ds2

R1,8 +
`4

s
V dỹ2, ỹ' ỹ+1

In particular, the limit V → 0 therefore restores full ten-dimensional Poincaré invariance of the dual
Type IIB theory.

This duality explains why it is no accident that the Type IIB duality group acts on the axio-
dilaton in the same way as the modular parameter τ of an elliptic curve is transformed by a modular
SL(2,Z) transformation [4]. In the dual M-theory, the elliptic curve Eτ introduced in section 2.2
merely acts as a book-keeping device for the axio-dilaton is part of the physical spacetime.

The duality can be promoted to a fiberwise duality by considering M-theory on R1,8−2n×Yn+1,
where Yn+1 is a torus fibration over Bn [1]. Supersymmetry requires Yn+1 to be Calabi-Yau, which
agrees with our findings around (2.53), albeit in a more direct way. Applying the duality fiberwise
implies that M-theory on R1,8−2n ×Yn+1 is dual to Type IIB string theory compactified on the
background locally of the form Bn× S̃1

B with Einstein frame metric

ds2 = ds2
R1,8−2n +ds2

Bn
+

`4
s

V
dỹ2 . (2.67)
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fibration base 7-brane on Bn F-theory M-theory

Y2 = K3 B1 = P1 point 8d N = 1 (16) 7d N = 2 (16)
Y3 B2 complex curve 6d N = (1,0) (8) 5d N = 2 (8)
Y4 B3 complex surface 4d N = 1 (4) 3d N = 2 (8)
Y5 B4 complex 3-fold 2d N = (2,0) (2) 1d N = 2 supermechanics (2)

Table 2.1: F- and M-theory in various dimensions. The number in brackets in column 4 and 5
gives the number of real supercharges.

As before ỹ' ỹ+1 is the periodic coordinate on S̃1
B, and it is in the limit V → 0 that we recover Type

IIB string theory compactified on Bn. The coordinate ỹ then becomes part of the uncompactified
spacetime on the Type IIB side. Note furthermore that in F-theory, the volume V is not a dynamical
modulus because we are considering the limit V → 0. Only the complex structure τ is a dynamical
modulus in the F-theory limit.

Equivalently, the idea of F/M-theory duality can be expressed like this: The effective action
in R1,8−2n of M-theory compactified on Yn+1 with fiber volume V is dual to the circle reduction of
the effective action of Type IIB theory on Bn on a circle S̃1

B with radius R̃B ∼ 1
V . The F-theory limit

V → 0 corresponds to the decompactification limit of the Type IIB theory. This is depicted in the
following diagram:

M-theory on Yn+1
Vol(Eτ )→0−−−−−−−→ Type IIB on Bn

↓ ↓

Eff. action in R1,8−2n
RA∼ 1

R̃B
→0

−−−−−−−→ Eff. action in R1,9−2n

(2.68)

We summarize, in table 2.1, the different possibilities of compactifying F-theory and its dual
M-theory to various dimensions, and also indicate the amount of supersymmetry preserved.

3. F-theory on a smooth elliptic fibration

After this general introduction to F-theory we now begin taking a closer look at the geometry
of an elliptic fibration and its physics interpretation. In this section we focus on smooth elliptic
fibrations as described by a non-singular Weierstrass model. We will first establish some of the
geometric properties of such smooth elliptic fibrations in section 3.1 and then explain the import-
ance of the degenerate fibers for the study of 7-branes in section 3.2. The discriminant locus over
which these fibers occur will be identified, in section 3.3, with the location of the 7-branes. This is
in agreement with the perturbative limit briefly discussed in the same section. We develop further
the duality with M-theory in section 3.4.

3.1 The smooth Weierstrass model

An elliptic fibration is a torus fibration

π : Eτ → Yn+1
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↓
Bn (3.1)

with a rational section s0, i.e. a meromorphic map from the base to the fiber,

s0 : Bn→ Eτ

b 7→ s0(b) .
(3.2)

Meromorphic here means that s0 is a rational function in the function field of the base Bn. We
furthermore require that the map π be equi-dimensional or flat, i.e. the pre image π−1(b) is of
complex dimension one for each point b ∈ Bn.

If no rational section exists, (3.1) defines merely a genus-one or torus fibration, as opposed to
an elliptic fibration. For now we assume the existence of a section, and discuss more general torus
fibrations in section 8.2.

We have already noted that there are many ways to model the torus fiber as a hypersurface or
complete intersection (or more general constructions) in a suitable fiber ambient space. Of special
importance, however, is the description of an elliptic fibration as a Weierstrass model. This is
due to the general fact that every elliptic fibration is birationally equivalent (i.e. isomorphic up to
higher codimension loci) to a Weierstrass model, which has been introduced in section 2.2 as the
hypersurface

PW := y2− (x3 + f x z4 +gz6) = 0⊂ P231(E )≡ Xn+2 (3.3)

with f ∈ Γ(Bn,L 4), g ∈ Γ(Bn,L 6) and the fiber ambient space coordinates x, y, z transforming
as the sections (2.51). Note that x, y and z are not allowed to vanish simultaneously because
they are locally coordinates on the fiber ambient space space P231 = C3 \ {(0,0,0)} modulo the
projective identification (2.25). The total space of the bundle P231(E ) introduced in (2.55) is a
complex (n+ 2)-fold which we will oftentimes denote as the ambient space Xn+2 of Yn+1. Recall
that Yn+1 is Calabi-Yau if and only if c1(L ) = c1(Bn), i.e. the line bundle L coincides with the
anti-canonical bundle of Bn. Oftentimes we will use the same symbol for the anti-canonical bundle
of the base and its associated (first Chern) class, e.g. when we write c1(L ) = K̄Bn . While we
can without loss of generality focus on Weierstrass models to analyze elliptic fibrations, we must
keep in mind that other, birationally equivalent models may differ in interesting ways as far as
the structure of the fiber in higher codimension is concerned. In particular the Weierstrass model
may not always be the most practical model for the elliptic fibration. Early works studying non-
Weierstrass representations include [43,44], and more generally such models will play a major role
in section 7.

In the sequel we will always take Yn+1 to be Calabi-Yau. This requires Bn to be a Kähler
manifold with

hi,0(Bn) = 0 ∀ i = 1, . . . ,n . (3.4)

Otherwise the corresponding cohomology groups would pull back to the full fibration, in disagree-
ment with the Calabi-Yau property. Indeed the latter requires that hi,0(Yn+1) = 0 for i = 1, . . . ,n.
Unless stated otherwise we take Bn to be smooth as this is the physical compactification space of
the non-perturbative Type IIB string theory we are studying in the language of F-theory.

16



P
o
S
(
T
A
S
I
2
0
1
7
)
0
1
6

F-theory Timo Weigand

A Weierstrass model possesses a holomorphic section, i.e. for all values of f and g there
exists a rational point in the fiber over any point b ∈ Bn whose coordinates [x : y : z] are described
by a holomorphic function of the base coordinates. In the Weierstrass model this point is cut
out from the fiber by setting z = 0 in the Weierstrass equation and is hence given by the point
[x : y : z] = [1 : 1 : 0] on PW = 0. Indeed if z = 0 we can use the P231 scaling relation to set x = 1,
and the Weierstrass equation reduces to y2 = 1 with solution y =±1. We still have the freedom to
rescale the coordinates with λ = −1 without affecting the choice x = 1 and can hence set y = 1.
This is the single point z = 0 in the Weierstrass model, and the holomorphic section is given by the
holomorphic map

s0 : b 7→ [1 : 1 : 0] . (3.5)

The divisor

S0 : {z = 0} (3.6)

therefore intersects the fiber over each b∈ Bn in this one point s0(b). Since the defining equation of
the section is a holomorphic, rather than a meromorphic, function, the section is called holomorphic
as opposed to rational.7 The meaning of the point defined by the zero-section as the zero element
in the additive group law on the elliptic fiber will be discussed in more detail in section 7.1.

As summarized in Appendix B, we denote by (3.6) both the concrete holomorphic cycle on
Yn+1 corresponding to the vanishing locus of the coordinate z and its divisor class. Unless stated
otherwise, we will be working on simply-connected spaces which are smooth projective variet-
ies; on such a space X , the divisor class group coincides with the Néron-Severi group NS(X), as
reviewed in appendix A. In this sense we take S0 to be an element in NS(X). Its Poincaré dual
cohomology class in H1,1

Z (Yn+1) := H1,1(Yn+1)∩H2(Yn+1,Z) will usually be denoted by [S0]. On a
smooth, simply-connected complex algebraic variety X there is essentially no difference between
H1,1
Z (X) and NS(X) (see again Appendix A). In particular,

rk(NS(Yn+1)) = h1,1(Yn+1) . (3.7)

Let us now restrict to smooth elliptic fibrations of complex dimension 3 or higher. On the
smooth Weierstrass model Yn+1, n ≥ 2, there are two types of divisors: The section S0 and the
vertical divisors, which are the pullback of divisors on the base Bn. We will use the following
notation for the

generators of NS(Bn) : Db
α , α = 1, . . . ,h1,1(Bn) . (3.8)

The pre-image π−1(Db
α) of such a divisor with respect to the projection defines a divisor on Yn+1;

it is itself elliptically fibered, with base Db
α . Then the divisor group (or equivalently H1,1

Z (Yn+1)) is
generated by

NS(Yn+1) = 〈S0,π
−1(Db

α)〉 (3.9)

7The difference between a holomorphic and a rational section only appears in higher codimension, where the mero-
morphic function defining the rational section hits a pole. Given an elliptic fibration with merely a rational section, it is
therefore still birational to a Weierstrass model even though the section of the latter is holomorphic.
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and its rank equals

h2(Yn+1) = h1,1(Yn+1) = 1+h1,1(Bn) . (3.10)

This is a special case of the Shioda-Tate-Wazir theorem, which we will encounter in more generality
in later sections.8

The cohomological intersection ring on Yn+1 (see Appendix B for our notation) has the struc-
ture

[S0] ·π∗[Db
α1
] · . . . ·π∗[Db

αn
] = [Db

α1
] ·Bn . . . ·Bn [D

b
αn
] (3.11)

[S0] · [S0] ·π∗[Db
α1
] · . . . ·π∗[Db

αn−1
] = −c1(Bn) ·Bn [D

b
α1
] ·Bn . . . ·Bn [D

b
αn−1

] (3.12)

π
∗[Db

α1
] · . . . ·π∗[Db

αn+1
] = 0 . (3.13)

The first equation holds because the section S0 defines an embedding of the base Bn as a holo-
morphic n-cycle of Yn+1. As the notation suggests, the intersection product ” ·Bn ” is to be taken on
Bn. For a top-form this equals integration over the total space. Equivalently, the relation follows
from the fact that S0, being a section, intersects the generic fiber in one point. (3.13) holds for
dimensional reasons because of verticality of the pullback divisors. Concerning (3.12), note that
since S0 is a holomorphic, as opposed to merely a rational, section, it satisfies in fact

[S0] · [S0] =−[S0] · c1(Bn) (3.14)

in the cohomology ring of Yn+1. This can be computed as follows: In fiber ambient space bundle
Xn+2 = P231(E ) into which Yn+1 is embedded, we have the relation

0 = [x] ·Xn+2 [y] ·Xn+2 [z] = c1(Lz) ·Xn+2 c1(L3
z ⊗L 3) ·Xn+2 c1(L2

z ⊗L 2) . (3.15)

This is a consequence of the fact that the coordinates x, y, z (which transform as the sections (2.51))
are not allowed to vanish simultaneously on the fiber ambient space. Since the Weierstrass equation
is a section of L6

z ⊗L 6, we can interpret one of the last two factors as enforcing the restriction of
the ambient space intersection numbers to Yn+1. On the elliptic fibration, we hence obtain

c1(Lz) ·Yn+1 (c1(Lz)+ c1(L )) = 0 . (3.16)

But c1(Lz) is the class of the zero-section S0 cut out by z = 0, and due to the Calabi-Yau condition
c1(L ) = c1(Bn), which proves the claim.

Having described the intersection structure of the divisors, let us briefly remark on the types
of curves on Yn+1: Apart from the generic elliptic fiber Eτ , the independent curve classes of the
smooth Weierstrass model Yn+1 are the independent curve classes on the base Bn. Both fiber and
base curves can be written as intersections of the divisors S0 and π−1(Db

α): For any collection of n
base divisors with intersection number k on Bn, i.e. [Db

α1
] ·Bn . . . ·Bn [D

b
αn
] = k, we have on Yn+1

π
∗[Db

α1
] · . . . ·π∗[Db

αn
] = k [Eτ ] . (3.17)

8The most general form of this equation is (7.6). This version also holds for n = 1, i.e. for elliptic K3s. The point is
that on a K3 surface, extra sections do not induce singularities as these occur in codimension two on the base and hence
on a smooth Weierstrass model of complex dimension 2, (3.10) need not hold.
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Furthermore, if n−1 divisors intersect on the base in a curve C, [Db
α1
] ·Bn . . . ·Bn [D

b
αn−1

] = [C], then
on Yn+1 the corresponding base curve is

[S0] ·π∗[Db
α1
] · . . . ·π∗[Db

αn−1
] = [Cbase] ∈ H2(Ŷn+1) . (3.18)

We call it a base curve because it has the property that its intersection with a pullback divisor is
non-zero. Indeed, the intersection numbers (3.11) - (3.13), together with the fact that a section
intersects the fiber in one point, imply that

[S0] · [Eτ ] = 1, π
∗[Db

β
] · [Eτ ] = 0

[S0] · [Cbase] =−c1(Bn) ·Bn [C], π
∗[Db

β
] · [Cbase] = [Db

β
] ·Bn [C] .

(3.19)

3.2 Singular fibers on the smooth Weierstrass model

Of special importance for us will be the singular fibers of the elliptic fibration because these
contain information about the location and the [p,q] type of the 7-branes on the base Bn. The fiber
Eτ of the Weierstrass model becomes singular whenever the discriminant

∆ = 4 f 3 +27g2 (3.20)

vanishes. To see this, note that a hypersurface P = 0 is singular whenever its gradient vanishes,
i.e. whenever dP = 0 along with P = 0. The singularity cannot sit at z = 0 since in this case the
Weierstrass equation reduces to y2 = x3. The only singularity of this equation occurs at x = y = 0,
but the point x = y = z = 0 is not in P231 and hence not on the elliptic curve.9 We can therefore
restrict ourselves to the patch where z = 1, and rewrite the Weierstrass model as the hypersurface

PW : y2 = F(x) , F(x) = x3 + f x+g≡
3

∏
i=1

(x− xi) . (3.21)

Then the gradient with respect to x is

dF(x)
dx

=
3

∑
j=1

∏
i 6= j

(x− xi) . (3.22)

It follows that P = 0 = dP whenever two roots xi and xk coincide. By definition, this happens
whenever the discriminant of F(x) vanishes. The discriminant of the special cubic F(x) = x3 +

f x+g is ∆ = 4 f 3 +27g2, which proves the claim.
We have therefore shown that the singularities of the elliptic fiber Eτ of the Weierstrass model

occur at a point of the form [x : y : z] = [∗ : 0 : 1] in the fiber over ∆ = 0, and hence away from the
section (3.5). As we will discuss in the next section, the singularity can be thought of as due to the
vanishing, or shrinking to zero, of a certain 1-cycle in the fiber. Note that in order for this point to
be a singularity not only of the fiber Eτ , but of the elliptic fibration Yn+1 as an (n+ 1)-fold, also
the gradient with respect to the base coordinates must vanish. A smooth Weierstrass model is one
where the singularities in the fiber over the discriminant are not singularities of Yn+1.

9In particular, the holomorphic zero-section of the Weierstrass model is therefore always smooth.
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For future reference, we will refer to the divisor on the base along which ∆ vanishes as the
discriminant locus or discriminant divisor10

Σ := {∆ = 0} ⊂ Bn . (3.23)

In the remainder of this section, we assume that the Weierstrass model is generic, i.e. the
defining sections f and g are maximally generic functions. In this case, the discriminant locus Σ

is an irreducible divisor on Bn in homology class [Σ] = 12K̄Bn . At a generic point on this divisor,
f and g do not vanish simultaneously. The fiber Eτ over such generic discriminant points has a
singularity at [x : y : z] = [∗ : 0 : 1] and Eτ forms a nodal curve, i.e. a curve with a generic self-
intersection at this point. The type of singularity is called Kodaira-type I1 and obeys the following
criterion: If we define by ord( f ,g,∆) the order of the zero of the respective functions at a given
point, then we have for

Kodaira− type I1 : ord( f ,g,∆) = (0,0,1) . (3.24)

Note that even though the elliptic curve Eτ is singular at [x : y : z] = [∗ : 0 : 1], the elliptic fibration
Yn+1 is smooth: For generic f and g, dP/d f 6= 0 and dP/dg 6= 0 at ∆ = 0.

At special points on ∆ = 0, both f = 0 and g = 0. This occurs in complex codimension
one on ∆ and hence altogether in complex codimension two on Bn. At these points, the elliptic
fiber forms a so-called cuspidal curve y2 = x3, with a non-generic point of self-intersection at
[x : y : z] = [0 : 0 : 1]. Since f and g are, by assumption, maximally generic, the vanishing orders
are ord( f ,g,∆) = (1,1,2). More generally, cusps occur for fibers of

Kodaira− type II : ord( f ,g,∆) = (≥ 1,1,2) . (3.25)

The notation means that f vanishes to order 1 or higher, and g and ∆ to orders 1 and 2, respectively.
Again, at such points Yn+1 is smooth as an (n+ 1)-fold. It so happens that the points of Kodaira
type II singularities in the fiber, the discriminant ∆ = 4 f 3 + 27g2 itself develops a cusp (since
f = g = 0).

Singularities in the fiber are singularities of Yn+1 only if the vanishing orders exceed (3.24) or
(3.25). This occurs only for non-generic f and g and will be discussed in section 4.

3.3 Singular fibers due to 7-branes and Type IIB limit

What is the physics interpretation of the fibral singularities? It turns out that ∆ = 0 is nothing
but the divisor wrapped by the 7-branes in the Type IIB picture. This is of course not unexpected
because of the identification of the fiber complex structure with the axio-dilaton τ: The singularity
in the fiber should translate into a singular value of this field at the location of its source.

Indeed, the zeroes of ∆ imply such special values for τ according to formula (2.34). From the
expansion (2.35) we infer that if j(τ)→ ∞, the axio-dilaton τ → i∞ (recall that j is defined over
the upper half-plane since τ ≥ 0). This is precisely what happens at an I1-locus. At this locus,
consequently gs → 0. Such behaviour matches the value of gs near a D7-brane, where τ has a
profile of the form (2.7).

10If not only Eτ , but also Yn+1 is singular, Σ must be defined as in (4.18).
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Equivalently, one can use the following property of the fibral singularities: The singular fiber
is characterized by the vanishing of a linear combination Π = pA+qB of the two elements of the
basis of one-cycles introduced in (2.36). If one transports the two 1-cycles A, B, which exist away
from the singular locus, around the singularity in the basis, they undergo an SL(2,Z) monodromy
(2.38) with monodromy matrix M[p,q] as in (2.15). This is a special instance of the the Picard-
Lefshetz theorem, which tells us about the monodromic behaviour of middle-dimensional cycles
in a complex variety around a special point in the complex structure moduli space where a com-
bination of them vanishes. The variety here is the elliptic curve, whose complex moduli space is
identified with the base. Then a general 1-cycle γ in the fiber undergoes a monodromy around the
vanishing locus of Σ given by

γ → γ− (γ ·Π)Π . (3.26)

With A ·B = 1 =−B ·A (and all others vanishing) this reproduces the monodromy (2.15) [28].
We conclude that a singularity at which the cycle Π = pA+ qB vanishes in the fibre occurs

precisely over the location of a [p,q] 7-brane on the base. For an I1-singularity, the associated
monodromy matrix is M[1,0], in agreement with our interpretation of the I1 locus as due to a 7-
brane of type [1,0]. More subtle is the behaviour at a Kodaira type II singularity, where j(τ) = 0

0
. A careful analysis [45] reveals that this codimension-two locus is the remnant of the O7-plane
intersection with the D7-brane in the weakly coupled Type IIB orientifold uplift.

Note that for generic f and g, corresponding to a smooth Weierstrass model, the discriminant
locus {∆ = 0} describes a single irreducible divisor. Indeed, F-theory on a smooth Weierstrass
model has the same brane content as a Type IIB orientifold compactification on a Calabi-Yau space
Xn with a single D7-brane together with an O7-plane. The associated Type IIB orientifold picture
is inferred by performing the Sen limit [46]. The Type IIB orientifold is defined on the Calabi-Yau
double cover Xn of Bn. The starting point of this construction is to parametrise

f = −3h2 + ε η (3.27)

g = −2h3 + εhη− ε2

12
χ (3.28)

with h ∈ Γ(Bn, K̄2
Bn
), η ∈ Γ(Bn, K̄4

Bn
) and χ ∈ Γ(Bn, K̄6

Bn
) generic sections of indicated degree. The

perturbative limit corresponds to taking ε → 0. In this limit, the discriminant factorises as

∆ =−9ε
2h2 (η2−hχ)+O(ε3) . (3.29)

The D7-brane is located at η2− hχ , while h = 0 describes the O7-plane. The Type IIB Calabi-
Yau n-fold is obtained by adding a local coordinate to ξ to the local coordinates of Bn and by
considering the hypersurface

Xn : ξ
2 = h . (3.30)

This space is indeed Calabi-Yau and admits an orientifold involution σ : ξ → −ξ . The divisor
{h = 0} is the fixed-point locus of the involution, which is wrapped by the O7-plane. Uplifting the
7-brane locus to Xn results in a single D7-brane along the divisor

D7 : {η2−η
2
χ = 0} ⊂ Xn , (3.31)
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which is invariant under the orientifold involution. The gauge group of this system is trivial because
the U(1) gauge symmetry on the D7-brane is projected out by the orientifold action. The geometry
of the D7-brane is that of a so-called Whitney umbrella [47]. The Sen limit can be interpreted as a
stable degeneration limit of a family of elliptic fibrations [48]. It has been studied in great detail in
the more recent F-theory literature, including [45, 49–55].

We have thus concluded that a smooth Weierstrass model describes the physics of a single
7-brane in F-theory, with trivial gauge group along the 7-brane. We will momentarily arrive at the
same conclusion via duality with M-theory.

3.4 M-theory picture (II)

Consider M-theory compactified on a smooth Weierstrass model Yn+1. How would we describe
the gauge symmetry along the 7-branes in the effective theory in R1,8−2n? Abelian massless vector
fields in the M-theory effective action arise by expanding the M-theory 3-form gauge potential
C3 along a basis of harmonic 2-forms on Yn+1. For a smooth and generic Calabi-Yau Weierstrass
model Yn+1 with n ≥ 2, the group of divisors is generated by the zero-section S0 and the pullback
divisors π−1(Db

α) as in (3.9). After taking the Poincaré dual, this generates a basis of the space of
harmonic 2-forms.

For our purposes, it will turn out more convenient to define a basis of H1,1(Yn+1) in terms of
the shifted divisor [56, 57]

[S̃0] := [S0]−
1
2
[KBn ] (3.32)

along with the vertical divisors π−1(Db
α). Expansion of C3 along this basis of H1,1(Yn+1) as

C3 = Ã0∧ [S̃0]+∑
α

Aα ∧π
∗[Db

α ] (3.33)

identifies the gauge group in the M-theory effective action in R1,8−2n as U(1)h1,1(Bn)+1.
According to the general paradigm summarized in section 2.3, this theory is related to the

effective theory of F-theory on Yn+1 in R1,9−2n by compactifying the latter on a circle S̃1
B. Before

(wrongly!) concluding that the F-theory gauge group should be U(1)h1,1(Bn)+1, however, note that
a vector field on R1,8−2n can have several origins from the perspective of the F-theory effective
action. A careful explanation of this relation can be found in [58].

Indeed, the vectors Aα must be interpreted as the dimensional reduction of the 2-form fields
b(2)α which are obtained in Type IIB/F-theory on Bn by expanding

C4 = ∑
α

bα

(2)∧ [D
b
α ] . (3.34)

More precisely, Aα is obtained by reducing bα

(2) = Aα ∧ [e1] with [e1] the 1-form along S̃1
B.11 Hence

the subset of h1,1(Bn) vector fields Aα in M-theory correspond to tensors in the dual F-theory
effective action and are not related to a 1-form gauge symmetry in F-theory. In compactifications
to six dimensions, h1,1(Bn)− 1 of these tensors in F-theory sit in anti-self dual tensor multiplets,

11The tensor b(2)α with no legs along S̃1
B becomes a tensor field in M-theory, which can be obtained by reduction of

the gauge potential C6 magnetically dual to C3 in M-theory.
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and the remaining tensor is self-dual and part of the gravitational multiplet. In compactifications
to four dimensions, the tensors are dual to axionic scalars which complexify the h1,1(Bn) Kähler
moduli. In F-theory on K3, the tensor from the base B1 = P1 sits again in the 8d gravitational
multiplet.

The interpretation of the vector field Ã0, on the other hand, is rather different: It describes the
Kaluza-Klein U(1) gauge field which appears universally in the circle reduction along S̃1

B from F-
theory to M-theory. This M-theory gauge potential becomes part of the metric in the dual F-theory.

To understand this statement, note that the objects charged electrically under the abelian gauge
fields in M-theory are M2-branes wrapping holomorphic or anti-holomormphic curves on Yn+1. A
wrapped M2-brane corresponds to a particle in the M-theory effective action of mass

|m(C)| ' vol(C) = |
∫

C
J| (3.35)

with J the Kähler form of Yn+1. The second equality follows from the fact that C is holomorphic or
anti-holomorphic. If we collectively denote the abelian gauge fields in the expansion (3.33) as

C3 = ∑
j

A j ∧w j (3.36)

then in view of the coupling (2.63) the U(1) j charge of an M2-brane along a curve C is

q j =
∫

C
w j = [C] ·w j . (3.37)

Consider now an M2-brane wrapping the generic fiber Eτ with wrapping number n. Its charges are

q0 = [S̃0] ·n[Eτ ] = n (3.38)

qα = π
∗[Db

α ] ·n[Eτ ] = 0 . (3.39)

These M2-branes give rise to massive states in the M-theory effective action with mass |m| 'V with
V the volume of the generic fiber. Such states become massless in the limit V → 0, which coincides
with the decompactification limit of the circle S̃1

B. They must therefore be interpreted as Kaluza-
Klein states. More precisely, each of the supergravity fields of the F-theory vacuum decomposes,
upon circle reduction on S̃1

B, into a Kaluza-Klein zero mode ψ0 and a tower of Kaluza-Klein states
ψn with n ∈ Z. The zero-modes are to be matched with zero-modes of the supergravity reduction
of the dual M-theory, while the Kaluza-Klein tower is associated with M2-branes wrapping n[Eτ ]

with n ∈ Z; a negative wrapping number corresponds to negative orientation in the wrapping of the
holomorphic curve [Eτ ]. The charges (3.38) are in agreement with the identification of [S̃0] as the
generator of the Kaluza-Klein U(1). The claim that M2-branes wrapping a curve in the class n[Eτ ]

indeed reproduce the full spectrum of Kaluza-Klein towers can be justified further by computing
the Gromov-Witten invariants for the curve class n[Eτ ]. The Gromov-Witten invariants compute
the Euler number of the moduli space of holomorphic curves in the given class. As found in [43],
for the curve class [Eτ ] this Euler number indeed agrees with a suitable index of supergravity states
in F-theory.

The requirement that [D] ·n[Eτ ] = n for a divisor associated with the Kaluza-Klein U(1) alone
does not fix the divisor class [D] uniquely because every vertical divisor has vanishing intersec-
tion with [Eτ ]. The reason for the exact definition as [S̃0] is explained in [56, 57] (see also [59])
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by a detailed match of the M-theory and the F-theory effective action. A special role in this
match is played by the Chern-Simons couplings: Dimensionally reducing the topological coup-
ling

∫
R1,10 C3 ∧G4 ∧G4 in (2.61) gives rise to Chern-Simons couplings in the M-theory effective

action. For instance, in M-theory compactifications on Y3, these are of the form

SCS = κ
(M)
ΛΓΣ

∫
R1,4

AΛ∧FΓ∧FΣ
Λ = 0,α (3.40)

with AΛ and FΛ the abelian vectors and their field strengths as obtained from the M-theory reduc-
tion. On the other hand, if one reduces the dual F-theory effective action on a circle, similar such
Chern-Simons terms, with coefficients κ

(F)
ΛΓΣ

, are induced as a quantum effect which is exact at
1-loop in perturbation theory [60–62]. The requirement that the classical M-theory Chern-Simons
terms and the 1-loop induced Chern-Simons terms of the circle reduction agree fixes the correct
normalization of the abelian gauge fields [56,57]. Such Chern-Simons terms have been considered
in great detail in the more recent F-theory literature [63–65].

Coming back to the physical interpretation of F-theory on the smooth Weierstrass model, we
conclude that none of the 1+h1,1(Bn) abelian gauge fields in the M-theory effective action on Yn+1

uplifts to a gauge field in F-theory, in agreement with our findings in section 3.3. To describe an
F-theory vacuum with non-trivial gauge algebra we therefore need to move on to more complicated
elliptic fibrations with extra elements in H1,1(Yn+1). Given a divisor D with associated cohomology
class [D ], we can already give the criterion for the vector field AD appearing in the reduction
C3 = AD + . . .∧ [D ] to correspond to a gauge field in F-theory: The class [D ] must satisfy the
transversality conditions

[D] · [S0] ·π∗(wb
2n−2) = 0 ∀ wb

2n−2 ∈ H2n−2(Bn) (3.41)

[D] ·π∗(wb
2n) = 0 ∀ wb

2n ∈ H2n(Bn) . (3.42)

Condition (3.41) is the statement that the intersection number between [D] and any curve class on
the base vanishes. M2-branes wrapping such curve classes uplift, as we have just learned, to D3-
branes wrapping the same curve in F-theory (more precisely, they correspond to the string obtained
by wrapping a D3-brane on a base curve in F-theory and wound along the S1 in going from F to
M-theory). The abelian gauge potential in M-theory with respect to which these states are charged
uplift to tensor fields in F-theory. Condition (3.42) ensures that the intersection number with the
class of the full generic fiber [Eτ ] vanishes; since M2-branes wrapping the latter are Kaluza-Klein-
modes in the reduction from F- to M-theory and if (3.42) is not imposed, the M-theory U(1) has
admixture from the Kaluza-Klein U(1). Divisor classes satisfying both transversality conditions
can be either due to extra sections - see section 7 - or due to a more severe enhancement of the
singularity in codimension one.

Before coming to this let us note how to implement the F-theory limit (2.68) of vanishing fiber
volume in more detail geometrically. For definiteness we focus on F-theory compactifications on
Calabi-Yau 4-folds. The key idea is that as the fiber volume shrinks to zero, the volume of the
base must be scaled up in such a way that the volume of the vertical divisors stays constant [5].
Otherwise, if the volume of a pullback divisor π−1(Db) would go to zero, the contribution of an
M5-brane instanton wrapping this divisor to the effective action would be unsuppressed. This is
clearly an unphysical result: The M5-brane instantons along π−1(Db) should rather be matched to
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the non-perturbative effects which in Type IIB language are due to Euclidean D3-branes wrapping
a divisor on the base [5]. Let us expand the Kähler form of Yn+1 as

J = J0[S0]+ Jα
π
∗[Db

α ] . (3.43)

Since J0 measures the volume of the fiber, we should rescale it to zero. The volume of π−1(Db) is
proportional to J3 ·π∗[Db]. This stays finite in the F-theory limit if we rescale

J0→ ε J0 , Jα → ε
−1/2 Jα , (3.44)

where the 4d F-theory limit is obtained by taking ε→ 0. This rescaling is explained very carefully
from a supergravity point of view in [58] for F-theory on Calabi-Yau 4-folds and in [57] for F-
theory on Calabi-Yau 3-folds.

4. Codimension-one singularities and non-abelian gauge algebras

In this section we describe F-theory compactifications with a non-trivial non-abelian gauge
algebra. We begin in section 4.1 by reviewing the classification of codimension-one singularities
on elliptically fibered surfaces due to Kodaira and Néron. The classification assigns to the singular
fibers a simply laced, i.e. A-D-E Lie algebra in a natural way. The singularities can be understood
both at the level of the Weierstrass model, and in terms of its resolution. On higher-dimensional
elliptic fibrations, monodromies can affect the global structure of codimension-one singular fibers,
leading also to non-simply laced Lie algebras, as discussed in section 4.2. The physics interpret-
ation of these Lie algebras as the gauge algebra on a stack of 7-branes is derived in section 4.3.
The process of resolving the singular Weierstrass model corresponds to moving in the Coulomb
branch of the dual M-theory compactification, as described in section 4.4. We provide an example
and discuss the significance of global Tate models in section 4.5. The counting of massless matter
along 7-branes is the topic of section 4.6.

4.1 The classification of Kodaira and Néron

Consider a Weierstrass model and allow for its sections f and g to be non-generic polynomials
of their given degree. Depending of the non-generic form of f and g, the vanishing order of the
discriminant polynomial ∆ increases and the singularity type in the fiber over ∆ enhances. As a
result, the Weierstrass model becomes singular itself. In this section we study the structure of
singularities appearing over generic points on the discriminant divisor, called codimension-one
singularities. For elliptic surfaces, the codimension-one fibers have been classified in seminal work
by Kodaira [66] and Néron [67]. This classification carries over, mutatis mutandis, to codimension-
one singularities on higher dimensional Weierstrass models.

To appreciate the meaning of the classification, note that if Yn+1 is singular, one can consider
instead its resolution Ŷn+1. Mathematically, a resolution X̂ of a singular variety X is a morphism

ρ : X̂ → X (4.1)

such that X̂ is smooth and is isomorphic to X away from the singular loci of X . A resolution Ŷn+1 of
a singular Weierstrass model is again an elliptic fibration since its generic fibers are elliptic curves.
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By slight abuse of notation, we stick to the same symbol for the projection map

π : Eτ → Ŷn+1

↓
Bn . (4.2)

However, the fibers of Ŷn+1 over the discriminant locus are degenerate, and the precise form of
these degenerate fibers is one way to characterise the original singularity of the Weierstrass model.

Kodaira and Néron classified the possible degenerate fibers occurring in a smooth minimal
elliptic surface Ŷ2 (not necessarily Calabi-Yau). The smooth surface Ŷ2 can be thought of as the
resolution of a singular Weierstrass model Y2. Minimality means that Ŷ2 contains no (−1)-curve,
i.e. no curve of self-intersection C ·C = −1. On a complex surface such (−1) curves are the only
curves which can be blown down to a smooth point without changing the canonical bundle of the
surface. Hence minimality is the requirement that Ŷ2 cannot be obtained from another surface by
blowing up a smooth point. Note that a surface which is Calabi-Yau, i.e. topologically of type K3,
can never contain a (−1) curve. Therefore the classification of minimal smooth surfaces provides
for us, in particular, a classification of the possible singularities of a Weierstrass model of complex
dimension two with c1(Y2) = 0 which admit a resolution Ŷ2 which is still Calabi-Yau. Resolutions
which do not change the canonical bundle are called crepant.

The result of this classification is as follows: Apart from a few outliers, the degenerate fibers of
Ŷ2 take the form of the extended Dynkin diagrams associated with the Lie algebras of type A-D-E.
This means that the fibers are unions of rational curves

P1
i , i = 0,1, . . . , rk(g) , (4.3)

with g one of the A-D-E Lie algebras. The extended node P1
0 is singled out as the fiber component

intersected once by the zero-section S0. The rational curves P1
i intersect like the nodes of the affine

Dynkin of g. The curves appear with a multiplicity ai which coincides with the dual Kac label
(or co-mark) of the corresponding node. In particular, the classes of the generic fiber and of the
degenerate fiber components are related as

[Eτ ] =
rk(g)

∑
i=0

ai [P1
i ] (4.4)

with a0 = 1. The few outliers mentioned above are the Kodaira type III, corresponding to two
rational curves touching each other in an intersection point of order two, and type IV , consisting of
three rational curves intersecting in one point.

Contracting all fiber components but P1
0, which is intersected by the zero-section S0, to a point

corresponds to the blowdown from Ŷ2 to the singular elliptic surface Y2. The singularity sits at a
single point in the fiber away from the zero-section, and the singularity is a hypersurface singularity
whose local equation is of A-D-E type. This is true also for the outliers of type III and type IV ,
which correspond to hypersurface singularities of type A1 and A2, respectively.

The vanishing orders for f , g and ∆ leading to the various types of Kodaira fibers are listed
in table 4.1. For the singular fibers on elliptic surfaces, we are to ignore the monodromy cover in
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type ord( f ) ord(g) ord(∆) sing. monodromy cover g split

I0 ≥ 0 ≥ 0 0 − − −
I1 0 0 1 − − −
II ≥ 1 1 2 − − −
III 1 ≥ 2 3 A1 − su(2)

IV ≥ 2 2 4 A2 ψ2− g
w2 |w=0

1-comp: sp(1) IV ns

2-comp: su(3) IV s

Im 0 0 m Am ψ2 + 9g
2 f |w=0

1-comp: sp([m
2 ]) Ins

m

2-comp: su(m) Is
m

I∗0 ≥ 2 ≥ 3 6 D4 ψ3 +ψ
f

w2 |w=0 +
g

w3 |w=0

1-comp: g2 I∗ns
0

2-comp: so(7) I∗ss
0

3-comp: so(8) I∗s0

I∗2n−5,
2 3 2n+1 D2n−1 ψ2 + 1

4(
∆

w2n+1 )(
2w f
9g )3|w=0

1-comp: so(4n−3) I∗ns
2n−5

n≥ 3 2-comp: so(4n−2) I∗s2n−5
I∗2n−4,

2 3 2n+2 D2n ψ2 +( ∆

w2n+2 )(
2w f
9g )2|w=0

1-comp: so(4n−1) I∗ns
2n−4

n≥ 3 2-comp: so(4n) I∗s2n−4

IV ∗ ≥ 3 4 8 E6 ψ2− g
w4 |w=0

1-comp: f4 IV ∗ns

2-comp: e6 IV ∗s

III∗ 3 ≥ 5 9 E7 − e7

II∗ ≥ 4 5 10 E8 − e8

non-min. ≥ 4 ≥ 6 ≥ 12 non-can. − −

Table 4.1: Kodaira-Tate table for singular fibers of the Weierstrass model. The monodromy cover is
taken from [21], Table 4. The gauge algebra depends on the number of its irreducible components
as indicated. In the last column, the superscript s (’split’), ns (’non-spilt’), ss (’semi-split’) refers
to the refined Tate fiber type.

column 6, and the Lie algebra g associated with the fiber is the maximal one in column 7 (corres-
ponding to the maximally split case).

From the table we read off that f , g and ∆ must vanish to the given order along a codimension-
one locus on the base. If we describe this divisor locally by the vanishing of a local coordinate
w = 0, then except for all Kodaira type fibers except the Im series, f and g must factorise (in the
given patch) as

f = wk f̃ , g = wl g̃ k = ord( f ), l = ord(g) . (4.5)

Here f̃ and g̃ are sufficiently generic such that the discriminant has the prescribed vanishing order.
As a result of the specialiation of f and g, the discriminant polynomial factorises as

∆ = wm
∆0 m = ord(∆) . (4.6)

In particular, the value m in the table is the one obtained for completely generic f̃ and g̃. The Im

series is more complicated: Even though f and g have no zeroes at w = 0, they are of a non-generic
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form such that cancellations in ∆ lead to a zero of order m. The general procedure is explained for
instance in [68]: The starting point is a general ansatz (valid locally near the divisor)

f = ∑
i

fi wi, g = ∑
i

gi wi (4.7)

with generic fi and gi. The associated discriminant takes the form

∆ = (4 f 3
0 +27g2

0)+(12 f1 f 2
0 +54g0g1)w+O(w2) . (4.8)

To obtain an I1 fiber we need to choose f0 and g0 such that the term in the first brackets vanishes.
The possible types of tunings leading to this behaviour may depend on whether or not the divisor
is smooth. For instance, if the divisor w = 0 is non-singular, [68] shows that one can locally find a
function u0 such that

f0 =−
1
3

u2
0 +O(w), g0 =

2
27

u3
0 +O(w) , (4.9)

hence tuning an I1 singularity. This procedure can be repeated order by order in w to arrive at the
higher Im types.

If ord( f )≥ 4 and at the same time ord(g)≥ 6 (implying that ord(∆)≥ 12), no minimal smooth
elliptic surface Ŷ2 exists. In particular, there exists no crepant resolution of a Weierstrass model with
this property. The singularity type in the fiber is non-canonical (see section 5.6 for a definition)
and sits at infinite distance in moduli space. In this case one can use the freedom to rescale the
homogeneous coordinates of the Weierstrass model such as to arrive at a new Weierstrass model
for which f and g satisfy the minimality bound. Concretely, suppose that

f = w4n f̃ , g = w6n g̃ (4.10)

with n∈N such that f̃ and g̃ are holomorphic sections whose vanishing orders (ord( f̃ )|w=0,ord(g̃)|w=0)

do not equal or exceed 4 and 6. The scaling assignment (2.51) allows us to rescale

x→ xw−2n =: x̃, y→ yw−3n =: ỹ, f → f w−4n = f̃ , g→ gw−6n = g̃ . (4.11)

As a result, the Weierstrass equation becomes

ỹ2 = x̃3 + f̃ x̃ z4 + g̃ z6 , (4.12)

and satisfies the minimality constraint. However, the operation (4.11) corresponds to a shift of the
defining bundle L appearing in (2.51) to L̃ = L ⊗W−n, where W denotes the line bundle with
c1(W ) = [{w = 0}]. If c1(L ) = K̄n in the original Weierstrass model according to the Calabi-Yau
condition, then this condition is no longer satisfied by the new, minimal Weierstrass model. In
this sense, vanishing orders of f and g of 4 and 6 and beyond are really incompatible with the
Calabi-Yau condition.

Finally, let us note that the monodromies around the location of the singular fibers coincide
with the monodromies computed in section 2.1, especially eqns. (2.19) - (2.22); the monodromies
of fibers of Type II, III, IV are the inverse of those of II∗, III∗, IV ∗.

28



P
o
S
(
T
A
S
I
2
0
1
7
)
0
1
6

F-theory Timo Weigand

4.2 General structure of codimension-one fibers and relation to group theory

The results of Kodaira and Néron carry over to elliptic fibrations over higher dimensional base
spaces as follows: Over generic points of the discriminant divisor Σ (i.e. in codimension one), a
smooth elliptic fibration Ŷn+1 compatible with the requirement of flatness (or equi-dimensionality)
of the projection π allows for local fiber types of the same form as in the case n= 1. Globally along
Σ, however, a new effect occurs for n > 1 in that the fibers may undergo monodromies. Taking into
account these monodromies corresponds to folding the A-D-E dynkin diagram associated with the
local fibers such as to produce the Dynkin diagrams associated with non-simply laced Lie algebras
of type Bn, Cn, G2 and F4.

Whether or not the monodromy occurs can be determined already at the level of the singular
Weierstrass model Yn+1, i.e. without considering a resolution Ŷn+1. This is the content of Tate’s
algorithm [69], as explained in the physics literature in [21, 68, 70]. The last two columns in table
4.1 summarize the explanation of Tate’s algorithm in [21], to which we refer for a derivation. From
the table we infer that the existence of monodromy depends on whether or not a certain monodromy
cover factorises globally. Consider e.g. the case of a Type IV singularity: The monodromy cover
to consider is associated with the equation

ψ
2− g

w2 |w=0 = 0 (4.13)

with ψ a formal variable. Locally around the divisor w = 0 carrying the type IV singularity we can
make the ansatz (see column 3)

g = g2w2 +g3w3 + . . . . (4.14)

For generic g2, the monodromy cover takes the form

ψ
2− g

w2 |w=0 = ψ
2−g2 . (4.15)

Above equation does not factorise (it is ’1-component’ in the notation of the table). This indicates,
according to the general algorithm, a monodromy in the fiber over w = 0 corresponding to the
breaking su(3)→ sp(1). In less generic situations, more precisely if g2 = φ 2, the monodromy
cover takes the form

ψ
2− g

w2 |w=0 = ψ
2−φ

2 = (ψ +φ)(ψ−φ) (4.16)

and hence factorises into two components (called ’2-comp’ in the table). This means that there
is indeed no monodromy in the fiber. This criterion can be applied to all other cases. For I∗0 one
has to distinguish three situations, depending on whether the monodromy cover factorises into
3 components (no monodromy, called split fiber), into two components (monodromy so(8) →
so(7) with so-called semi-split fibers) or does not factorise at all (monodromy so(8)→ g2, called
non-split fiber). Elliptic fibrations with non-simply laced algebras and their resolutions have been
worked out in detail in particular in [71–73], and [74] provides an in-depth study of the realisation
of such algebras in terms of (p,q) strings.

The information about the monodromies is automatically included in a slightly different rep-
resentation of the Weierstrass model as a global Tate model, which is, however, not always possible
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to obtain gobally [68, 70]. More details will be given in section 4.5, and the interested reader can
directly jump to this section.

Depending on the base space, it may happen that even the most generic choice of polynomials
of degree 4K̄Bn and 6K̄Bn for f and g unavoidably leads to a singularity. The underlying reason
is that in such geometries f and g necessarily vanish to a certain order along one or even several
divisors on the base. For a base of complex dimension two, the resulting types of singularities have
been completely classified in [14] and are called ’non-Higgsable’ clusters. The same phenomenon
on Calabi-Yau fourfolds [75, 76] is still far less systematically understood, but it seems to be a
generic property of base spaces for elliptic fibrations [77–80], as discussed at this TASI school
in [81].

Let us now analyze the appearance of monodromy in the resolution Ŷn+1 of the Weierstrass
model. An early systematic study includes [82], and many more details and derivations can be
found in [56]. We need to carefully distinguish between the component curves of the local fiber
and the resolution divisors. In the most general situation the discriminant ∆ factorises as

∆ = ∆0

N

∏
I=1

(∆I)
pI , (4.17)

where ∆0 and ∆I describe irreducible polynomials and pI is the multiplicity with which the poly-
nomial ∆I appears. The vanishing locus of each of the polynomials ∆0 and ∆I corresponds to an
irreducible divisor on Bn which we denote by Σ0 and ΣI . Their union gives the discriminant divisor

Σ = Σ0∪Σ1∪ . . .∪ΣN . (4.18)

An example will be given in (4.53) and (4.54) in section 4.5, which can be read in parallel.
Over generic points of Σ0 the fiber is of Kodaira type I1, and no monodromies are to be con-

sidered. Suppose that over generic points of ΣI the topology of a fiber is locally associated with the
affine Dynkin diagram of an A-D-E Lie algebra g̃I and denote the components of the local fiber as
P̃1

aI
, aI = 0,1, . . . , rk(g̃I). Monodromies along ΣI may map some of these local components to one

another. We make the following definitions:

P̃1
aI

: the components of the local fiber (4.19)

P1
iI : the independent rational curves in the fiber (4.20)

CiI : the invariant orbits of fiber components (4.21)

If a curve P̃1
kI

is invariant by itself under monodromies, the corresponding orbit contains only this
invariant rational curve. In particular, the fibre component P̃1

0I
intersected by the zero-section forms

an orbit by itself. More generally, an orbit is a union of two or even three12 rational curves which are
related by monodromies. Fibering the orbits CiI over ΣI produces a divisor EiI of Ŷn+1 sometimes
called resolution divisor or Cartan divisor. Here the label iI takes values 0,1, . . . , rk(gI) with gI an
in general non-simply laced simple Lie algebra.

To summarise:

12This occurs for monodromies folding so(8) to g2.
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• In the simply-laced case (i.e. in absence of monodromies) the resolution divisors EiI are
rationally fibered over ΣI , and their fibers are the rational curves P1

iI , iI = 0,1, . . . , rk(gI).

• In the non-simply laced case, the fibers of the resolution divisors EiI are invariant orbits
CiI , iI = 0,1, . . . , rk(gI), of rational curves. Over any given point on ΣI , the invariant orbit
CiI splits into several rational curves P̃1

aI
, which are transformed into one another by global

monodromies. The locally defined rational curves P̃1
aI

, aI = 0,1, . . . , rk(g̃I), intersect like the
Dynkin diagram of a simply laced Lie algebra g̃I , which is a covering algebra of the non-
simply laced algebra gI . The resolution divisors are, in this case, not themselves rationally
fibered over ΣI , but only over a branched cover Σ′I of ΣI . Furthermore, the independent
rational curves (not necessarily invariant) are denoted by P1

iI , iI = 0,1, . . . , rk(gI).

The key observation is that the intersection structure of the resolution divisors with one another
and with the independent fibre components P1

jJ encode the Lie algebra gI in the sense that

[EiI ] · [E jJ ] ·π∗(ω2n−2) = −δIJ CiI jI [ΣI] ·Bn ω2n−2 ∀ω2n−2 ∈ H2n−2(Bn) (4.22)

[EiI ] · [P1
jJ ] = −δIJ CiI jI (4.23)

[S0] · [P1
jJ ] = 0 . (4.24)

Here CiI jI is the Cartan matrix of gI and CiI jI is related to this object as in (4.33) below. Furthermore,
the generalisation of (4.4) is the relation

π
−1(ΣI) = E0I +

rk(gI)

∑
iI=1

aiI EiI (4.25)

between the resolution divisors and the vertical divisor π−1(ΣI). These general facts can be proven
by carefully analyzing the fibral intersection theory for the case of each different Lie algebra.

The intersection numbers (4.22) and (4.23) suggest that we should identify the resolution di-
visors EiI with the coroots of the algebra gI and the fibral curves P1

iI with (the negative of ) the
simple roots. Since this identification lies at the heart of all that follows, let us take a step back and
briefly review these group theoretic concepts in a small

Group Theoretic Interlude (I):

Consider a simple Lie algebra g. Its Cartan subalgebra h is the maximal commuting subalgebra
and is generated by the

Cartan generators : TI , I = 1, . . . , rk(g), (4.26)

normalised such that

trfund(TI TJ ) = δI J . (4.27)

We can now find a basis {TI ,eα} of g such that

[TI ,TJ ] = 0 (4.28)

[TI ,eα ] = αI eα . (4.29)
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g An Dn Bn Cn E6 E7 E8 F4 G2

λ 1 2 2 1 6 12 60 6 2

Table 4.2: Dynkin index of the fundamental representation, λ , for the simple Lie algebras.

The objects αI denote the roots or root vectors, which we can think of as vectors in Rrk(g) endowed
with an inner product 〈·, ·〉. The basis of g can be specified further as {TI ,eα+ ,eα−} such that every
positive root α+ is expressible as a non-negative linear combination of the so-called

simple roots : (α j)I j = 1, . . . , rk(g), (4.30)

and similarly every negative root α− as a non-positive linear combination of α j. Let us furthermore
define the objects

Ti =
2∑I (αi)I TI

〈αi,αi〉
≡ 2αi ·T
〈αi,αi〉

, (4.31)

where αi are the simple roots. In view of this definition the generators eα j associated with the
simple roots satisfy the important relation

[Ti,eα j ] =Ci j eα j with Ci j =
2〈αi,α j〉
〈αi,αi〉

. (4.32)

The Cartan matrix Ci j has diagonal entries +2 for all simple Lie algebras g, while the off-diagonal
entries differ from algebra to algebra. It is symmetric only for the simply-laced Lie algebras of
A-D-E type as for these 〈αi,αi〉 takes the same value for every simple root. The relation (4.32)
gives rise to a non-degenerate pairing between the Cartan generators and the Lie algebra generators
associated with the simple roots. In fact, the linear combinations Ti of the Cartan generators form
the so-called co-root lattice. They are normalised, as a result of (4.27), such that

trfundTi T j = λ Ci j with Ci j =
2
λ

1
〈α j,α j〉

Ci j . (4.33)

Here

λ =
2

〈αmax,αmax〉
, (4.34)

with 〈αmax,αmax〉 the length of the longest root of g, denotes the Dynkin index of the fundamental
representation as collected in Table 4.2. Note that for the simply-laced Lie algebras of A-D-E type,
Ci j = Ci j, but more generally the two differ.

Coming back to the study of singularities in elliptic fibrations, the intersection relations (4.22)
and (4.23) suggest the following remarkable identification between the resolution divisors EiI and
the independent fiber components P1

jJ ,

EiI ' co-roots Ti

P1
jI '−(simple roots) =−α jI

(4.35a)

(4.35b)
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4.3 Non-abelian gauge algebras in M- and F-theory

The identification between geometric and group theoretic entities may a priori come as a sur-
prise from the perspective of pure mathematics. In the geometric classification of the singular
fibers due to Kodaira and Néron, the simple Lie algebras appear for purely combinatorical reasons
because the allowed intersection structure of the fiber codimension in codimension-one happens to
agree with that of nodes of an affine Dynkin diagram. In this sense one associates a Lie algebra to
a singular fiber, but the deeper reason behind this is elusive.

String theory provides a beautiful rationale for this connection between geometry and group
theory. The Lie algebras gI appearing in the Kodaira-Tate table are identified with the gauge algebra
along the stack of 7-branes wrapped along the discriminant component ΣI . There are two differ-
ent ways to come to this conclusion. The first uses the language of [p,q] 7-branes and identifies
the Picard-Lefshetz monodromy around the singularity of the elliptic fibration with the SL(2,Z)
monodromy induced by a stack of 7-branes. Having identified the brane stack in this way, the
gauge algebra is read off from the spectrum of (p,q) strings starting and ending on the 7-brane.
The second method uses duality with M-theory, and this is the language we shall be focussing on
in the sequel.

Indeed from our discussion in section 3.4 we concluded that the appearance of extra divisors
on an elliptic fibration Ŷn+1 beyond the zero-section and the base divisors leads to extra abelian
gauge fields in the M-theory effective action. Consider the resolution Ŷn+1 of a Weierstrass model
Yn+1 with f and g such that ∆ = ∆0×∏I(∆I)

pI and otherwise generic.13 Then

h1,1(Ŷn+1) = 1+h1,1(Bn)+∑
I

rk(gI) . (4.36)

The extra contribution ∑I rk(gI) compared to (3.10), valid for a generic Weierstrass model, is pre-
cisely due to the independent Cartan divisors EiI , iI = 1, . . . , rk(gI). Expanding the M-theory 3-form

C3 = Ã0∧ [S̃0]+∑
α

Aα ∧π
∗[Db

α ]+∑
iI

AiI ∧ [EiI ] (4.37)

gives rise to extra massless abelian vector fields AiI in the M-theory effective action in R1,8−2n. Un-
like their cousins Ã0 and Aα , these vectors do uplift, in the dual F-theory, to massless abelian gauge
fields. The reason is that the resolution divisors EiI satisfy both transversality conditions (3.41) and
(3.42). The first follows from the fact that the zero-section does not intersect the resolution curves
in the fiber, and the second holds because the fiber of each resolution divisor is contained inside the
generic fiber and thus has vanishing intersection product with it. The interpretation of the vector
fields AiI is that they represent the gauge fields associated with the Cartan subalgebras hI .

To corroborate this further, we should be able to reproduce in addition the vector fields associ-
ated with the non-Cartan generators of the full Lie algebras gI . For simplicity, let us first restrict the
discussion to the simply-laced Lie algebras of A-D-E type. Again, the general idea is clear already
from section 3.4: M2-branes wrapping a holomorphic or anti-holomorphic curve C in the fiber give
rise to particles in the M-theory effective action of mass (3.35) and charge

qiI =
∫

C
EiI = [EiI ] · [C] . (4.38)

13The requirement of maximal genericity of f and g compatible with the vanishing order of ∆ precludes the existence
of extra rational sections, which will be discussed in section 7.
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g g̃ ρ̃0 ρ0

sp(k) su(2k) antisym2 antisym2

sp(k) su(2k+1) antisym2 + fund⊕2 antisym2 + fund⊕2

so(2k−1) so(2k) vect vect
g2 so(8) 7⊕2 7
f4 e6 26 26

Table 4.3: Representations of non-simply laced algebras [20].

In view of (4.23) and (4.32), an M2-brane wrapping one of the independent fiber components P1
iI

therefore yields a particle whose charges we identify with the negative of a simple root, i.e. with
−αiI , of gI . Wrapping an M2-brane along the same curve with opposite orientation, or equivalently
wrapping an anti-M2-brane with positive orientation, gives rise to a particle associated with αiI .
Each of the non-simple ∓-ve roots is formed as a non-negative linear combination of ∓∑iI niI αiI .
A particle corresponding to this state is obtained by wrapping an M2-brane along a fibral curve in
class ±∑iI niI [P1

iI ].
This way one reproduces states in the full adjoint representation of the A-D-E algebra gI , and

it is indeed not hard to show that these are the only types of 1-particle states which are associated
with wrapped M2-branes in the fiber. All states except for the abelian vectors AiI are massive on
the fully resolved space Ŷn+1 and become massless in the singular limit. We will discuss this point
more carefully in section 4.4.

If the fiber over a discriminant component is subject to monodromies, we must distinguish
between the algebra g̃I corresponding to the local fiber type and the actual Lie algebra gI relevant
for the gauge theory on ΣI . The gauge algebra gI is obtained by suitable identifications of the
nodes of the Dynkin diagram of g̃I . Mathematically, gI is a subalgebra of g̃I which is fixed under
a finite outer automorphism of some finite order. The representations present in this situation are
obtained by decomposing the adjoint representation of g̃I into irreducible representations of the
gauge algebra gI ,

adj(g̃I) = adj(gI)⊕ ρ̃0, ρ̃0 =
⊕

k

R⊕ñk
k , (4.39)

where some of the irreducible representations Rk may occur with a multiplicity ñk. As we will see
momentarily, the gI gauge theory contains states in adj(gI) and in addition in the representation
ρ0 = R⊕nk

k . Note that the extra representations Rk may occur with a smaller multiplicity nk < ñk if
the order of the outer automorphism is bigger than 2. This is the case, in fact, only for algebra g2,
as summarized in Table 4.3. For more information we refer to [20], p.24/25.

So far we have only understood the charges of the particles in the M-theory effective theory
from wrapped M2-branes, but not yet their spacetime quantum numbers. These must be determined
by quantizing the moduli of the wrapped M2-brane states. For M-theory compactifications on
an elliptic Calabi-Yau 3-fold Ŷ3 this has been discussed in [60], p. 13/14, confirming previous
results obtained by a topological twist in [83]. The moduli space of the wrapped M2 branes is
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R1,8−2n× ΣI since the M2-branes can freely move along the component ΣI of the discriminant
divisor. According to the arguments of [60] this gives rise to

1. a full vector-multiplet in the M-theory effective action in R1,8−2n in the adjoint representation
of gI . At the bosonic level, this includes a gauge field in (9−2n) dimensions and a real scalar.
These modes lift in the dual F-theory effective action to a corresponding vector multiplet;

2. if dim(ΣI) ≥ 1 (as is the case for F-theory on Ŷn+1 for n ≥ 2), extra scalar fields and their
fermionic superpartners filling suitable multiplets in the representation adj(gI)⊕ ρ0 of gI .
The representation ρ0 is present only for non-simply-laced algebras and given by the last
column of table 4.3.

Wrapped M2-brane states hence constitute matter charged under the Cartan subalgebra hI . To
form complete representations of the Lie algebra gI , extra, uncharged matter states are required.
These are not due to wrapped M2-branes, but come directly from the supergravity sector. We
have already seen this for the case of the vector fields themselves, in that the Cartan gauge fields
originate in the M-theory 3-form C3. As for the matter multiplets, the uncharged fields arise from
the complex structure moduli sector of Ŷn+1, i.e. from suitable modes of the holomorphic (n,0)-
form.

For M-theory compactified on Ŷ2, the resulting matter content is that of a 7d N = 2 (i.e. 16
supercharges) vector multiplet. By duality with F-theory, we find a corresponding vector mutiplet
in 8d. In this case, according to the classification of Kodaira and Néron, no non-simply laced
gauge algebras can occur. Interestingly, any non-abelian supersymmetric gauge theory with 16
supercharges in eight dimensions with gauge algebra other than of A-D-E type is inconsistent
due to global anomalies14 and hence in eight dimensions F-theory (almost) exhausts the list of
consistent gauge theories [84]. In lower dimensions, also matter multiplets of the above type can
arise. We will elaborate more on the precise counting of these extra multiplets in addition to the
vector multiplet in section 4.6.

Of the many aspects worth mentioning of the effective action of the resulting gauge theory, let
us at least point out that the inverse gauge coupling of the non-abelian gauge theory in F-theory is
set by the volume of the associated discriminant component

1
g2

I
' vol(ΣI) . (4.40)

This is intuitively clear from the perspective of a 7-brane stack wrapping ΣI . The same relation can
also be derived in M-theory. We perform this derivation in section 7.2 in the context of an abelian
gauge theory, and the same steps can be easily repeated here.

4.4 The M-theory Coulomb branch

On the smooth fibration Ŷn+1, vol(P1
iI ) 6= 0 and hence all states with non-trivial charges under

the Cartan generators are massive. Therefore the part of the gauge symmetry related to the fibers
in the M-theory effective action on Ŷn+1 is broken to its Cartan subgroup hI . In the limit where

14As of this writing this holds possibly up to one exception as the jury is still out there for the case of g2 [84].
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all vol(P1
iI )→ 0, this abelian gauge algebra enhances to the full non-abelian Lie algebra gI . We

identify the moduli vol(P1
iI ) on Ŷn+1 with the Coloumb branch parameters associated with the gauge

theory in the M-theory effective action. Indeed, in a supersymmetric theory in R1,8−2n, the vector
multiplet always contains a real scalar field. The modulus

ξiI = vol(P1
iI ) =

∫
P1

iI

J (4.41)

is identified with the real scalar field in the vectormultiplet associated with the Cartan generator
TiI . A non-trivial vacuum expectation value of ξiI breaks the gauge symmetry to the commutant of
this generator, and hence if all vol(P1

iI ) 6= 0, gI is broken to its maximal commuting subalgebra hI .
Our geometry-group theory dictionary as obtained so far can hence be summarized as

EiI ' Cartan generators TiI

P1
jI ' −(simple roots) =−α jI

vol(P1
iI ) ' Coulomb branch parameters ξiI

(4.42a)

(4.42b)

(4.42c)

The origin of the Coulomb branch is attained in the singular limit of blowing down all fiber com-
ponents of the degenerate fibers in codimension one except P1

0I
, which is intersected by the zero-

section. This realises the blowdown map back to the singular fibration Yn+1,

⊕I u(1)⊕rk(gI) Ŷn+1→Yn+1−−−−−−→⊕IgI . (4.43)

Conversely, the mathematical procedure of resolving the singularities of Yn+1 by passing to Ŷn+1

corresponds to moving along the Coulomb branch in M-theory.
From the perspective of the dual F-theory in R1,9−2n, the scalar fields ξiI play the role of the

Wilson line degrees of freedom along the circle S̃1
B. In the circle reduction to M-theory the gauge

field in F-theory decomposes as

AiI = (AiI ,ξiI ) with ξiI =
∫

S̃1
B

(AiI )ỹ . (4.44)

Since in the (9−2n)-dimensional effective action of F-theory the vector multiplet does not contain
any scalars, this means that the Coulomb branch is only accessible in the dual M-theory on R1,8−2n

in a Lorentz invariant way. Indeed, it is clear that the F-theory limit of vanishing fiber volume,
vol(Eτ)→ 0, implies the limit vol(P1

iI )→ 0 and hence an enhancement of the gauge symmetry,

⊕I u(1)⊕rk(gI) F−theory limit−−−−−−−→
Vol(Eτ )→0

⊕IgI . (4.45)

We have already noted in section 3.4 that upon circle reduction on S̃1
B, a field ψ in F-theory

decomposes into a Kaluza-Klein zero-mode ψ0 together with an entire tower of Kaluza-Klein states
ψn,

ψ(x, ỹ) =
∞

∑
n=−∞

ψn(x)ei n
R ỹ . (4.46)
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Consider a field associated with one of the roots of gI . Its KK zero mode in M-theory is described
by the particle wrapping one of fibral curves C described above. Since by construction, these curves
do not intersect the zero-section S0 and not any of the vertical divisors, the KK charge [S̃0] · [C] = 0
as required. The tower of KK states is obtained by including M2-branes wrapping a curve in the
class

[Cn] = [C]+n[E]τ with qKK = [S̃0] · [Cn] = n. (4.47)

The tower of KK states is an important ingredient when it comes to matching the F-theory
and the M-theory effective action. Since by construction the M-theory effective action is on its
Coulomb branch as long as we are compactifying a smooth resolved space Ŷn+1, the relevant modes
in the low-energy effective action include only the massless, uncharged modes. The effect of the
massive states has been integrated out and summed up in the classical effective action. To match
this effective action with the F-theory dynamics one dimension higher one must integrate out the
KK states in the circle reduction along S̃1

B. We have already alluded to this in the context of the
Chern-Simons terms in section 3.4, and this effect plays an even more important role in presence
of matter, such as the matter along the 7-branes. The detailed match between the classical M-
theory Chern-Simons terms and the F-theory loop induced Chern-Simons terms contains valuable
information about the F-theory spectrum. This has been analyzed from various perspectives in
F/M-theory duality in 6d/5d [56, 57, 60, 61, 63–65], in 4d/3d/ [62, 85, 86] and in 2d/1d [87, 88].

4.5 Tate models and resolutions

It is high time to exemplify the geometric structure and its physics interpretation analyzed so
far in a concrete example. In the vicinity of a codimension-one singularity a Weierstrass model can
locally be brought into the so-called Tate form by means of a general algorithm [69] placing the
singularity in the fiber at the points [x : y : z] = [0 : 0 : 1]. This algorithm has been introduced to the
physics community in [70] and is analyzed in further depth in particular in [21, 68]. The algorithm
automatically distinguishes between the split Kodaira fibers, where no monodromies occur, and
the non-split (and semi-split) fibers with (partial) monodromy (see the last column in table 4.1).

Under certain conditions, an elliptic fibration with a singularity along a single divisor W on
Bn can in fact be globally described in Tate form, i.e. as the vanishing locus of the hypersurface
polynomial

PT := y2 +a1xyz+a3yz3− x3−a2x2z2−a4xz4−a6z6 with ai ∈ Γ(Bn,K−n
Bn

) . (4.48)

The polynomial PT is the most general polynomial of degree 6 in P231 with homogenous coordin-
ates [x : y : z]. The space P231 is the fiber ambient space. The fibration of this space over the
base Bn defines the ambient space Xn+2, into which the elliptic fibration Yn+1 is embedded as the
hyersurface

Yn+1 : {PT = 0} ⊂ Xn+1 . (4.49)

The fact that the polynomial (4.48) contains all possible monomials compatible with the projective
scaling relation means that it defines a toric hypersurface model.
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Given such a Tate model, a Weierstrass model can be obtained from PT by completing the
square in y and the cube in x. After relabeling the coordinates, this gives rise to a Weierstrass
equation PW with

f = − 1
48

(b2
2−24b4), g =

1
864

(b3
2−36b2b4 +216b6) (4.50)

in terms of

b2 = 4a2 +a2
1, b4 = 2a4 +a1a3, b6 = 4a6 +a2

3 . (4.51)

A generic Tate model with generic ai ∈ Γ(Bn,K−i
Bn
) and a generic Weierstrass model with generic f

and g are in fact equivalent. For specific f and g, leading to a certain enhancement pattern, on the
other hand, it may in general not be possible to write the Weierstrass model globally in Tate form.
This is in particular the case for Weierstrass models with enhancements In for n = 6,7,8,9 or I∗3 ,
and for certain choices of base spaces Bn. For more details on the potential global obstructions we
refer to [68]. In these cases, the Tate form (4.48) (or a variant thereof [68]) can be obtained only
locally. Note that [68] is working under the hypothesis that each discriminant component carrying
non-abelian gauge enhancement is itself smooth. For singular divisors, additional restrictions can
occur. This becomes particularly relevant for the structure of codimension-two singularities, as will
be discussed later.

Tate’s algorithm systematically describes the specializations of the Tate polynomials ai leading
to the various Kodaira types. The vanishing orders are summarized in Table 2 of [70], an updated
version of which can be found in [68].15 As the simplest example with non-trivial gauge algebra,
consider a Tate model with an I2 Kodaira fiber over a divisor W : {w = 0} on a base Bn. From Table
2 in [70] we read off that this singularity type is achieved by the specializations

a1 generic, a2 = a2,1w, a3 = a3,1w, a4 = a4,1w, a6 = a6,2w2 . (4.52)

The polynomials ak,l are to be taken to be generic polynomials of degree k[K̄Bn ]− l[W ] on the base.
All that follows is independent of a concrete choice of base as long as the existence of sufficiently
generic such polynomials is guaranteed.

From (4.50) and (4.51) we find

f =
1
48

(−a4
1 +O(w)), g =

1
864

(a6
1 +O(w)),

∆ = ∆0 ∆
2
1 ∆0 =

1
16

(a4
1(−a1a3,1a4,1−a2

4,1 +a1a6,2)+O(w)), ∆1 = w .

(4.53)

In the notation of (4.17) and (4.18), the discriminant divisor Σ splits into

Σ = Σ0∪Σ1, Σ0 = {∆ = 0}, Σ1 = {∆1 = 0} ≡ {w = 0} . (4.54)

Clearly ord( f ,g,∆)|Σ1 = (0,0,2) as befits an I2-fiber. In fact, the fiber over Σ1 is of split type Is
2, i.e.

there are no monodromies over Σ1. The non-split case Ins
2 with monodromies would correspond

15In particular, the gauge algebra associated with the entries labeled ’unvconvent.’ in Table 2 of [70] is the one listed
in table (4.1).

38



P
o
S
(
T
A
S
I
2
0
1
7
)
0
1
6

F-theory Timo Weigand

to generic a2. This is confirmed by testing if the monodromy cover in table 4.1 factorises. Since
sp(1) = su(2) the gauge algebras agree in both cases, but we will find traces of the split versus
non-split nature of the fibers in the geometry below.

The fiber is singular when PT = dPT = 0, which happens at the point [x : y : z] = [0 : 0 : 1] for
w = 0. To resolve this singularity into a globally defined fibration Ŷn+1, we follow [54] and perform
a blow-up, replacing

(x,y,w)→ (xe1,ye1,e0e1) =: (x̃, ỹ, w̃). (4.55)

Plugged into PT , this replacement leads to

PT → e2
1 P̂T (4.56)

with the proper transform

P̂T = (y2 +a1xyz+a3,1yz3e0)− (x3e1 +a2,1x2z2e0e1 +a4,1xz4e0 +a6,2e2
0z6) (4.57)

representing the hypersurface equation of the resolved space. The ambient space coordinates are
subject to the scaling relations

(x,y,z,e0,e1) ' (λ 2x,λ 3y,λ z,e0,e1) (4.58)

' (µx,µy,z,µe0,µ
−1e1) λ ,σ ∈ C∗ . (4.59)

The first is just the old scaling relation of P231, and the second relation derives from the fact that
the new coordinates (x̃, ỹ, w̃) by which we replace (x,y,w) must be invariant under a rescaling of
e1. Clearly, due to the introduction of the extra scaling relation the total dimension of the ambient
space has not changed even though we have introduced a new coordinate, the blow-up coordinate
e1. The resolved elliptic fibration Ŷn+1 is now given by the hypersurface

Ŷn+1 : {P̂T = 0} ⊂ X̂n+2 , (4.60)

where X̂n+2 is the blown-up ambient space. The ambient space with the scaling relations (4.58)
and (4.59) can be understood in an elementary manner by interpreting the coordinates as the fields
in a two-dimensional Gauged Linear Sigma Model (GLSM) [89] with gauge group U(1)×U(1).
The scalings of the coordinates correspond to the abelian charges of the associated fields. A to-the-
point review of important properties of such models and their geometric interpretation can be found
e.g. in section 5 of [26]. The hypersurface equation translates into a superpotential for the matter
fields. The D-term conditions of this 2d gauge theory allow for two different types of solutions,
each describing a different topological phase of the associated ambient space geometry. In the lan-
guage of toric geometry, these different phases correspond to the two possible triangulations of the
toric space. These phases are distinguished by the Stanley-Reisner (SR) ideal generated by certain
monomials in the toric coordinates: Each monomial describes a combination of coordinates which
are not allowed to vanish simultaneously. Their zero-locus is hence absent from the geometry. In
the present situation, the two different topological phases of the toric ambient space are encoded in
the SR ideal of the ambient space generated by [54]

xyz, xe0y, yze1,

{
xe0 phase1

ze1 phase2
(4.61)
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Note that x = e0 = P̂T = 0 and z = e1 = P̂T = 0 both imply y = 0, but xye0 and zye1 are in the SR
ideal in each of the two phases. Hence the Stanley-Reisner ideals of both phases, once restricted to
the hypersurface P̂T = 0, reduce to the same

SR− ideal = {xyz, ze1, xe0} . (4.62)

This is a special property of the current simple model. An interpretation of the different resolutions
of the same Weierstrass model will be given in section 5.2. This is crucial because P̂T and dP̂T

continue to vanish at x = y = e0 = 0, but this locus is absent from the geometry because x and
e0 must not vanish simultaneously. We have therefore succeeded in resolving the singularity over
generic points of w = 0. In fact, P̂T = 0 is smooth. The single blow-up has increased the rank of
the Picard group by one,

h1,1(Ŷn+1) = 2+h1,1(Bn) . (4.63)

Let us now investigate in more detail the degenerate fibers. The resolution divisor

E1 : {e1 = 0} on {P̂T = 0} (4.64)

can be described on the ambient space X̂n+2 as follows: Since ze1 is in the SR-ideal (as it must be
because the original singularity was at [x : y : z] = [0 : 0 : 1] and hence away from {z = 0}), we can
set z≡ 1 and evaluate explicitly

E1 : {P̂T = 0}∩{e1 = 0}= {−y2−a1xy−a3,1e0y+a4,1xe0 +a6,2e2
0 = 0}∩{e1 = 0} . (4.65)

Since P̂T |e1=0 is a quadratic polynomial, this describes a rational curve P1
1 fibered over the locus

{w = 0} on Bn. Similarly,

E0 : {P̂T = 0}∩{e0 = 0}= {e1− y2−a1yz = 0}∩{e0 = 0} , (4.66)

where we have set x ≡ 1 since xe0 is in the SR ideal. This describes the rational curve P1
0 fibered

over {w = 0}. Unlike P1
1, this fiber component is intersected once by the zero-section S0 = {z = 0}.

The two fiber components P1
0 and P1

1 intersect at two distinct points in the fiber because

E0∩E1 = {P̂T = 0}∩{e0 = 0}∩{e1 = 0}= {y(y+a1) = 0}∩{e0 = 0}∩{e1 = 0} . (4.67)

This reproduces the Dynkin diagram of su(2), as expected. It is interesting to contrast this to
the non-split case with fiber Ins

2 , where a2 is generic: In this case the two intersection points are
exchanged by a monodromy because

E0∩E1|non−split = {P̂T |non−split = 0}∩{e0 = 0}∩{e1 = 0} (4.68)

= {y(y+a1)−a2 = 0}∩{e0 = 0}∩{e1 = 0} . (4.69)

For future convenience, let us introduce the following notation to describe spaces of the type
encountered above: The vanishing locus of a number of polynomials p1, p2, . . . , pk on X̂n+2 will
be denoted as V (p1, p2, . . . , pk). In this sense,
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E0 =V (e1− y2−a1yz,e0), E1 =V (−y2−a1xy−a3,1e0y+a4,1xe0 +a6,2e2
0,e1),

E0∩E1 =V (y(y+a1)−a2,e0,e1) .
(4.70)

The polynomials pi, which take values in the coordinate ring of X̂n+2, form an ideal, whose
associated vanishing locus is the indicated space.

This geometry is clearly the simplest possible example both of a non-trivial gauge algebra and
of the resolution of a singular Weierstrass model. The fact that the Weierstrass model is formulated
as a global Tate model makes it amenable to toric methods [90–92]: We have already stressed that
the Tate polynomial is the most generic hypersurface of degree six in P231; in toric language, the
fiber ambient space is described by a two-dimensional reflexive polygon, and the generic monomi-
als appearing in the smooth hypersurface equation are encoded in the dual polygon. There are,
in fact, sixteen different realizations of a genus-one curve as a hypersurface in a toric ambient
space, and P231 corresponds to polygon 10 in the enumeration of [92]. The remaining polygons
describe genus-one fibers with either no rational point at all or with several such points, as will be
discussed in more detail in section 7.5. The specialization (4.52) is enforced by setting some of the
monomials of the fibration to zero. The resolution of the resulting singularities can be understood
in the language of a toric top, as introduced originally by Candelas and Font [90]. This process
can be repeated for all possible gauge algebras. The data for the associated toric tops encoding the
resolution of the global Tate model are listed in [92].

Models which do not have the property that the gauge algebra is achieved simply by setting
suitable monomials to zero are called non-toric or non-canonical: Here the singularity is the effect
of tunings of the polynomials of the hypersurface equation relying on non-trivial cancellations
between them. An example is the tuning of an In singularity in a Weierstrass model as sketched
around (4.7), and for n = 6,7,8,9 such models cannot be brought into generic Tate form globally
[68]. The distinction between generic and non-generic models becomes even more subtle in the
presence of extra sections (see section 7.5). There exists by now a large F-theory literature devoted
specifically to the systematic resolution of singular elliptic fibrations, both of toric and non-toric
type, including [54, 93–101]. We will survey them more in section 7.6.

4.6 Zero-mode counting along the 7-brane

We now address in more detail the question of how to count the massless spectrum of charged
modes propagating along a stack of 7-branes in F-theory compactified on an elliptic fibration Ŷn+1.
While determining the gauge quantum numbers depends only on the structure of the fiber of the
elliptic fibration, the actual zero-mode counting is sensitive to the details of the base including
its dimension. There are two possible derivations of the massless 7-brane ’bulk’ spectrum. The
first proceeds by quantization of the moduli space of wrapped M2-branes in the dual M-theory, as
performed for M/F-theory on an elliptic 3-fold Ŷ3 in [60]. The spectrum of the extra scalar fields
and their superpartners in the dual F-theory can alternatively be determined by viewing the effective
F-theory as the result of compactifying 8d N = 1 Super-Yang-Mills theory along the divisor ΣI .
This requires a partial topological twist studied for F-theory compactifications to four dimensions
in [6, 7] and for F-theory compactifications to two dimensions in [87, 102].
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We now collect the main results of these two approaches as they have appeared in the literature
so far, treating the different cases n = 2,3,4 separately.

F-theory on R1,5× Ŷ3

In M-theory compactification on an elliptic threefold Ŷ3, the methods of [60] predict, in addi-
tion to a 5d N = 2 vector multiplet, a number of g(ΣI) hypermultiplets in the adjoint representation
of the Lie algebra gI , where g(ΣI) is the genus of the curve ΣI . If gI is non-simply laced, extra hy-
permultiplets in representation ρ0 occur as listed in Table 4.3. Their number is given by

n(ρ0) = g(Σ′I)−g(ΣI) . (4.71)

Here Σ′I is a (branched) multi-cover of ΣI such that the elliptic fibration over ΣI can be viewed as the
quotient of an elliptic fibration over Σ′I with generic fiber type g̃ (and without monodromies) [82].
By Hurwitz’s theorem,

g(Σ′I)−g(ΣI) = (d−1)(g(ΣI)−1)+
1
2

deg(r) , (4.72)

where d is the degree of the multi-covering and r the ramification divisor of the covering. Note
that d = 2 for all non-simply laced algebras except g2, for which d = 3. For more information,
especially on the ramification divisor of the multi-covering, we refer to [20].

F-theory on R1,3× Ŷ4

Compactifications of F-theory to four dimensions preserve N = 1 supersymmetry. Let us
briefly recap the derivation of the massless spectrum along a 7-brane stack using the topological
twist of [6, 7]. For simplicity we restrict this discussion to the case of a simply-laced Lie algebra
gI . The starting point is the spectrum of an 8d N = 1 gauge theory in flat space R1,7. Its vector
multiplet contains the 8d vector potential Am, one complex scalar Φ as well as an 8d Weyl spinor
in the 16 of SO(1,7). All of these modes transform in the adjoint of gI . The complex scalar Φ

parametrizes the motion of the 7-brane in the two normal directions. Compactifying this theory
on a complex Kähler surface ΣI requires a topological twist along ΣI in order to preserve four
real supercharges in R1,3. The details of this twist can be found in section 3.2 of [7]. The twist
ensures that the bosonic and fermionic modes obtained by decomposing the fields in the vector
multiplet organize themselves into full N = 1 supermultiplets. At the bosonic massless level, the
fluctuations of the 8d gauge potential Am along the non-compact directions R1,3 give rise to the 4d
components Aµ of the 4d gauge potential, while the internal fluctuations of Am along ΣI contribute
4d scalar fields called ’Wilson line moduli’. The complex scalar Φ contributes extra scalar fields
associated with the brane deformations in the directions normal to ΣI in B3.

The Wilson line and the deformation moduli each form the bosonic part of massless N = 1
chiral and anti-chiral multiplets in the adjoint of gI propagating along ΣI . They are counted by the
following cohomology groups:

chiral : H1(ΣI,OI)⊕H0(ΣI,OI⊗KΣI )

anti− chiral : H2(ΣI,OI)⊕H1(ΣI,OI⊗KΣI ) .
(4.73)
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Here OI refers to the trivial bundle along ΣI; we have included it here because it will be replaced by
a more general gauge bundle in the presence of a gauge background, as will be discussed in section
9. For now, we stick to the situation of a trivial gauge bundle. Note that

dim(H1(ΣI,OI)) = dim(H1(ΣI,OI⊗KΣI )) = h0,1(ΣI) (4.74)

dim(H2(ΣI,OI)) = dim(H0(ΣI,OI⊗KΣI )) = h0,2(ΣI) . (4.75)

The second equality in each line uses the Serre duality formula for cohomology groups of a vector
bundle V on a complex space X of dimension n,

H i(X ,V ) = [Hn−i(X ,V∨⊗KX)]
∗ , (4.76)

where V∨ denotes the dual vector bundle. In particular, the dual of a line bundle L is the line bundle
such that L⊗L∨ = O and hence c1(L∨) = −c1(L). Clearly the dual of the trivial bundle is again
trivial.

The CPT conjugate of a 4d chiral multiplet in representation R is an anti-chiral multiplet in the
conjugate representation R̄. Since the adjoint representation is self-conjugate, the fields counted by
the first and second line of (4.73) are not independent, but CPT conjugate to one another. The modes
counted by h0,1(ΣI) represent the Wilson line moduli. The remaining modes counted by h0,2(ΣI)

correspond to the brane deformation moduli. In summary, the bulk modes along a 7-brane stack in a
4d F-theory compactification contribute h0,1(ΣI)+h0,2(ΣI) massless N = 1 chiral multiplets in the
adjoint representation of gI , in addition to one vector multiplet. For vanishing gauge background,
the spectrum is non-chiral: To each chiral fermion in representation R = adj(gI) there exists an
anti-chiral fermion in the same representation.

F-theory on R1,1× Ŷ5

Compactifying F-theory on an elliptic 5-fold Ŷ5 gives rise to a 2d theory with N = (0,2)
supersymmetry. The 7-brane now wraps a complex Kähler 3-fold ΣI on the base B4. The zero-
modes and effective action involving the bulk modes along the 7-brane can again be determined
by a topological twist [87, 102]. The resulting supersymmetry is chiral, much like in 6d, and our
conventions are that the supercharges are given by two chiral Majorana-Weyl fermions. The chir-
alities of the fermions below are counted with respect to this choice. As before the 8d vector
potential contributes both the gauge potential along the extended directions and Wilson line mod-
uli, while the complex scalar Φ gives rise to brane deformation moduli. The Wilson line moduli
continue to be counted by H1(ΣI,OI) = H(0,1)(ΣI) and the brane deformation moduli take values
in H0(ΣI,KΣ) = H(0,3)(ΣI). The 8d gaugino Ψ furnishes the respective superpartners. This leads
to one 2d N = (0,2) vector multiplet (with an anti-chiral Majorana-Weyl fermion as the gaugino)
as well as h0,1(ΣI) 2d (0,2) chiral multiplets counting the Wilson line degrees of freedom and
h0,3(ΣI) chiral multiplets counting the brane deformation moduli. The fermions in these multiplets
are chiral Weyl spinors. A peculiarity of 2d N = (0,2) supersymmetry is the existence of Fermi
multiplets consisting only of an anti-chiral Weyl spinor with no scalar superpartner. Indeed, de-
composition of Ψ yields, in addition to the above fermionic modes, the degrees of freedom of
h0,2(ΣI) such Fermi multiplets in the topologically twisted theory. All of these modes transform
in the adjoint representation and are accompanied by their CPT conjugate fields. Note that in 2d,
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the CPT conjugate of a chiral fermion in representation R gives a chiral fermion in representation
R̄. The adjoint representation is self-conjugate. The independent bulk modes are then counted as
follows:

vector multiplets : H0(ΣI,OI)

chiral multiplets : H1(ΣI,OI)

Fermi multiplets : H2(ΣI,OI)

chiral multiplets : H3(ΣI,OI) .

(4.77)

Unlike in the 4d case discussed above, this spectrum exhibits a net chirality because the CPT
conjugate multiplets (transforming in R̄ = adj(gI) = R(gI)) have identical chirality. A measure for
the chirality of the spectrum is the index (assuming a smooth divisor ΣI)

−χ(ΣI,O) = −
3

∑
i=0

(−1)idim(H i(ΣI,OI)) =−
∫

ΣI

ch(OI)Td(ΣI) (4.78)

= − 1
24

∫
ΣI

c1(ΣI)c2(ΣI) . (4.79)

We have included an overall minus sign to comply with our convention that the vector and the
Fermi multiplets contain negative chirality Weyl spinors. The second equality in the first line
uses the Hirzebruch-Riemann-Roch index theorem, which is applicable in this form as long as
the 7-brane divisor is smooth. The chirality of the bulk spectrum - even in absence of non-trivial
gauge backgrounds - leads to chiral anomalies, whose consistent cancellation is discussed in detail
in [87, 88, 102, 103].

5. Codimension-two singularities and localised charged matter

Having understood the connection between codimension-one singularities and non-abelian
gauge algebras in F-theory, we now turn to the behaviour of elliptic fibrations in codimension two
on the base. The special loci of interest describe the intersection of two 7-brane stacks. Here new
types of (p,q) strings stretched between the intersecting 7-branes localize and give rise to massless
matter in F-theory. In the dual M-theory, these states are due to M2-branes wrapping new curve
components appearing in the codimension-two fiber.

In section 5.1 we approach the codimension-two singularities from the Weierstrass perspective
and anticipate the general pattern of representations via the Katz-Vafa method. The structure of the
codimension-two fibral components is analysed in more detail in section 5.2 both in geometric and
group theoretic terms. These general patterns are illustrated in an example in section 5.3. The
counting of the charged massless localised matter is the topic of the subsequent section 5.4. Two
interesting obstructions to the existence of a smooth, flat fibration are discussed in section 5.5 and
5.6.

5.1 Codimension-two singularities in the Weierstrass model and Katz-Vafa method

Over special loci in complex codimension-one on the discriminant divisor Σ of a Weierstrass
model Yn+1, the singularity in the fiber enhances. These loci are of complex codimension two on the
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base Bn and the associated fibers are oftentimes called codimension-two singular fibers. The change
in singularity type is indicated by an increase in the vanishing orders (ord( f ),ord(g),ord(∆)) in the
Weierstrass model. If we adopt the notation (4.17) for the dicriminant polynomial and (4.18) for the
associated discriminant divisor, the codimension-two loci in question are given by the intersection
loci

CIJ = ΣI ∩ΣJ . (5.1)

As a special case, we explicitly allow for the possibility that a divisor ΣI self-intersects [104, 105].
In this case ΣI is necessarily singular as a divisor on Bn. Oftentimes CIJ decomposes into several
loci, each characterized by a different type of fiber enhancement. In this case we shall write

CIJ = ∪r C(r)
IJ . (5.2)

If the base is of complex dimension n = 2, then each C(r)
IJ is a set of points on B2, while for n = 3

and n = 4, each C(r)
IJ is an irreducible curve on B3 or surface on B4, respectively.

From the perspective of the Weierstrass model the first step in analyzing the enhancement loci
is to determine the vanishing orders and to associate a ’naive fiber type’ to each C(r)

IJ from the first
four columns of table 4.1,

ord( f ,g,∆)|
C(r)

IJ
⇒ naive Kodaira type . (5.3)

This can serve as a first indication of the matter which is expected to be localized at C(r)
IJ even

though special care has to be applied, as will be discussed in section 5.2. From the table one can
read off the Lie algebra

hIJ,r ⊃ g̃I⊕ g̃J (5.4)

associated with this vanishing behaviour. Here g̃I represents the simply-laced covering algebra of
the gauge algebra gI along ΣI in case the latter is not simply laced. The Lie algebra hIJ,r does not
correspond to a gauge algebra in the effective action, but it contains information about the expected
representations. As a crude rule of thumb, the decomposition of the adjoint of this algebra into
irreducible representations of gI and gJ gives, apart from the respective adjoints, a number of new
representations of gI and gJ (plus extra singlets). The charged states are in a first approximation the
types of representations expected. The underlying reasoning is this: The gauge theories along ΣI

and ΣJ can be viewed as a deformation of a mother gauge theory with algebra hIJ,r by the VEV 〈ϕ〉
of a Higgs field in the adjoint of hIJ,r. This VEV varies over the 7-brane loci and vanishes at the
intersection C(r)

IJ . Note that this is a local picture, and in particular for the different enhancement
loci the associated Lie algebras hIJ,r differ. Since at the location of C(r)

IJ the Higgs VEV vanishes,
it is here that remnants of the full adjoint hIJ,r are localised. The remnants are precisely the matter
states in the extra charged representations in the decomposition hIJ,r→ gI⊕gJ .

The above procedure is the Katz-Vafa picture [106], which was spelled out and formalized in
detail for F-theory compactification on elliptic 3-folds in [20,21] (see for instance Assignment 8.21
in [23] for a more precise formulation than we have given above). In particular, this method allows
one to determine the representations and, in compactifications to six dimensions, their multiplicities
even without studying a full resolution. The possible enhancement types of the Weierstrass model
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in codimension two and the associated matter representations have been classified in [20,21] for all
Weierstrass models which satisfy a certain genericity assumption, namely where the discriminant
divisor is of the form Σ = Σ0∪Σ1 with only one non-abelian gauge algebra along a smooth divisor
Σ1, but the model is otherwise maximally generic.16

New types of representations can occur in this manner if we drop requirement that the divisor
ΣI is smooth: For instance, in the case of a model with gauge algebra su(n), if the gauge divisor
is smooth, the only representations which occur in codimension two are the fundamental and 2-
index antisymmetric ones (which are possible also in perturbative Type IIB orientifolds) as well
as, for su(6), su(7), su(8), three-index anti-symmetric representations if the enhancement is tuned
to higher rank [104, 107]. This is a truly non-perturbative effect which involves enhancements to
an exceptional gauge algebra hIJ,r; the resulting representation is composed of (p,q) strings not
available in the weak coupling limit. A description of codimension-two matter directly in terms of
such (p,q) string junctions is given in the recent works [74,108–111], which also contain references
to earlier work on (p,q) strings. By contrast, at self-intersections of ΣI other representations can
occur including symmetric tensor representations [112,113] (two-index symmetric representations
were studied in [107,114] and three-index symmetric ones in [115]) or more exotic representations
such as box representations [104,105]. Here the fact that the divisor is non smooth implies that the
coordinate ring in a neighborhood is a non-UFD (unique factorization domain) [105]. This makes
possible very non-generic enhancements of the vanishing order due to intricate cancellations in f
and g.

5.2 The relative Mori cone and the weight lattice

In the resolution Ŷn+1, the topology of the fiber changes compared to the fibers over generic
points of the discriminant. A complete classification of the possible fiber types in complex codi-
mension two is not yet available in full generality in the mathematics literature. In particular the
classification of Kodaira-Néron is a priori valid only for elliptic surfaces and, with the modifica-
tions due to global effects as described, over generic points in complex codimension one on more
general elliptic fibrations. However, insights from F/M-theory and the physics interpretation of the
codimension-two loci described in the previous section allow for a classification of the expected
fiber types [99, 100, 116–118]. For minimal elliptic threefolds mathematical theorems are proven
in [119].

Let us assume that the singularity types of a Weierstrass model Yn+1 in codimension two are
such that a flat (i.e. equidimensional), smooth Calabi-Yau resolution Ŷn+1 exists. In particular,
this implies that the vanishing orders of ( f ,g) do not simultaneously exceed (4,6) in codimension
two. We will come back to what happens if the assumption of a smooth, flat Calabi-Yau resolution
in codimension two fails in sections 5.5 and 5.6. With a few exceptions17 the cone of effective
curves in the fiber not intersecting the zero-section S0 becomes larger at the special fibers. If one
approaches the special fibers from one of the discriminant components ΣI , the enhancement is due
to a splitting of one or more of the fibral curves P1

iI into two or several curves over the special

16The behaviour at the non crepantly resolvable codimension two loci of these models has been specified in [23], see
section 5.6.

17For instance an enhancement or the vanishing orders (0,0,1)→ (1,1,2), corresponding to a change of the naive
Kodaira fibers, does not give rise to such an increase.
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loci. As a result, effective curves exist in codimension-two which cannot be holomorphically trans-
ported away from the special loci. An M2-brane wrapping any combination of curves involving
one or several of these special fiber components gives rise to a state localised in codimension two,
called localised matter for this reason. In all examples studied so far, the intersection pattern of
the codimension-two fibers of Ŷn+1 reproduces the extended Dynkin diagram of a Lie algebra. The
Lie algebra is the one associated with the Kodaira fiber which one would naively attribute to the
vanishing order of ( f ,g,∆). However, various monodromy effects can delete the fiber compon-
ents associated with one or several of the nodes of the Dynkin diagram. In this way, the fibers
in codimension two can be of ’non-Kodaira’ type, i.e. differ from the list of possible fibers in
codimension-one. Indeed such behaviour has been exemplified in the mathematics literature by
Miranda [120], and first appeared in the F-theory context in [94, 104]. Cattaneo proves in [119]
that for every smooth, flat Calabi-Yau resolution of a Weierstrass model of complex dimension
three, the non-Kodaira fibers must always be of this form.

What is important for the physics interpretation is that, similar to our treatment of codimension-
one fibers, one can form the intersection product of the resolution divisors EiI with the new curves
in the fibers. These compute the charges of the corresponding M2-brane states with respect to the
Cartan U(1)iI and hence identify the representation of the wrapped M2-brane states. To understand
this in more detail, we again indulge in a small

Group Theoretic Interlude (II):

Given a Lie algebra g, we associate to an irreducible representation R of g a weight vector
β a(R), a = 1, . . . ,dim(R). Each entry is itself a vector of dimension rk(g). It contains the charges
of a state in the given representation with respect to the generators Ti of the Cartan subalgebra,
i = 1, . . . , rk(g), i.e.

Ti|β a(R)〉= β
a
i (R)|β a(R)〉 . (5.5)

A representation is characterized by its highest weight β 1(R), and the full weight vector β a(R) can
be reconstructed from the highest weight by adding suitable linear combinations of simple roots,

β
a(R) = β

1(R)+∑
i

na
i αi for some na

i ∈ Z. (5.6)

For example, the fundamental representation fund of g= su(N) is characterized as

β
1(fund) = (1,0,0, . . . ,0)

β
2(fund) = β

1(fund)−α1 = (−1,1,0, . . . ,0)

β
3(fund) = β

2(fund)−α2 = (0,−1,1,0, . . . ,0)

. . .

β
n(fund) = β

n−1(fund)−αn = (0,0, . . . ,0,−1) .

(5.7)

Let us now anaylse the structure of the fibers over one of the loci C(r)
IJ in (5.2) in more detail.

The material of this section is a condensate of the findings of [121] [122] [62] [61] [123] [63] [98]
[116] [99] [117] [118] [100]. We will follow mostly the presentation in [23].
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The fiber over C(r)
IJ contains a union of rational curves. We have already alluded above to

the relative Mori cone NE(C(r)
IJ ) as the cone of effective curve classes in this fiber with vanishing

intersection number with the class of the zero-section [S0]. This means that the curve classes have
as representatives holomorphic curves not intersected by S0. The generators of NE(C(r)

IJ ) are the
classes associated with the curves P1

iI and P1
jJ in the fiber over generic points of ΣI and ΣJ , together

with all the curves C(k)
sp which arise by a splitting of these curves.

Then the first key fact is that the intersection numbers of the split curves with the resolution
divisors EiI reproduce a weight vector of some representation R of gI , i.e.

[EiI ] · [C
(k)
sp ] = β

a
iI (R) (5.8)

for some a ∈ {1, . . . ,dim(R)}. The complete weight vector is found by adding suitable integer
linear combinations of positive simple roots αiI ,

β
b(R) = β

a(R)+∑
iI

nb
iI αiI . (5.9)

In view of the identification (4.35), consider therefore the linear combination Csp +∑iI nb
iI (−P

1
iI ) of

curves. If C is a holomorphic curve, we mean by −C the curve with opposite orientation such that
[−C] is anti-effective. The intersection number of Csp+∑iI nb

iI (−P
1
iI ) with the resolution divisor EiI

gives the weight β b
iI (R) by construction.

The second non-trivial fact is that the class of this curve is either effective or anti-effective,
depending on the integers nb

iI . We symbolize this by the notation

Cεb(β b(R);C(k)
sp ) =C(k)

sp +∑
jI

nb
jI (−P

1
jI ) (5.10)

where εb = 1 (εb =−1) indicates that [Cε(β
b(R))] is effective (anti-effective).

We can thus form a set M(C(k)
sp ) of dim(R) curves with effective or anti-effective classes,

M(C(k)
sp ) := {Cεb(β b(R);C(k)

sp ), β = 1, . . . ,dim(R)} , (5.11)

with the property that

[EiI ] · [Cεb(β b(R);C(k)
sp )] = β

b(R) . (5.12)

An M2-brane wrapping a holomorphic (if εb = 1) or anti-holomorphic (if εb = −1) curve in this
set gives rise to a BPS state with the corresponding weight; altogether this realises the full repres-
entation R. An anti-M2 brane wrapping the same curve, or equivalently an M2-brane wrapping the
orientation reversed curve, gives rise to a BPS state with the negative weight, corresponding to the
complex conjugate representation R̄. The set of curves associated with R̄ is hence

−M(C(k)
sp ) := {−Cεb(β b(R);C(k)

sp ), β = 1, . . . ,dim(R)} . (5.13)

If M(C(k)
sp ) =−M(C(k)

sp ), the representation R is identical to its conjugate. We can now continue this
process of building complete representations, starting from each of the split curves in the fiber. This
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way we can realize several distinct copies of the same representation R, or possibly even several
distinct representations. On the other hand, if for C(l)

sp 6= C(k)
sp , the corresponding sets are equal in

the sense that M(C(k)
sp ) = M(C(l)

sp ) or M(C(k)
sp ) = −M(C(l)

sp ), then we have simply constructed the
same set of curves in both cases. Keeping only the representations associated with the distinct sets
we systematically obtain the full set of representations. Note that the states obtained in this way
over C(r)

IJ form a representation of gI⊕gJ .
In this sense, the relative Mori cone NE(C(r)

IJ ) of the elliptic fibration generates the weight
lattice of the gauge theory. This includes the states in codimension one.

Different resolutions of the same singular elliptic fibration are birationally equivalent and give
rise to the same assignment of representations.18 However, they differ by the collection of signs
εb indicating which weights are realized by an effective versus anti-effective curve. The different
choices of signs, which are geometrically related by flops in the fiber, correspond to different sub
wedges in the Coulomb branch of the M-theory effective action [61,62,121–123]. This one-to-one
correspondence between the classical Coulomb branch phases and the web of birational resolutions
has been studied in detail in the recent literature [63, 98–100, 116–118].

5.3 Example: SU(2) Tate model

Let us illustrate these ideas in an example. For simplicity we continue analysing the SU(2)
Tate model introduced in section 4.5. From (4.53), (4.54) we recall that the discriminant factorises
as

∆ = ∆0 ∆
2
1, ∆1 = w, ∆0 =

1
16

(a4
1 P+O(w)), P = (−a1a3,1a4,1−a2

4,1 +a1a6,2) .(5.14)

The intersection C01 = Σ0∩Σ1 factorises into two different loci with Weierstrass vanishing orders

C(1)
01 = {w = 0}∩{a1 = 0} : (ord( f ),ord(g),ord(∆)) = (1,2,3)

C(2)
01 = {w = 0}∩{P = 0} : (ord( f ),ord(g),ord(∆)) = (0,0,3) .

(5.15)

The vanishing orders along C(1)
01 indicate a change of fiber type from I2 to III. We have stressed

that in codimension-two and higher, the actual fiber type may differ from Kodaira’s classification
by deleting nodes in the corresponding Dynkin diagram. Here this is not the case. To determine
the topology of the fiber over C(1)

01 we follow the two generic fiber components P1
0 and P1

1 as we
approach a1 = 0. Over generic points of Σ1, the rational fibers of the two resolution divisors E0 and
E1 can be understood as the complete intersection

P1
0 =V (e1− y2−a1yz,e0,d1, . . . ,dn−1)

P1
1 =V (y2−a1xy−a3,1e0y+a4,1x+a6,2e2

0,e1,d1, . . . ,dn−1) ,
(5.16)

where Di : {d1 = 0}, i = 1, . . . ,n− 1 is a collection of divisors on the base Bn which intersect the
discriminant component Σ1 in one generic point19 and by abuse of notation we do not distinguish

18While intuitively clear from a physics perspective, it is not obvious from a purely mathematical point of view that
the representations assigned in this way to the singular fibers are birational invariants. This is proven in [23] in the
context of elliptic threefolds subject to the genericity assumptions of [20].

19For simplicity we assume here the existence of such divisors. Their sole purpose is to single out a point on Σ1.
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here between the divisor and its defining equation. The behaviour of these two curves over C(1)
01 can

be studied by replacing one of the polynomials di by {a1 = 0}. As we can see, neither P1
0 nor P1

1
factorises over {a1 = 0}, but (4.67) shows that the two intersection points in the fiber characteristic
for an I2 fiber coalesce in a double intersection as we approach a1 = 0. This reproduces the structure
of a Kodaira Type III fiber, in agreement with the naive expectations from the vanishing orders
(5.15). Since none of the fibral curves splits, we find no new representations at this locus in addition
to the adjoint of su(2) present over generic points of Σ1.

On the other hand, over C(2)
01 , the fibral curve P1

1 splits into

P1
1→C(1)

sp ∪C(2)
sp . (5.17)

We can see this already by going to a patch where a1 6= 0 and solving P = 0 for a6,2. Plugging this
value into the defining hypersurface equation gives

P̂T |e1=0∩P=0 =−
1
a2

1
(a1y−a4,1e0z3)(a1y+a2

1x+a1a3,1e0 +a4,1e0) . (5.18)

Hence, in the given patch, in which we can set a1 = 1, we can define the holomorphic curves in the
fiber

C(1)
sp =V (y−a4,1e0z3,e1,P,d2, . . . ,dn−1)

C(2)
sp =V (y+a2

1x+a1a3,1e0 +a4,1e0,e1,P,d2, . . . ,dn−1) .
(5.19)

Both curves are in fact homologous since the defining vanishing polynomials are of equal degree,

[C(1)
sp ] = [C(2)

sp ] . (5.20)

A more elegant way to describe the splitting (5.17) is to observe that the ideal generated by P̂T , e1,
P and d2, . . . ,dn−1 decomposes into two primary ideals, whose associated vanishing locus describes
the two curves over P = 0.

Note that the two split curves C(i)
sp cannot be described as a complete intersection on Ŷn+1 itself,

but only as a complete intersection in the ambient space X̂n+2 of Ŷn+1. This is because none of the
defining equations in (5.19) is the hypersurface equation P̂T (restricted to a given locus), but P̂T = 0
is of course implied by (5.19).

The rational curve P1
0, on the other hand, does not split further. The fiber over C(2)

01 therefore
consists of three rational curves P1

0, C(1)
sp , C(2)

sp . By counting common points it is clear that they
intersect pairwise and thus form a fiber of Kodaira type I3, again in agreement with (5.15).

The next step in analyzing the fiber over C(2)
01 consists in computing the intersection numbers

of the split curves with the resolution divisors. These are given as

[E1] · [C(1)
sp ] =−1, [E1] · [C(2)

sp ] =−1 . (5.21)

This follows from the characteristic intersections [E1] · [P1
1] = −2 along generic points of Σ1 to-

gether with (5.20). In view of (5.7) this intersection number is readily recognized as the weight β 2

of the fundamental representation R = 2 of su(2), whose complete set of weights is(
β 1(2)
β 2(2)

)
=

(
1
−1

)
. (5.22)
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Let us now follow the systematic procedure to identify the full set of fibral curves associated with
the weight vector, starting with the effective curve C(1)

sp . The other weight β 1(2) = β 2(2)+α1 (with
α1 = 2 the simple positive root) is constructed from C(1)

sp by adding the curve−P1
1 =−(C

(1)
sp +C(2)

sp ).
This curve class is anti-effective, and we therefore identify

C−1(β
1(2);C(1)

sp ) =C(1)
sp −P1

1 =−C(2)
sp

C+1(β
2(2);C(1)

sp ) =C(1)
sp

(5.23)

and

M(C(1)
sp ) = {C(1)

sp ,−C(2)
sp } . (5.24)

Repeating this process starting with C(2)
sp gives

M(C(2)
sp ) = {C(2)

sp ,−C(1)
sp }=−M(C(1)

sp ) . (5.25)

Both sets are therefore not independent, and we really have found only one copy of a fundamental
representation.

5.4 Counting of localised zero modes

In the limit of vanishing fibral curve volume, the M2-branes wrapping the curves in the re-
lative Mori cone give rise to BPS particles in R1,8−2n. By the logic spelled out in section 4.4,
these constitute the KK zero modes of corresponding charged matter fields in the dual F-theory in
R1,9−2n. To determine the number of BPS states in M-theory (and hence the number of massless
matter fields in F-theory) we must again quantize the moduli space of the wrapped M2-branes, as
performed in [60] for the case n = 2. For F-theory compactifications to four and two dimensions, it
is more practical to count the zero-modes in the topologically twisted field theory approach. These
methods imply the following counting:

5.4.1 Localised zero-mode counting for F-theory on R1,5× Ŷ3

The discriminant ∆ factorises as in (4.17), and the discriminant divisor Σ is a union of complex
curves ΣI intersecting at isolated points. According to (5.2), these are grouped into different sets of
points C(r)

IJ , distinguished by the structure of the fiber over them. Each C(r)
IJ is a set of nr points on

the base, each of which gives rise to the same fiber type,

C(r)
IJ = ∪nr

i=1Q(r)
i . (5.26)

Consider one such point Q(r)
i and form the independent sets of curves in the fiber M(C(k)

sp ) as
described around (5.11). The quantization argument of [60] implies that the M2-branes wrapping
the independent sets of curves M(C(k)

sp ) give rise to a massless hypermultiplet in the associated
representation R. If M(C(k)

sp ) = −M(C(k)
sp ), one merely obtains a half-hypermultiplet, which is

possible only if the representation is self-conjugate, or more precisely quaternionic. Hence the total
number of (half-) hypermultiplets in representation R is mnr where m is the number of independent
sets M(C(k)

sp ) giving rise to the same representation R in the fiber.
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Example: SU(2) Tate model In the SU(2) Tate model of section 5.3, C(1)
01 consists of n1 =

[a1] · [Σ1] = [K̄] · [Σ1] points Q(1)
i . However, none of these points carries extra massless matter.

Only the locus C(2)
01 hosts hypermultiplets in a non-trivial representation. This locus consists of

n2 = [P] · [Σ1] = (8K̄−2[Σ1]) · [Σ1] points Q(2)
i , each of which carries one massless hypermultiplet

in representation R = 2.

5.4.2 Localised zero-mode counting for F-theory on R1,3× Ŷ4

The different loci C(r)
IJ are now irreducible Riemann surfaces on the base B3, corresponding

to irreducible components of CIJ = ΣI ∩ΣJ . In general each such irreducible component may be
described by the vanishing locus associated with a primary ideal, but for simplicity of presentation
let us assume in the sequel that the curve C(r)

IJ arises as a complete intersection locus C(r)
IJ = DI∩DJ

with DI and DJ two holomorphic divisors on B3. This assumption is correct, for instance, for the
curve C(2)

01 = Σ1∩P in the context of the SU(2) Tate model. As we have described above, to each
curve C(r)

IJ we can associate a certain representation R of the total gauge algebra. We will henceforth
simplify notation a bit and denote the matter curves on B3 as CR.

As will be discussed in more detail in section 9, in F-theory compactifications on a Calabi-Yau
4-fold, the counting of zero-modes depends on the gauge background. If the gauge background can
be chosen to be trivial, then the counting is as follows: To each independent set M(C(k)

sp ) of M2-
branes one associates a number of 4d N = 1 chiral and anti-chiral supermultiplets in the respective
representation, counted by

chiral : H0(CR,OCR⊗
√

KCR)

anti− chiral : H1(CR,OCR⊗
√

KCR) .
(5.27)

Each of these mutliplets is accompanied by its CPT conjugate, where we recall that the CPT con-
jugate of a 4d chiral multiplet in representation R is an anti-chiral multiplet in R̄. The trivial
bundle OCR can of course be omitted, and will be replaced by a suitable gauge sheaf or bundle in
the presence of non-trivial gauge backgrounds in section 9.

(5.27) has been derived in the framework of the topologically twisted field theory on the 7-
branes in F-theory [6, 7], and in fact agrees with its counterpart in perturbative intersecting B-
type branes [124, 125]. The starting point of the derivation is the 8d N = 1 Super Yang-Mills
theory along the 7-branes coupled to a 6d defect consisting of a 6d N = (0,1) hypermultiplet in
representation R. The topological twist of the 8d bulk theory compactified on the Kähler surface
ΣI induces a compatible topological twist of the 6d defect theory compactified on the curve CR.
Reduction of the scalars and fermions of the 6d hypermultiplet along CR gives rise to the above
spectrum in 4d upon applying the topological twist.

The formula (5.27) reflects the intuitive idea that the wavefunctions describing the zero-modes
transform as spinors on the matter curve and are hence sections of the spin bundle. On a general
Riemann surface of genus g, the notion of the spin bundle is highly ambiguous as there exist 22g

inequivalent spin structures. These correspond to the possible boundary conditions (periodic or
anti-periodic) along each of the 2g one-cycles on the complex curve. In the present context, the
correct choice for the spin bundle on CR is to pick the one compatible with the embedding of CR

as a holomorphic curve into the base B3 [126, 127]. To determine the spin bundle induced by
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this embedding let us first compute the canonical bundle on CR. This is done with the help of the
adjunction formula, which states the following: Consider the hypersurface associated with a divisor
D within a complex space X . Then the canonical bundle on D is computed in terms of the pullback
of the canonical bundle on X and the normal bundle of D within X as

KD = KX |D⊗ND/X = KX |D⊗O(D)|X . (5.28)

The second equality uses that by definition, the normal bundle to the divisor D is a line bundle on
X with first Chern class [D]. If X is simply-connected, a line bundle is uniquely determined by its
first Chern class.

We can now apply the adjunction formula to CR = DI ∩DJ , viewed as a hypersurface within
DJ , to write

KCR = KDI |CR⊗NCR/DI (5.29)

with

NCR/DI = ODI (DJ|DI )|CR . (5.30)

As for KDI , we use again the adjunction formula for DI , viewed as a hypersurface on B3,

KDI = KB3 |DI ⊗NDI/B3 = KB3 |DI ⊗OB3(DI)|DI . (5.31)

Altogether this allows us to express the canonical bundle on CR as the pullback of a line bundle
from B3,

KCR = M |CR , M = KB3⊗OB3(DI)⊗OB3(DJ) . (5.32)

Since B3 is simply connected, the line bundle in question is uniquely determined by its first Chern
class. Furthermore, the assumption that we can switch on a trivial gauge background20 implies that
the first Chern of the line bundle M on B3 is even. Hence the line bundle

√
M on B3 is the unique

line bundle with first Chern class 1
2 c1(M ) = 1

2(c1(B3)+[DI]+[DJ])∈H2(B3,Z). The spin bundle
on CR induced by the holomorphic embedding is then√

KCR =
√

M |CR . (5.33)

Note that the dimensions of the two cohomology groups in (5.27) are the same. This is a
consequence of the Serre duality formula (4.76). The spectrum in absence of gauge flux is therefore
vector-like, meaning that the chiral index vanishes,

χ(R) = h0(CR,
√

KCR)−h1(CR,
√

KCR) = 0 . (5.34)

If we are interested in evaluating the actual number of massless vectorlike pairs, we must apply
techniques to compute the dimensions of the cohomology groups (5.27). This amounts, in absence
of gauge backgrounds, to counting the number of sections of the spin bundle, for the specific choice
(5.33). Since this spin bundle is by construction the pullback of a line bundle from the base B3 to
CR we can use for instance the methods of [128] whenever B3 is embedded into a toric space as a
hypersurface or complete intersection. We will come back to this at the end of section 9.5.1.

20More generally, this is guaranteed by the assumption that the gauge background can be chosen such that a trivial
gauge background on CR is consistent.
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5.4.3 Localised zero-mode counting for F-theory on R1,1× Ŷ5

In F-theory compactifications on Calabi-Yau 5-folds to two dimensions, the matter loci CR

represent complex Kähler surfaces. The topological twisting procedure applied for the bulk modes
in section 4.6 allows one to deduce the counting of localised matter [87, 102]. The latter is viewed
as a 6d defect, which is dimensionally reduced on the surface CR. We again assume for now that the
gauge background is trivial. The independent 2d (0,2) multiplets in representation R are counted
as follows:

chiral multiplets : H0(CR,OCR⊗
√

KCR)

Fermi multiplets : H1(CR,OCR⊗
√

KCR)

chiral multiplets : H2(CR,OCR⊗
√

KCR) ,

(5.35)

where we use the same conventions for the chirality of the 2d (0,2) multiplets as in section 4.6.
These are accompanied by their CPT conjugates in representation R̄. Note, however, that CPT does
not change the chirality of the 2d (0,2) multiplets.

The net chiral index associated with these modes is non-zero, even for trivial gauge bundle
OCR , and is computed by the Hirzebruch-Riemann-Roch index

χ(CR,R) =
2

∑
i=0

(−1)ihi(CR,OCR⊗
√

KCR) (5.36)

=
∫

CR

c2
1(CR)

(
1
12
− 1

8
rk(OCR)

)
+

1
12

c2(CR)+

(
1
2

c2
1(OCR)− c2(OR)

)
(5.37)

=
∫

CR

(− 1
24

c2
1(CR)+

1
12

c2(CR)) . (5.38)

Application of this index requires the surface CR to be smooth; otherwise the singular space must
be normalised and above formula is modified by various correction terms [87].

5.5 Conformal matter in codimension two

As long as the vanishing orders of the Weierstrass sections f and g do not equal or exceed
4 and 6 in codimension one, a flat Calabi-Yau resolution of the singularities over generic points
of the discriminant is guaranteed to exist. But does this imply that also the singularities in higher
codimension admit a Calabi-Yau resolution?

The answer is that two types of interesting complications can - and do - occur in codimension
two. The first complication is that, even though the Weierstrass sections satisfy the (4,6)-bound in
codimension one, their vanishing orders can easily overshoot these values at the intersection of two
components of the discriminant. For instance, at the intersection of two discriminant components
Σ1 and Σ2 each carrying an e6 gauge algebra, the enhancement pattern is of the form

(ord( f ),ord(g),ord(∆))|Σi = (3,4,8), i = 1,2

=⇒ (ord( f ),ord(g),ord(∆))|Σ1∩Σ2 = (6,8,16) .
(5.39)

In such a situation, a flat, i.e. equi-dimensional, resolution of the Weierstrass model is not possible
without further surgeries on the base. More precisely, consider an elliptic fibration over a two-
dimensional base B2 (i.e. F-theory in six dimensions), and assume that the vanishing orders in
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codimension two satisfy the bound

(ord( f ),ord(g),ord(∆))|codim−2 6= (8,12,24) or higher . (5.40)

Under this assumption one can perform of a finite number of blow-ups in the base such that the
elliptic fibration over the blown-up base satisfies the minimality bound. I.e. (ord( f ),ord(g),ord(∆)
are smaller than (4,6,12) over every point after the blowup [129, 130]. Note that the blow-up in
the base introduces new divisors Σe

i and in particular in general changes the canonical bundle of
B2, but the canonical bundle of the total elliptic fibration does not change. Depending on specifics
of the vanishing orders, the new blow-up divisors Σe

i may carry non-trivial gauge algebra.
The original theory, prior to the blowup, can be interpreted as the limit in which the exceptional

base divisors are blown-down. In view of the relation 1/g2
i 'Vol(Σe

i ) for the 7-brane gauge theory
wrapping the divisor Σe

i (see eqn (4.40)), this limit is the strong coupling limit of the gauge theory.
In addition, string-like objects from D3-branes wrapping the exceptional divisor become tension-
less. There is strong evidence that this tensionless limit defines a strongly coupled non-trivial
superconformal field theory (SCFT), dubbed 6d N = (1,0) SCFT. The superconformal fixed-point
lies at the origin of the tensor branch of the gauge theory because the volume of the divisors Σe

i is
controlled by the VEV of the scalar field in the N = (1,0) tensor multiplets coupling to the self-
dual strings. We come back to this in section 10.2. The realisation of such SCFTs in F-theory
has been studied extensively in the recent literature, as reviewed in [17]. The extra degrees of
freedom hidden at codimension-two loci with vanishing orders beyond (4,6) have been called con-
formal matter [131], in generalisation of the ordinary localised matter at the intersection of two
discriminant components not exceeding this bound.

5.6 Codimension-two singularities without a crepant resolution

A second, and rather frequent, phenomenon is that even though the vanishing orders in codi-
mension two are minimal, the codimension-two singularities do nonetheless not admit a Calabi-
Yau resolution. Mathematically, the singularities of this type which occur in elliptic fibrations
in codimension-two are Q-factorial terminal, and they indicate the presence of localised matter
uncharged under any continuous gauge group [23, 132].

To understand this phenomenon, we first need to introduce some terminology. We are fol-
lowing the presentation in [23], to which we refer for the detailed referencing of the individual
mathematical results quoted. General background on singularities is provided e.g. in [133]. Given
an algebraic variety X with singularities, a resolution of X is a birational morphism ρ : X̂→ X such
that X̂ is smooth and X̂ and ρ−1X differ only along the exceptional set on X̂ . If the exceptional set
contains codimension-one loci, the resolution is called a big resolution, with exceptional divisors
Ei; otherwise it is called a small resolution. On a general singular variety X it might not be possible
to define the canonical bundle KX as a line bundle (but merely as a coherent sheaf). Equivalently
the canonical divisor may not be a Cartier divisor (but merely a Weil divisor). We recall the differ-
ence between both notations of divisors in Appendix A. If the canonical bundle is a line bundle, X
is called Gorenstein (equivalently, X is said to have only Gorenstein singularities); more generally,
if r KX is a line bundle for some r ∈ Z, then X is called Q-Gorenstein and the minimal such r is the
index of the singularity.
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As we will see momentarily, for our purposes it is sufficient to focus on Gorenstein singularit-
ies, i.e. to the case r = 1. The canonical bundle of X̂ and X are then related as21

KX̂ = ρ
∗KX +∑

i
aiEi . (5.41)

The parameters ai ∈ Z are called the discrepancies and they only depend on the type of singularity,
not on the specifics of the birational resolution chosen. If all ai = 0, the resolution is called crepant
because there is no discrepancy between KX̂ and ρ∗KX . More generally, the singularity on X
is called terminal if all ai > 0, canonical if all ai ≥ 0 and log canonical if all ai ≥ −1.22 The
importance of terminal singularities is that given a canonical singularity, one can always perform a
partial crepant resolution to a space X̂ such that KX̂ = ρ∗KX and X̂ has only terminal singularities.

Let us from now on focus on the case where X is a complex 3-fold. X is Calabi-Yau if its
canonical bundle is the trivial line bundle, KX =OX , and if H1(X ,O) = H2(X ,O) = 0. Note that if
X is a Calabi-Yau, then it is Gorenstein (r = 1) in the above sense. We are particularly interested in
determining whether a resolution into a smooth Calabi-Yau 3-fold X̂ exists, i.e. whether a crepant
resolution of the singularity exists.

According to the above definitions, this is the case if either for any big resolution ai = 0 ∀ i, or if
there exists a small resolution; in the latter case, all exceptional divisors are trivial by definition. To
determine whether such a small resolution is possible, we need one last mathematical notion, due
to the following fact: A small resolution of a canonical singularity (or, if X is only Q-Gorenstein
with r 6= 1, of a klt singularity) exists if and only if X is not Q-factorial. An algebraic variety is
Q-factorial if every Weil divisor is also Q-Cartier, i.e. if there exists some k ∈ Z such that k D can
be locally expressed as the vanishing locus of a single function on X . While on smooth spaces,
this is always the case, this property need not hold in the presence of singularities. Determining
if a singular variety is Q-factorial requires global information. As a familiar example, consider a
singularity of conifold type. The singularity is locally a hypersurface singularity x1x2− x3x4 = 0.
The so-defined hypersurface is not locally Q-factorial because e.g. the divisor x1 = x3 = 0 lies on
the hypersurface even though it cannot be expressed as the intersection of the defining hypersurface
equation with the vanishing locus of another single holomorphic function. Correspondingly, a local
small resolution exists. However, in the presence of higher order terms, such as in x1x2− x3x4 +

x3
1 + x3

2 = 0, the singularity is globally Q-factorial even though it is not locally Q-factorial, and the
local small resolution does not extend globally. In the above nomenclature, the conifold singularity
is terminal in the sense that a big resolution leads to exceptional divisors with positive discrepancies
ai > 0. But if the conifold singularity is not Q-factorial globally, then a small resolution exists and
hence the singularity is crepantly resolvable.

After this preparation, we come to the main theorem which makes the importance of these
concepts clear: Consider a Weierstrass model Y3 over a complex 2-dimensional base B2 such that
f and g satisfy the minimality bound. Then there exists, possibly after a succession of birational
transformations (blowups) of the base B2, an equi-dimensional partial crepant resolution Ŷ3 of the
Weierstrass model up to the appearance of Q-factorial terminal singularities over isolated points

21For Q-Gorenstein singularities, rKX̂ = ρ∗(rKX )+∑i(rai)Ei with rational discrepancies ai ∈Q.
22For Q-Gorenstein singularities with index r 6= 1, for which ai ∈ Q, another notion are the klt singularities (all

ai >−1).
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on B2 [129, 130]. In particular, the end-point of the blowups in the base required to get rid of the
non-minimal vanishing orders in codimension mentioned in the previous section may in general
contain such types of singularities.

The appearance of Q-factorial terminal singularities is quite common: Consider for instance
the set of otherwise generic Weierstrass models with the property that the discriminant factorises
into two components Σ = Σ0∪Σ1 such that the elliptic fiber over Σ0 is of I1-type and the fibration
over Σ1 is minimal (no vanishing orders beyond (4,6)). Among the 23 different families of such
models [20, 21] (including infinite series such as the In or I∗n families over Σ1), three such families
include Q-factorial terminal singularities in codimension two, namely [23]

Σ1: I1 I1× I1→ I2 (conifold)
Σ1 : II I1× II→ III (x3

1 + x2
2 + x2

3 + x2
4 = 0)

Σ1 : In.s.
2k+1 I1× In.s.

2k+1→ I2k+2 (conifold)

Here we are listing the Kodaira fiber over Σ1, the enhancement at the relevant collision with Σ0 as
well as the local form of the singularity. In the last case, one has to perform a partial resolution until
the only remaining singularity is a Q-factorial terminal singularity of conifold type in codimension-
two. In fact, singularities which are locally of the first type I1× I1 → I2 occur quite generally in
the Jacobian of genus-one fibrations describing abelian discrete symmetries [134]. These will be
discussed in detail in section 8. The physics of the first two of these and other examples of Q-
factorial terminal singularities has been studied in [132]. Other occurrences of Q-factorial terminal
singularities on elliptic threefolds in F-theory have appeared for instance in [11, 135].

Even though a Weierstrass model Y3 with Q-factorial terminal singularities does not have a
crepant resolution, essentially all of its properties of relevance to us can be computed by working
on the singular space (or its partial resolution): This is because Calabi-Yau 3-folds with Q-factorial
terminal singularities still enjoy rational Poincaré invariance [23] and hence admit a non-degenerate
intersection pairing in particular between the Cartan divisors Ei of the partial resolution and the
fibral curves. Therefore the assignment of Lie algebras and representations to the degenerate fibers
in codimension one and two is not affected by the Q-factorial terminal singularities. This is proven
in detail in [23].

What is affected by the appearance of the singularity, on the other hand, is the precise counting
and interpretation of uncharged massless matter. In F-theory on a smooth Calabi-Yau threefold Ŷ3,
the number of uncharged matter hypermultiplets is given by 1+h1,2(Ŷ3) =

1
2 b3(Ŷ3), where h1,2(Ŷ3)

counts the complex structure moduli and the first term accounts for the universal hypermultiplet.
In the presence of singularities, even Q-factorial terminal ones, the number of complex structure
deformations is no longer counted by h1,2(Ŷ2). In fact, the existence of a pure Hodge structure and
Hodge duality, which underlies this reasoning in the smooth case, is in general not guaranteed on
singular spaces. Rather, to compute the number of complex deformations of a singular Calabi-Yau
3-fold X with Q-factorial terminal singularities one first performs a smooth deformation of X to a
smooth Calabi-Yau space Xt ; such a smoothing always exists for Q-factorial terminal singularities.
The counting of the complex deformations is then performed on the smooth space,

CxDef(X) = CxDef(Xt) =
1
2

b3(Xt) =
1
2
(b3(X)+∑

P
m(P)) . (5.42)
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Here we are using the relation between the Betti numbers of X and Xt , which involves summing up
the Milnor numbers m(P) over each singular point P. The Milnor number can be thought of as the
number of independent 3-spheres inserted upon smoothing the singularity. For a given hypersurface
singularity described by the vanishing of a function f (x1, . . . ,xn) with local coordinates xi, it can
be computed as

m(P) = dim(C[xi]/〈∂1 f , . . . ,∂n f 〉) . (5.43)

Note that in general only b3(X) +∑P m(P) is even, but not b3(X) itself, in agreement with the
expectation that a pure Hodge structure and Hodge duality is in general not available. The Milnor
number is related to another invariant of the singularity, the Tyurina number defined as

τ(P) = dim(C[xi]/〈 f ,∂1 f , . . . ,∂n f 〉) . (5.44)

The Tyurina number coincides with the dimension of the space of versal deformations, i.e. localised
complex structure deformations of X which only affect the singularity at P. Importantly, τ(P) =
m(P) whenever the singularity is a homogenous weighted hypersurface singularity. All Q-factorial
terminal singularities that have been studied on Weierstrass models so far are of this type. Let us
write (5.42) as

CxDef(X) =
1
2
(b3(X)−∑

P
m(P))+∑

P
m(P) . (5.45)

Whenever τ(P) = m(P), the first term, 1
2(b3(X)−∑P m(P)), counts the unlocalized uncharged

hypermultiplets, while ∑P m(P) counts the localised uncharged hypermultiplets corresponding to
the localised complex structure deformations. This interpretation of localised uncharged matter
at the codimension-two Q-factorial terminal singularities is also supported by examples with a
Type IIB limit, in particular by the singularities of the form I1× I1→ I2 [134, 136]. The counting
is in agreement with the cancellation of gravitational anomalies in the 6d effective supergravity
[23, 132].

To summarize, possibly after performing blowups of the base to remove non-minimal van-
ishing orders of the Weierstrass model in the codimension-two, an elliptic Calabi-Yau threefold
always allows for a partial crepant resolution up to the appearance of Q-factorial terminal singular-
ities over isolated points on B2. Each such singularity contributes m(P) localised hypermultiplets
which are uncharged under any global gauge group. In addition, the codimension-two point can
carry extra charged hypermultiplets which are determined with the same methods as in the smooth
case.

It is expected that a similar interpretation of codimension-two Q-factorial terminal singularit-
ies generalizes to elliptic 4-folds. In particular, a natural conjecture for the counting of the localised
uncharged matter is that if the singularity occurs over a curve C⊂ B3, the number of corresponding
vectorlike pairs of N = 1 chiral multiplets is given by m(P)h0(C,

√
KC) [132], but the correspond-

ing mathematical theorems have not yet been proven as of this writing.

6. Higher-codimension singularities

If the base of the elliptic fibration is at least complex 3-dimensional, the singularity type in
the fiber can enhance further in codimension three (or higher). Typically, this occurs when two
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or three matter loci intersect. The enhancement loci reflect the existence of holomorphic matter
couplings in the associated effective action. We first describe this phenomenon in 4d compacti-
fications on an elliptic 4-fold Ŷ4, where the codimension-three singularities signal cubic Yukawa
couplings between localised matter fields. We then briefly comment on the structure and F-theory
interpretation of codimension-three and -four singularities on elliptic 5-folds.

6.1 Codimension-three singularities and Yukawa couplings on elliptic 4-folds

6.1.1 Fiber degenerations in codimension three

Consider the intersection of three matter curves CR1 , CR2 and CR3 on the base B3 of an el-
liptic 4-fold Ŷ4. Some of the representations (and their associated curves) can in fact be identical.
Generically, the involved curves intersect in several isolated points. For instance, if two matter
curves CR1 and CR2 lie within the same discriminant component ΣI (such that R1 and R2 are both
representations of the algebra gI), they generically intersect at points within the complex surface
ΣI . These intersection points may fall into several groups distinguished by the local enhancement
type in the fiber. We focus for now on the neighborhood of one such intersection point p.

At the collision point p the vanishing orders of the Weierstrass model sections and of the
discriminant increase, signalling an enhancement of the fiber degeneration similar to the enhance-
ment from codimension one to codimension two. In this sense one can again formally associate
a Kodaira singularity type and a corresponding Lie algebra to the enhancement point, by naive
application of the Kodaira table. As in codimension two, there is no gauge theory associated with
this Lie algebra, but there is a sense in which the Lie algebra does describe aspects of the effective
action as will be described below.

On the resolved space Ŷ4, as we approach p along the intersecting matter loci CRi one or
several of the fibral curves split. This is analogous to the splitting of fibral curves responsible
for the enhanced degeneration of the fiber in codimension two, with an important difference: The
result of the curve splitting as considered as we approach p from one of the matter curves, say CR1 ,
leads to fibral curves at p which already exist over generic points of one of the other matter curves
meeting at p. In this sense, no new types of curves are produced in the cone of effective curves in
the fiber.

The fiber degenerations obtainable in this manner have not been classified rigorously in the
mathematics literature to date, but many examples have been studied in the physics literature.
Indeed, for any given elliptic fibration together with a resolution, the analysis of the codimension-
three enhancements is possible in practice. The enhanced fiber structure that has been observed is
that the fibers correspond to Kodaira-type fibers, possibly with one or several of the nodes deleted.
This phenomenon was first observed in [94] in an elliptic fibration with gauge algebra g = su(5),
which serves as our23

Example: I5 Tate model

At the level of the Weierstrass model, the enhancements patterns and the resolution are partic-
ularly simple to study if we focus on a fibration in global Tate form (4.48), with vanishing orders

23Note that the I2 fibration which we have studied in section 4.5 and 5.3, no codimension-three fiber enhancements
occur: There is only one matter curve C2 and no enhancement at potential self-intersections. This is of course in
agreement with the physics interpretation presented below.
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leading to an I5 enhancement in the fiber over the divisor W : {w = 0} [70]

a1 generic, a2 = a21 w, a3 = a32 w2, a4 = a43 w3, a6 = a65 w5 . (6.1)

From the Weierstrass sections f and g (see (4.50), (4.50))

f =
1
48

(−a4
1−8a2

1a2,1w+O(w2)), g =
1

864
(a6

1 +12a4
1a2,1w+O(w2)) (6.2)

and the resulting discriminant

∆ = ∆0 ∆
5
1 (6.3)

∆1 = w, ∆0 =
1

16
(a4

1 P+O(w)), P = a3,2(a2,1a3,2−a1a4,3)+a2
1a6,5 (6.4)

we immediately read off the following enhancements in codimension two, at the collision of Σ1 =

{w = 0} with Σ0 = {∆0 = 0}:

C10 = {w = 0}∩{a1 = 0} : ord( f ,g,∆) = (2,3,6)⇒ I5× I1→ I∗1 (D5) (6.5)

C5 = {w = 0}∩{P = 0} : ord( f ,g,∆) = (0,0,6)⇒ I5× I1→ I6 (A6) . (6.6)

A detailed analysis of the resolution confirms that the curve C10 and C5 carry matter in representa-
tion 10 and 5, respectively, of su(5). The two curves intersect at two types of points on Σ1,

p1 : {w = 0}∩{a1 = 0}∩{a2,1 = 0} : ord( f ,g,∆) = (3,4,8)⇒ type IV ∗ (E6) (6.7)

p2 : {w = 0}∩{a1 = 0}∩{a3,2 = 0} : ord( f ,g,∆) = (2,3,8)⇒ type I∗2 (D6) . (6.8)

Here we are indicating the naive Kodaira type and its associated Lie algebra by blindly applying the
same rules for the vanishing orders of f , g and ∆ as in codimension one. The global I5-Tate model
above allows for six inequivalent resolutions, which are all related by birational transformations.
Since these are well documented in the literature [54, 94–96], we do not list them in detail here.
As it turns out, the so-called point of E6-enhancement in the above model does not correspond to
a full Kodaira-fiber, but rather to a type IV ∗ fiber with one of its nodes deleted from the graph.
The precise location of the deleted node depends on the chosen resolution: In four of the six
different resolutions, the deleted node is one of the nodes of multiplicity two in the affine Dynkin
diagram of E6, and in the remaining two it is the central node of multiplicity three. We will give an
interpretation to this deviation from the standard Kodaira fibers in section 6.1.3. On the other hand,
the enhancement at p2 gives rise, in each of the birational resolutions, to a fiber of Kodaira type I∗2 ,
corresponding to the extended Dynkin diagram of D6.

6.1.2 Yukawa couplings from merging M2-branes

We have already pointed out that the fiber degeneration at the special point p is due to a
splitting of fiber curves as one approaches p from one of the involved matter curves. The pattern is
more precisely as follows: Suppose one of the splitting curves over CR1 is C a1

R1
in the sense that at

p

C a1
R1
|p = C a2

R2
|p +C a3

R3
|p , (6.9)
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where C a2
R2

and C a3
R3

are fibral curves which exist also in the generic fiber over CR2 and CR3 away
from the intersection p. The above equation can be considered either as a statement about a splitting
of C a1

R1
at p, or equivalently as the joining of the other two fibral curves. An M2-brane wrapping

each of the three curves gives rise to a matter state carrying weight vector β ai(Ri), localised in
the fiber over the respective matter curves. In fact, the weights are uniquely determined by the
homology classes of the wrapped curves. Hence, the homological relation

[C a1
R1
] = [C a2

R2
]+ [C a3

R3
] ∈ H2(Ŷ4,Z) (6.10)

implied by the splitting (6.9) is equivalent to

β
a1(R1) = β

a2(R2)+β
a3(R3) . (6.11)

This in turn means that in representation theory there exists a triple mapping

R1×R2×R3→ 1 . (6.12)

The splitting of the M2-brane state with weight β a1(R1) into the M2-brane states with weights
β a2(R2) and β a3(R3) is interpreted [95] as a triple interaction among the fields associated with the
M2-brane excitations in the effective action. The homological relation (6.10) is equivalent to the
existence of a 3-chain Γ with boundary

∂Γ =−C a2
R2

+C a2
R2

+C a3
R3

. (6.13)

The fact that the splitting (6.9) occurs in the fiber over a point p means that this 3-chain can be
localised at this point. More precisely, the volume of the interpolating 3-chain Γ vanishes in the
limit of vanishing fiber volume, which is the F-theory limit. The triple interaction localised at p
can be viewed as being induced by an M2-instanton wrapping γ . Since its volume vanishes in the
F-theory limit, the coupling is not exponentially suppressed [137].

The actual computation of this interaction in the literature proceeds not at the level of M2-brane
excitations, but directly in the language of the effective action, using the topologically twisted field
theory governing the gauge theory on the 7-branes [6, 8, 138–141]. The triple coupling in ques-
tion translates into a holomorphic Yukawa coupling in the superpotential of the four-dimensional
effective theory. The codimension-three enhancement loci are therefore oftentimes referred to as
Yukawa points.

The structure of the codimension-three singularities indicates which of these Yukawa coup-
lings are in fact present in the effective action. While it is clear from the above that the existence
of a splitting (6.9) implies the homological relation (6.10) (or, equivalently, (6.12)), the converse
is in general not true: The fact that a coupling is allowed from the perspective of the group theory
in the sense of (6.11) only implies a relation of the type (6.10) in the homology group of the full
fibration; but this as such does not guarantee that there exists a point p over which a splitting of
the form (6.9) actually occurs. For this to happen, it must be possible to transport the three fiber
curves, in a holomorphic way, to the same point such that a geometric relation of the form (6.9) is
realized locally in the fiber over p [137]. This can indeed fail to happen. In this case, there still
exists a 3-chain Γnp bounding the three fibral curves as in (6.13), but since there is no point over
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which the fibral curves merge into each other, the volume of Γnp is non-zero even in the F-theory
limit. This is because it has ’1 leg in the fiber, 2 legs in the base’ and its volume consequently
stays finite in the limit (3.44). The instantonic coupling induced by an M2-brane wrapping Γnp is
then non-perturbatively suppressed in the F-theory limit. The coupling mediated by the M2-brane
along Γnp is not expected to give rise to an F-term, but if it forms a bound state with an M5-brane
instanton a holomorphic coupling can be induced [142], in agreement with expectation from Type
IIB theory.

We can illustrate these ideas in our I5 example: Over a generic base B3, both triple intersection
points p1 and p2 exist. A straightforward analysis of the resolved fibers and the splittings of the
form (6.9) over these points reveals that at p1 and p2 the two Yukawa couplings 10105 and 105̄ 5̄
are generated, in the above sense. These couplings have been studied extensively in the F-theory
literature beginning with [6, 8, 95, 138–141].

On the other hand, suppose that on the base B3 the topological intersection number [w] · [a1] ·
[a2,1] = 0. This means that there are no actual intersection points of the type p1, and hence no
coupling of the above form. An example of this type has been constructed in [51, 137]. In the
present case this phenomenon occurs for I5 models with a smooth Sen limit. The absence of the
coupling 10105 in perturbative Type IIB orientifold models is well-known and a consequence
of global U(1) symmetries which arise as gauge symmetries whose gauge potential acquires a
Stückelberg mass. The natural interpretation is that the absence of a Yukawa point (even though
the coupling is compatible with all gauge symmetries - including discrete ones - of the theory) is
a geometric manifestation of this effect in F-theory models smoothly connected to a perturbative
Type IIB orientifold.24 D3-brane instantons (reviewed e.g. in [145]) can nonetheless generate such
a coupling [146, 147], albeit with an exponentially suppressed dependence on the Kähler moduli.
In absence of gauge flux, the D3-brane instanton must in fact carry ’instanton flux’ for this effect
to occur [148]. This translates into the M2-M5 bound state advocated in this context in [142] (see
also [149, 150]).

6.1.3 Yukawa couplings in the field theoretic picture

From the perspective of the topological field theory governing the dynamics on the 7-branes,
the gauge theory along the 7-brane stack with Lie algebra g is understood as a deformation of
a gauge theory with a higher gauge algebra h ⊃ g by suitably rotating out some of the branes.
We have already invoked this picture in codimension two [106] in section 5.1, and now apply it
to the enhancements in codimension three. The rotated branes all intersect at the Yukawa point,
which locally remembers the higher gauge algebra h. This is the interpretation of the Lie algebra
associated with the codimension-three fiber (i.e. the Lie algebra whose extended Dynkin diagram
- possibly modulo deleting some of the nodes - reproduces the fiber topology). The deformation
from the local symmetry group h to g by rotating away some of the branes intersecting at the
Yukawa point is encoded in the vacuum expectation value of a Higgs field ϕ which varies along

24More generally, the Sen limit of a generic I5 F-theory model exhibits a non-resolvable conifold singularity at the
E6 Yukawa point [143]. In [144] it is shown that a D1-instanton wrapping an associated vanishing cycle localised at this
singularity generates the 10105 coupling in Type IIB, effectively violating the massive U(1) symmetry along the lines
of [145]. While exponentially suppressed with exp(−1/gs) in Type IIB, this coupling indeed becomes of order 1 in the
strong coupling F-theory regime.
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the 7-brane. The Higgs field is originally taken in the adjoint representation of h and its vacuum
expectation value over generic points of the 7-brane breaks h to g [6, 8, 138–141]. In this picture,
the triple Yukawa coupling is a remnant of the triple gauge interaction in a theory associated with
the bigger Lie algebra. More precisely, the parent gauge theory allows for a triple coupling

adj(h)×adj(h)×adj(h)→ 1. (6.14)

Decomposing adj(h) into representations of adj(g) and plugging the decomposition into (6.14)
contains the coupling (6.12). Mathematically, the variation of ϕ over the 7-brane defines a Higgs
bundle or spectral cover [143], and the details of this bundle are reflected in the structure of the fiber
of the resolved 4-fold Ŷ4: As explained in [151], if the spectral cover is ramified at the Yukawa point
p, some of the fiber components are missing compared to the full Kodaira typer associated with
the Lie algebra h. Ramification of the spectral cover in particular implies that even though the
eigenvalues of ϕ vanish at the Yukawa point, some of its components are non-zero. However, we
stress again that the ’missing’ of certain nodes compared to the full affine Dynkin diagram does not
affect the appearance of Yukawa couplings according to the arguments above [95].

There have been intensive studies of the structure of the Yukawa couplings in the effective
action within this local field theory approach, which we can only very superficially outline here.
Locally, at any single intersection point p, the rank of the Yukawa coupling matrix involving the
different families of matter is one [139,152,153]. This is due to a geometric selection rule acting on
the wavefunctions whose overlap at p determines the interaction. In phenomenological applications
this means in particular that only one family of massless matter is ’heavy’. From the perspective
of particle physics this is a welcome property given the observed flavour structure in the Standard
Model.25 Subleading corrections can then increase the rank of the coupling matrix [153, 156].
Detailed evaluations of the Yukawa couplings in benchmark models of SU(5) GUT type have
been performed, including [157–166]. In particular, the non-perturbative effects of [156] lead
to interesting hierarchical structures in the flavour sector, at least at the level of the local theory
[162–166].26

Furthermore we should stress that not only the localised charged modes, but also the bulk
modes propagating along the 7-brane can exhibit triple interactions. These likewise follow from the
topologically twisted field theory and are rooted in the cubic gauge interactions of the underlying
8d SYM theory [6, 8], but are not localised along special points along the 7-branes.

6.2 Codimension-three and -four singularities on elliptic 5-folds

Let us briefly address the situation on Calabi-Yau 5-folds [87, 102]. The codimension-three
singularities now occur over complex curves on the base B4 over which two or more surfaces CRi

intersect. At the level of the elliptic fiber, the structure of joining and splitting is analogous to
the situation on 4-folds and indicates which triple couplings are group theoretically allowed. The
actual computation of the couplings is to be performed in the topologically twisted field theory

25Note, however, that generically the number of Yukawa points is bigger than one and we have to sum over all
interaction points [140, 154, 155].

26A different approach to account for such hierarchies is via U(1) selection rules and their approximate breaking in
Froggat-Nielson-type models, see e.g. [167–170] and references therein.
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by evaluating the overlap between the wavefunctions in the involved representations Ri over the
codimension-three curve. The structure of 2d (0,2) supersymmetry dictates that the holomorphic
couplings involve one Fermi multiplet and two chiral multiplets and can be expressed in terms of
a so-called E- or J-type F-term [89]. This can be confirmed by analyzing the possible ways to
integrate three localised matter zero-mode wavefunctions over a complex curve to form a scalar:
The zero-modes take values in the cohomology groups (5.35), and the only possible map between
three such wavefunctions is of the form

H1(CR̄1
,
√

KCR̄1
)×H0(CR2 ,

√
KCR2

)×H0(CR3 ,
√

KCR3
)→ C . (6.15)

This assumes of course that at the group theoretic level a coupling of the form (6.12) is allowed,
as guaranteed geometrically by the codimension-three fiber. In particular, precisely one Fermi
multiplet can participate in the holomorpic triple coupling. At the level of component fields, the
coupling itself is between two fermions and one scalar: One of the fermions stems from the Fermi
multiplet and another one from one of the two chiral multiplets. While the general structure has
been outlined in [87, 102], explicit quantitative studies comparable to the ones on Calabi-Yau 4-
folds haven not yet been performed as of this writing.

A qualitatively novel phenomenon is that the singularity type can enhance further over co-
dimension-four points on the base B4, where several of the coupling curves intersect. The splitting
and joining of fibral curves responsible for this enhancement allows for quartic interactions, which
have no analogue in F-theory on 4-folds. This is in agreement with the fact that a scalar field in
two dimensions has vanishing mass dimension. Hence a quartic, unsuppressed coupling involving
two fermionic and two scalar fields is possible for dimensional reasons. Such holomorphic quartic
couplings must again be writable as E- or J-type F-terms.

6.3 A comment on terminal singularities in codimension three

To end this section, note that we have assumed here that the codimension-three singularities
allow for a crepant, i.e. Calabi-Yau, resolution. As in codimension-two - see section 5.6 - this
need not be the case in general. The mathematics and physics of potential terminal singularities
in codimension three (let alone four) on the base has not been studied fully systematically in the
F-theory context yet. There is, however, at least one important class of non-crepant resolvable
singularities on elliptic 4-folds in codimension three on the base which plays an interesting role in
F-theory [171]. The singularities in question are isolated, terminal cyclic quotient singularities as
classified in [172] (see also [173]). Both their geometric properties and their physics interpretation
differ fundamentally from the Yukawa points reviewed in this section.

Isolated terminal cyclic 4-fold singularities compatible with the structure of an elliptic fibration
are locally of the form C4/G with the orbifold group G = Zk for k = 2,3,4,6. The group G acts
simultaneously on the base coordinates and the elliptic fiber, and the restriction to the above small
list of possibilities is due to the requirement that G can act consistently on the elliptic fiber. Locally
near the singularity the 4-fold geometry is of the form C3×T 2 with local coordinates (z1,z2,z3,z4);
z4 = x+ τy is the local coordinate on the torus fiber with complex structure τ . The orbifold action
of G = Zk is then defined as [171]

zi→ e2πivi
k zi , vk = (1,−1,1,−1)/k . (6.16)
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The resulting orbifold singularity for k = 2 corresponds to the location of a perturbative O3-plane:
The action on the fiber is the F-theory lift of the perturbative orientifold action Ω(−1)FL , which can
be identified with the SL(2,Z)-action corresponding to the matrix diag(−1,−1). The action on C3

is the geometric part of the orientifold involution. Consistently, for k = 2 the complex structure τ of
the elliptic fiber is not fixed by (6.16), and a weak coupling limit is possible. On the other hand, the
values k = 3,4,6 give rise to a non-perturbative generalisation of the concept of an orientifold [36].
In particular, the orbifold action on the elliptic fiber fixes the axio-dilaton τ at the non-perturbative
values τ = eiπ (for k = 3,6) and τ = i (for k = 4). This has already been discussed from the [p,q]
7-brane angle at the end of section ??.

The crucial observation of [171] is that probing the strongly coupled region near the orbifold
singularity with a D3-brane leads to an interesting conformal field theory on the D3-brane world-
volume with (rigid) N = 3 supersymmetry. This F-theoretic construction, in fact, provided the
first example of such exotic field theories. They evade conventional no-go theorems forbidding the
existence of N = 3 field theories by being inherently strongly coupled and non-Lagrangian. More
on the concept of probing a singularity with D3-branes can be found in section 10.2.

7. The Mordell-Weil group and abelian gauge symmetries

Up to now we have exclusively dealt with the structure of non-abelian gauge algebras in F-
theory compactifications. The type of Lie algebra, its representations, and holomorphic interactions
are determined by local data: this information is encoded in the singularity structure over strata of
codimension one, two and three (or four) on the base of the fibration. Gauge theories with abelian
Lie algebras, on the other hand, are sensitive to data which are intrinsically global. This is true
already in perturbative orientifold models and is even more pronounced in the language of F-theory.
On an elliptic fibration Ŷn+1, non-Cartan abelian gauge symmetries are associated with rational
sections of the fibration. While this general connection was known early on [3, 82, 174] and was
also at play in [43], a systematic investigation both within the globally defined geometry of explicit
elliptic fibrations and from a physics perspective has only appeared in the more F-theory literature
beginning with [175], motivated originally by particle physics model building.27 We begin by first
explaining the general connection between the Mordell-Weil group of rational sections and abelian
gauge symmetries in F-theory in section 7.1. A key role is played by the Shioda homomorphism.
As we continue to elaborate in section 7.2, its so-called height pairing determines the gauge kinetic
matrix of the abelian sector. We explain in detail the realisation of abelian gauge symmetries in F-
theory models with a Mordell-Weil group of rank one in section 7.3 and 7.4. Section 7.5 contains
a survey of generalizations and in section 7.6 we comment on the combination of abelian with
non-abelian gauge algebras. The torsional part of the Mordell-Group and its relation to the global
structure of the gauge group (as opposed to the gauge algebra) in F-theory is the subject of section
7.7.

This and the next section have overlap with the lectures by M. Cvetič at the same TASI school;
we include the material here for completeness of these notes and refer to the written version of M.
Cvetič’s notes for another review of this topic.

27In so-called semi-global models, abelian gauge symmetries have been understood in terms of split spectral covers
[93, 143, 149, 176–180].
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7.1 From rational sections to abelian gauge symmetries via Shioda’s map

The concept of a rational section sA has already been introduced in (3.2) as a meromorphic
map from the base Bn of an elliptic fibration π : Yn+1 → Bn to the fiber. The important point of
this definition is that the image of sA must be defined globally, in the sense that the image does
not undergo monodromies along closed loops on the base. A generic Weierstrass model admits
only one rational section, which is in fact holomorphic and given by the zero-section (3.5). For
non-generic f and g, extra rational sections can occur. We will discuss examples of fibrations with
extra sections in sections 7.3 and 7.4.

As every elliptic curve, the elliptic fiber Eτ is endowed with an additive group structure which
assigns to every pair of points p1, p2 on Eτ a third point via a commutative, associative map

� : Eτ ×Eτ → Eτ

(p1, p2) 7→ p1 � p2 .
(7.1)

This gives rise to an abelian group law on Eτ with the marked point of the elliptic curve as the zero
element. If we think of Eτ as a lattice C/Λ as described in section 2.2, � is the obvious addition in
C modulo the lattice identification and the origin as the zero element. The map (2.31) from C/Λ

to the Weierstrass coordinates determines the addition law on the projective coordinates of the
Weierstrass model. This addition is equivalent to a more inherently geometric definition given e.g.
in standard textbooks on arithmetic geometry such as [181, 182]. According to the Mordell-Weil
theorem [183, 184], this abelian group is finitely generated.

The group law (7.1) induces the notion of an addition on the space of rational sections in the
obvious way, by defining

(sA � sB)(b) := sA(b)� sB(b) . (7.2)

Rational sections hence form an abelian group known as the Mordell-Weil group MW(π). The zero
element is the zero-section s0 which by definition exists on every elliptic fibration. According to the
Mordell-Weil theorem for function fields, proven in [185], MW(π) is likewise finitely generated
abelian, i.e.

MW(π)' Z⊕r⊕MW(π)tor . (7.3)

Here r = rk(MW) is called the rank of the Mordell-Weil group and gives the number of independent
rational sections (in addition to the zero element). The torsional part MW(π)tor = Zk1 ⊕ . . .⊕Zkn

is generated by sections such that ki ski ≡ s
�ki
ki

= s0 for some finite ki ∈ Z.
The Mordell-Weil group is the subject of intense studies in algebraic and arithmetic number

theory, with fascinating open problems. One of them concerns the existence of an upper limit for
its rank. For example, the current record for the Mordell-Weil rank of an elliptic curve defined
over Q is r = 28 [186] and it remains open if higher ranks exist. Concerning elliptic fibrations, the
highest known Mordell-Weil rank on a complex elliptic surface over P1 is r = 68 as constructed by
T. Shioda [37], while the rank of an elliptic K3 is of course at most r ≤ 18 (because b2(K3) = 22,
h2,0(K3) = 1 and rank(NS(K3)) ≤ 20); in fact the possible Mordell-Weil groups (including their
torsion part) of elliptic K3 surfaces are completely known [187]. Unfortunately, this is not the case
for elliptic Calabi-Yau n-folds for n > 2: As for elliptic Calabi-Yau 3-folds the current world record
for rk(MW) is r = 10 as realized in an elliptic K3-fibration by N. Elkies [188].
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Both the freely generated subgroup Z⊕r and the torsion part MW(π)tor have a direct inter-
pretation in F-theory. In the following sections we focus first on the freely generated Mordell-Weil
group, reserving an interpretation of the torsion part to section 7.7. The importance of extra rational
sections in the context of abelian gauge symmetries in F-theory lies in the fact that a non-torsional
rational section induces an embedding of the base Bn into Yn+1 as a non-trivial divisor. As we
will discuss below, the specifications of the Weierstrass model required to engineer extra rational
sections typically induce singularities in codimension-two which require again a resolution of the
Weierstrass model to a smooth fibration Ŷn+1. On the resolved space Ŷn+1 we denote the divisor
associated with a rational section sA as

SA := div(sA) ∈ NS(Ŷn+1) (7.4)

with NS(Ŷn+1) the Néron-Severi (divisor class) group on Ŷn+1 (see Appendix A for a definition).
The class in (co)homology will again be denoted by [SA]. This is in analogy to the notation for
S0 = div(s0) introduced in (3.6). It turns out that the divisors associated with the independent
rational sections are homologically independent in Hn(Ŷn+1). By the Shioda-Tate-Wazir theorem28

[189, 190], H1,1(Ŷn+1) is in fact generated by29

H1,1(Ŷ4) = 〈[S0], [SA], [EiI ], [π
−1(Db

α)]〉 , (7.5)

and hence

h1,1(Ŷn+1) = h1,1(Ŷn+1)+ rk(g)+1+ rk(MW)(π) . (7.6)

This is the generalisation of (4.36), which is valid if the trivial Mordell-Weil group is trivial. Note
that the sum SA+SB within the group of divisors is not the divisor class associated with the addition
of the sections sA � sB. A better behaved map from the Mordell-Weil group to the divisor group
will be given momentarily in terms of the so-called Shioda homomorphism.

For later purposes, let us summarize some of the intersection numbers obeyed by the rational
section divisors. To this end recall (in particular from Appendix B) that the projection π : Ŷn+1→Bn

induces a pushforward map in homology π∗ : Hk(Ŷn+1)→ Hk(Bn) and a pullback map in cohomo-
logy π∗ : Hk(Bn)→ Hk(Ŷn+1) , as well as an eponymous pushforward and pullback on the under-
lying cycle classes. As in the rest of this article we take the liberty of using the same symbol for a
cohomology class and its Poincaré dual homology class as well as for the intersection product in
homology and cohomology. With this understanding the projection formula can be written (for ωb a
cycle of real dimension k on Bn with associated homology class [ωb]∈Hk(Bn) and γ ∈H2n−k(Ŷn+1)

as

[π−1(ωb)] ·Ŷn+1
γ = [ωb] ·Bn π∗(γ) . (7.7)

28A more precise formulation will be given in section 7.7.
29More precisely, the theorem states that the Néron-Severi group of a smooth elliptic fibration Xn+1 (not necessarily

Calabi-Yau) is generated by S0, SA, EiI and π−1(Db
α ). On a Calabi-Yau Ŷn+1, we can identify NS(Ŷn+1) with H1,1(Ŷ4).

See also Appendix A for more information.
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Using this notation the intersection numbers we will need are

[SA] ·π∗[Db
α1
] · . . . ·π∗[Db

αn
] = [Db

α1
] ·Bn . . . ·Bn [D

b
αn
] (7.8)

[SA] · [SB] ·π∗[Db
α1
] · . . . ·π∗[Db

αn−1
] = [π∗(SA ·SB)] ·Bn [D

b
α1
] ·Bn . . . ·Bn [D

b
αn−1

] (7.9)

[SA] · [SA] ·π∗[Db
α1
] · . . . ·π∗[Db

αn−1
] = −c1(Bn) ·Bn [D

b
α1
] ·Bn . . . ·Bn [D

b
αn−1

] (7.10)

[SA] · [EiI ] ·π∗[Db
α1
] · . . . ·π∗[Db

αn−1
] = πAiI [ΣI] ·Bn [D

b
α1
] ·Bn . . . ·Bn [D

b
αn−1

] . (7.11)

Relations (7.8) and (7.10) are analogous to (3.11) and (3.12). Relation (7.10) is a special case
of (7.9), with π∗(SA ·SB) a divisor on the base. Intersection number (7.11) is the statement that the
section intersects only one of the resolution divisors in one point over each discriminant component
in one point. We have denoted this intersection number by πAiI . Note that the intersection point
with the fiber might lie on the component P1

0I
intersected by the zero-section, in which case πAiI = 0

for iI = 1, . . . , rk(gI).
Instead of introducing the Shioda homomorphism from a purely mathematical perspective, we

consider first the relevance of rational sections in physics. As we will see, mathematics and physics
will pose the same conditions on the definition of a well-behaved map from the space of sections
to the space of divisors. From the presentation in sections 3.4 and 4.3 we recall the general relation
between a divisor class [D]∈H1,1(Ŷn+1) and gauge fields in the M-theory effective action obtained
by reducing C3 in terms of the dual harmonic 2-forms as C3 = AD ∧ [D] + . . .. It is then clear
that M-theory compactified on an elliptic fibration with rk(MW) = r has r independent abelian
gauge fields in addition to the gauge potentials associated, in M-theory, with the zero-section, the
non-abelian resolution divisors EiI or the base divisors Db

α . In order to guarantee that these lift
to abelian gauge fields in F-theory, the 2-form [D] must obey the two transversality conditions
(3.41) and (3.42) motivated in section 3.4. Finally, it is useful to normalize the U(1) from the extra
sections such that the non-abelian gauge bosons carry no charge under them. The latter coming
from M2-branes along the fibral curves in codimension one, one imposes in addition

[D] · [P1
iI ] = 0 . (7.12)

It is worth stressing that in formulating the conditions (3.41) and (3.42) we have singled out
one of the independent sections as the zero-section S0. This choice is arbitrary and does not affect
the physics after taking the F-theory limit. However, intermediate computations, in particular of the
loop induced Chern-Simons terms, differ, especially if the chosen zero-section S0 is meromorphic
as opposed to holomorphic [191, 192].

One can make a general ansatz of the form D = SA + δA and determine the correction term
δA such that (3.41), (3.42) and (7.12) hold. Concerning (3.42) we note that the section divisor SA

intersects the generic fiber exactly once,

[SA] · [Eτ ] = 1 , (7.13)

and thus (3.42) is satisfied by D= SA−S0. Recalling the projection formula (7.7), we see that the
constraints (3.41) and (3.42) are then satisfied by D= SA−S0−π−1(π∗((SA−S0) ·S0)).

Finally, to implement (7.12) suppose the section divisor SA intersects the fibral curves in
codimension-one with some intersection numbers

πAiI = [SA] · [P1
iI ] . (7.14)
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These are in fact the same as appearing in (7.11). Introduce furthermore

`iI
A = πA jI (C

−1) jI iI ∈Q (7.15)

with (C−1) jI iI the inverse Cartan matrix associated with the Lie algebra gI . Then (7.12) as well as
(3.41) and (3.42) are fulfilled by D= σ(SA) with

σ(sA) = SA−S0−π
−1(π∗((SA−S0) ·S0))+∑

I
∑
iI

`iI
AEiI ∈ NS(Ŷn+1)⊗Q . (7.16)

This follows from (7.14) and (4.23).
To summarize, expanding the M-theory 3-form as

C3 = AA∧ [σ(sA)]+ . . . (7.17)

gives rise to gauge potentials in M-theory which uplift in F-theory to abelian gauge potentials
associated with a (non-Cartan) abelian gauge group U(1)A. Matter with U(1)A charge qA originates
in M2-branes wrapping a fibral curve C with non-zero intersection number with σ(sA) such that

qA = [σ(sA)] · [C ] . (7.18)

This includes first the so-called ’charged singlets’, by which one means states charged only under
the abelian gauge algebra. These appear in fibral curves over codimension-two loci on Bn over
which the Weierstrass model Yn+1 is singular due to the tuning required to engineer the extra section
sA. Resolving these singularities on Ŷn+1 gives rise to a Kodaira fiber of type I2 with charged matter
due to M2-branes wrapped on the resolution curve in the fiber. An interesting exception to the
generic existence of such charged singlets are the models studied in [135], where the abelian gauge
group is non-Higgsable because no matter fields are charged under it. In addition, matter charged
under the non-abelian part of the gauge algebra, if present, can also acquire a non-zero U(1)A

charge if the intersection of its associated fibral curve with σ(sA) is non-zero. We will present
examples of both types in sections 7.3, 7.4 and 7.6.

The map σ(sA) associates to the section sA a divisor class on Ŷn+1, i.e. an element of NS(Ŷn+1),
with rational coefficients. The latter point is due to the coefficients `iI

A ∈ Q, whose rationality is
a consequence of the appearance of the inverse Cartan matrix in (7.15). The map σ(sA) has the
important and non-trivial property that

σ(sA � sB) = σ(sA)+σ(sB) (7.19)

with respect to the addition of divisor classes. I.e. σ furnishes a group homomorphism

σ : MW(π)→ NS(Ŷn+1)⊗Q . (7.20)

This is the Shioda homomorphism introduced first in [193] on elliptic surfaces and generalized
in [56, 190] to higher dimensional fibrations.

The relation between the rank of the Mordell-Weil group and the number of abelian gauge
group factors in F-theory, more precisely between π1 of the gauge group and the Mordell-Weil
group, was pointed out first in [3] and elaborated further in [82, 174]. The construction underlying
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(7.16) has first been used explicitly in [175] (in absence of non-abelian gauge algebra factors) and
in [96, 194] in presence of non-abelian gauge factors. The relation to the Shioda map has been
explained in full detail in [56].

Finally, let us point out the following important fact: In the presence of certain gauge fluxes in
F-theory compactifications on elliptic 4-folds and 5-folds, the gauge potentials engineered in this
section can acquire a mass via the ’flux induced Stückelberg mechanism’. In this case, the abelian
symmetry is broken at the level of the gauge algebra, but it remains as a global symmetry in the
low-energy effective action below the mass scale of vector field, broken only by D3/M5-instanton
effects. In this sense, the Mordell-Weil group not only generates extra gauge symmetries, but, in
conjunction with suitable fluxes, also (approximative) global abelian symmetries. The flux induced
Stückelberg mechanism will concern us more in section 9.2.

7.2 Gauge couplings and the height pairing

The difference between the geometry of a non-abelian gauge algebra and an abelian one is
quite striking: In the non-abelian case, the gauge degrees of freedom are clearly localized along a
component ΣI of the discriminant divisor. In the abelian case, by contrast, the discriminant divisor
does not split off an extra component after the coefficients of the Weierstrass model are tuned such
as to accommodate an extra section. We will see this in the explicit examples of section 7.3 and
7.4. This raises the question if a similar understanding of an abelian gauge algebra is possible in
terms of a divisor on the base Bn. To some extent, this turns out to be possible. The divisor is the
so-called height pairing associated with the section [56]. One way to understand its significance is
by analyzing the U(1)A gauge coupling in the F-theory effective action.

Consider first the effective action obtained by compactifying M-theory on Ŷn+1 with an extra
rational section sA. In view of (7.17) the U(1)A gauge kinetic action follows as

Skin =−
2π

2

∫
M 1,10

dC3∧∗dC3 =−
2π

2
fAB

∫
R1,8−2n

dAA∧∗dAB (7.21)

where

fAB =
∫

Ŷn+1

[σ(sA)]∧∗[σ(sB)] . (7.22)

For simplicity, let us focus for now on M-theory compactified on an elliptic 3-fold Ŷ3 with base B2.
If we denote the Kähler form of Ŷ3 by JŶ3

, then the M-theory gauge kinetic matrix is [195]

fAB =−
∫

Ŷ3

JŶ3
∧ [σ(sA)]∧ [σ(sB)]+

3
2

(∫
Ŷ3

J2
Ŷ3
∧ [σ(sA)]

)(∫
Ŷ3

J2
Ŷ3
∧ [σ(sB)]

)(∫
Ŷ3

J3
Ŷ3

)−1

.(7.23)

To extract from this the gauge kinetic matrix in F-theory, we follow the general rules for imple-
menting the F-theory uplift as explained in detail in [57, 58]. First, we make a general ansatz

JŶ3
= π

∗J+ t0[Z]+ tA[SA]+ t iI [EiI ] , J = tα [Db
α ] , (7.24)

where [Db
α ] is a basis of H1,1(Bn). Next we rescale the fiber volume to zero while at the same

time scaling up the volume of the base divisors such that the volume of the divisor π−1(Db
α) stays

finite [5]. For elliptic 3-folds this requires [57]

tα → ε
−1/2 tα , t0→ ε t0, tA→ ε tA, t iI → ε t iI (7.25)
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with the F-theory limit corresponding to ε → 0. Since the Shioda homomorphism satisfies (3.42),
the second term vanishes as ε → 0; the first term reduces, in this limit, to

fAB→ f̂AB =−
∫

Ŷ3

π
∗J∧ [σ(sA)]∧ [σ(sB)] =

∫
B2

J∧ [−π∗(σ(sA) ·σ(sB))] , (7.26)

where we are making use of the projection formula (7.7). Similar reasoning can be applied on
elliptic fibrations of general dimension n + 1. The end result is that the abelian gauge kinetic
matrix f̂AB in the F-theory effective action is given by the Kähler volume, on the base Bn, of the
divisor

bAB :=−π∗(σ(sA) ·σ(sB)) ∈ Cl(Bn). (7.27)

This divisor is indeed effective. It is called the height pairing of the sections sA and sB.
Before coming to the physics interpretation of this divisor, let us evaluate it further as done

in the F-theory literature in [63, 96, 194, 196]. For brevity we focus on the diagonal terms bAA.
Consider first the case without a non-abelian gauge algebra and abbreviate the correction term in
(7.16) as

DA = π
−1 (π∗((SA−Z) ·Z)) ∈ H4(Ŷn+1) . (7.28)

Then

bAA|g=0 =−π∗ ((SA−S0−DA) · (SA−S0−DA))

=−π∗(SA ·SA)−π∗(S0 ·S0)+2π∗(SA ·S0)−π∗(DA ·DA)+2π∗((SA−S0) ·DA) .
(7.29)

The projection formula (7.7) together with (7.8) and (3.11) shows that π∗((SA−S0) ·DA) = 0 since
DA is a vertical divisor. Similarly, (3.13) implies that π∗(DA ·DA) = 0. By (7.10) and (3.12),

π∗(SA ·SA) = π∗(S0 ·S0) =−K̄ . (7.30)

In absence of non-abelian gauge algebra, therefore

bAA|g=0 = 2K̄ +2π∗(SA ·Z) . (7.31)

It is left as a simple exercise to generalize this, for the full Shioda map (7.16), to

bAA = 2K̄ +2π∗(SA ·Z)−∑
I

πAkI (C
−1)kI iI πAiI ΣI . (7.32)

To arrive at (7.32), one uses that the Shioda map satisfies the relations (7.12), (3.41) and (3.42)
together with the intersection numbers (7.11).

The fact that the gauge kinetic function is controlled, via the height pairing, by the volume
of the anti-canonical divisor of the base implies that abelian gauge symmetries cannot be con-
sistently decoupled from the gravitational sector, as discussed recently with special emphasis on
six-dimensional compactifications in [197]. This underlines once more the global nature of abelian
gauge symmetries.

The height pairing not only encodes the gauge coupling in the F-theory limit. It also plays a
major role for the structure of anomalies and their cancellation via the Green-Schwarz mechanism
in F-theory compacitifcations to six [56, 57], to four [22, 85] and to two [103] dimensions.
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The fact that a divisor on the base carries information about the dynamics of the abelian gauge
groups is not surprising from a Type IIB perspective. In Type IIB orientifolds, stacks of 7-branes
wrap distinct divisors DI on the Calabi-Yau Xn which is the double cover of the base Bn as sketched
in section 3.3. While for more background on such constructions we refer to [125] and references
therein, let us recall here the following facts: If the divisor is not invariant under the holomorphic
involution as a cycle, DI 6= σ(DI), each such brane stack carries a priori an abelian gauge group
factor. More precisely, a stack of NI 7-branes along DI carries a gauge group U(NI). If also the
homology class [DI] is not invariant under the orientifold involution, [DI] 6= σ∗[DI], the diagonal
U(1)I factor acquires a mass via a Stückelberg mechanism. Since this Stückelberg mechanism
operates even in absence of gauge fluxes, it is sometimes referred to as the ’geometric Stückelberg
mechanism’, whose realisation in F-theory invokes non-harmonic forms [198]. If the mass matrix
for all U(1)I gauge potentials is not of maximal rank, then a linear combination U(1)A of individu-
ally massive U(1)I gauge potentials remains massless. This U(1)A is then associated with a certain
linear combination of divisors ∑I nI

ADI on Xn such that [∑I nI
ADI] = σ∗[∑I nI

ADI]. In this sense the
U(1)A is ’delocalized’: It cannot be attributed to one of the 7-brane divisors DI and hence not to an
individual discriminant component ΣI in the F-theory uplift. The linear combination of divisors, in
particular the F-theory uplift of their cohomology class, is related to the height pairing divisor bAA,
which indeed is not a component of the discriminant. The relation between the Type IIB and the
F-theory description of abelian gauge fields has been studied in particular in [54, 55, 136].

7.3 Example 1: U(1) restricted Tate model

Elliptic fibrations with a non-trivial Mordell-Weil group have been studied extensively in the
recent F-theory literature. As a warmup we start with the simplest example of an elliptic fibration
with Mordell-Weil group of rank one, which already contains, despite its simplicity, all relevant
features to understand abelian gauge group in F-theory [175]. It is also the first example that has
been studied explicitly in this context. The model is sometimes called U(1) restricted Tate model
because its starting point is a generic Weierstrass model in Tate form (4.48), where, however, we
set the polynomial a6 to zero. The rational point [x : y : z] = [0 : 0 : 1] now lies on the elliptic fiber.
As a result, the fibration exhibits an extra section

s1 : b 7→ s1(b) = [0 : 0 : 1] . (7.33)

The price to pay is that Yn+1 acquires an I2 singularity in the fiber over the locus

C34 = {a3 = 0}∩{a4 = 0} , (7.34)

where the vanishing orders of ( f ,g,∆) enhance to (0,0,2). The locus (7.34) occurs at a self-
intersection of the discriminant divisor Σ. Apart from this self-intersection, Σ does not factorise
into several irreducible components. This is a general pattern in fibrations with extra sections. The
singularity in the fiber over C34 is located at x = y = 0, where PT = dPT = 0. This means that the
extra section s1 itself is singular: It passes through a singular point in the fiber. As a result, the
section is not a holomorphic, but merely a rational section.

In fact, the singularity is a conifold singularity: The defining hypersurface equation PT = 0 of
a generic Tate model can be written in the suggestive form

AB =CD+a6z6 (7.35)

72



P
o
S
(
T
A
S
I
2
0
1
7
)
0
1
6

F-theory Timo Weigand

with

A = y, B = y+a1xz+a3z3, C = x, D = (a2xz2 +a4z4) . (7.36)

When a6 ≡ 0, the hypersurface is of conifold form AB = CD, and the singularity at A = B =

C = D = 0 is exactly the singularity we are talking about. In the language of section 5.6, the
conifold singularity is crepant resolvable for a6 ≡ 0 because it is not Q-factorial: The divisor
{A = 0}∩{C = 0} on Y4 is not Cartier because it cannot be locally expressed by the vanishing of
a single holomorphic function on Y4.

The singularity in the fiber over C34 can be resolved by a simple blow-up [96,175], introducing
the blowup coordinate s and replacing

x→ xs , y→ ys . (7.37)

After this substitution, the defining Tate polynomial is replaced as PT → s2P̂T , with the proper
transform P̂T

P̂T = y2s+a1xyzs+a3yz3− x3s2−a2x2z2s−a4xz4 . (7.38)

The resolved Calabi-Yau is defined as Ŷn+1 : P̂T = 0. The equation P̂T is an equation in the new
fiber coordinates x, y, z and s. The blowup (7.37) comes together with an extra scaling relation.
Including the original scaling of the Weierstrass model, the fiber ambient space coordinates are
subject to the identifications

(x,y,z,s)' (λ 2x,λ 2y,λ z,s)' (µx,µy,z,µ−1s) , λ ,µ ∈ C∗ . (7.39)

The second scaling follows from the fact that xs and ys, which correspond to the coordinates in
the Weierstrass model before the blowup, are independent of the new scaling. The model can be
compactly characterized as a Bl1P231[6] fibration.

The combination of both scaling relations imply that the following combinations of fiber am-
bient space coordinates are not allowed to vanish simultaneously,

SR = {xy,zs} . (7.40)

In toric language, they generate the Stanley-Reisner (SR) ideal of the fiber ambient space. The fiber
over C34 splits into two components because of the factorization

P̂T |a3=a4=0 = s(y2 +a1xyz− x3s−a2x2z2) . (7.41)

We hence identify the two fibral curves C0 and Cs, where the latter is along the vanishing of s. They
manifestly intersect in two distinct points. This is indeed the structure of an I2 Kodaira fiber.

On the resolved space, the point [0 : 0 : 1] no longer exists because xy is in the SR ideal (7.40).
The role of the section s1 is now played by the section divisor which is in fact given by the resolution
divisor

S : {s = 0} . (7.42)
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This divisor on Ŷn+1 takes the form

{s = 0}∩{P̂T = 0}= {s = 0}∩{a3y−a4x = 0} , (7.43)

where we have set z≡ 1 by means of the scaling relations because sz is in the SR ideal (7.40). Over
a generic point of the base, the divisor S describes one point in the fiber, with ambient coordinates
y = a4

a3
x if a3 6= 0 or x = a3

a4
y if a4 6= 0. The defining equation of this point is a meromorphic function

in the coordinate ring, again illustrating that the section is a rational section. By contrast, over C34

the divisor S wraps the entire component Cs of the fiber [96]: Since along C34 a3 = a4 = 0, the
equation a3y− a4x = 0 is clearly solved for any x and y. Such behaviour is the hallmark of a
rational section. The zero-section of the Weierstrass model

S0 : {z = 0} (7.44)

continues to play the role of a holomorphic section.
There are other, equivalent presentations of the same geometry. In [194], the conifold sin-

gularity is resolved by a small resolution. The resolved space is then presented as a complete
intersection rather than a hypersurface in an ambient space. After the resolution, the section inter-
sects the exceptional curve over C34 in a point. The physics properties of this fibration are, however,
completely identical.

The Shioda map and height pairing are readily evaluated: What makes this model non-generic
is that S ·S0 = 0 because sz are in the SR ideal. Hence

σ(s1) = S−Z− K̄, bSS = 2K̄ . (7.45)

It remains to discuss the appearance of U(1) charged matter [96, 175]. To this send let us
compute the intersection numbers of C0 and Cs with S0 and S,

[S] · [Cs] =−1, [S] · [C0] = 2 (7.46)

[S0] · [Cs] = 0, [S0] · [C0] = 1 . (7.47)

The second equation follows by noting that S wraps Cs, which intersects C0 in two points as pointed
out above. Since [S] · [E]τ = 1 and [E]τ = [C0] + [Cs] this explains the first intersection number.
Furthermore, the zero-section does not intersect Cs because zs are in the SR ideal.

According to our general logic, an M2-brane wrapping Cs hence gives rise to the KK zero-
modes of charged states in F-theory, with charge

q = [σ(s1)] ·Cs =−1 . (7.48)

An M2-brane wrapping Cs with opposite orientation gives rise to states with charge +1. The
counting of these states proceeds in complete analogy to the counting of charged localised matter
in a representation of non-abelian gauge algebras. For instance, if the base is B2, we find n =

[a3] ·B2 [a4] = 12K̄ ·B2 K̄ hypermultiplets of charge −1. On B3 and B4 the numbers of charged
multiplets with charge−1 is computed as explained in section 5.4.3 and 5.4.2 (in absence of gauge
flux).
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7.4 Example 2: Morrison-Park model

The above construction is a special case of a more general type of fibrations with Mordell-
Weil group of rank one [196]. Finding the most general type of fibration with a given number of
independent sections is a very hard and in general unsolved problem in arithmetic geometry. But
there are a few ways to proceed systematically as follows.

Every elliptic fibration is birationally equivalent to a Weierstrass model and in principle the
most general form of such a fibration with Mordell-Weil rank r corresponds to a certain special-
ization of the Weierstrass polynomials f and g. This then gives the fibration in its singular form,
prior to resolution. For instance, if the Weierstrass model is to exhibit a special section of the form
[x : y : z] = [a : b : 1], it must be possible to write the Weierstrass equation globally as [196]

(y−b)(y+b) = (x−a)(x2 +ax+ c) , (7.49)

which can be read as a constraint on f and g. Note the appearance of a conifold singularity at
{y = 0}∩{x = a}∩{b = 0}∩{c+2a2 = 0} whose resolution is analogous to the process studied
in the previous section.

Unfortunately, a section of the form [x : y : z] = [a : b : 1] is still rather special because its
coordinate z = 1 globally. A more general form30 of an elliptic fibration with Mordell-Weil group
of rank one can be determined following an argument due to Deligne. The argument is spelled out
in Appendix A of [196] and shows that every elliptic curve with n independent rational points can
be written as a generic hypersurface of the following form:

n = 1 : Eτ = P231[6] (7.50)

n = 2 : Eτ = Bl1P112[4] (7.51)

n = 3 : Eτ = Bl2P111[3] . (7.52)

The most generic hypersurface of degree six in P231 is in fact the generic Tate model, which is
equivalent to the generic Weierstrass model (by completing the square in y and the cube in x) and
gives rise to and elliptic curve with Mordell-Weil rank r = n− 1 = 0.31 The second model is the
r = 1 model studied in [196] and discussed in more detail momentarily, and the third is the r = 2
model analysed in [199–202]. For n = 4, the canonical form for Eτ is as a complete intersection in
Bl3P3 as analysed in [203], and beginning with n = 5 even a description in terms of determinantal
or Grassmannian varieties is required. However, all of these models of elliptic curves are birational
to - very non-generic if n≥ 2 - Weierstrass models.

It is important to appreciate that the argument of Deligne is a priori about elliptic curves rather
than elliptic fibrations; promoting the elliptic curves implied by Deligne’s algorithm to families of
elliptic curves leads to elliptic fibrations with a Mordell-Weil group of rank r = n− 1; however,
these are not necessarily the most general ones due to subtle effects in higher codimension of the
parameter space. We will come back to this point in section 7.5 and for now continue studying the
elliptic fibration with one extra rational section as motivated by (7.51).

30The fact that this does still not give the most general such fibration is due to the fact that, as stressed in the text,
Delgine’s argument is a priori true for elliptic curves.

31More precisely, in order for the hypersurface to describe a genus-one curve, the coefficient of y2 and x3 must be
non-vanishing and can then be scaled to one.
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b0 b1 b2 c0 c1 c2 c3 c4

β K̄ −β +2K̄ 2β β + K̄ 2K̄ −β +3K̄ −2β +4K̄

Table 7.1: Classes of the coefficients entering the hypersurface (7.53).

To understand the meaning of (7.51), consider first the most general hypersurface of degree
four in P112 with homogenous coordinates [u : v : w]. The hypersurface is cut out by the polynomial

P = bww2 +b0u2w+b1uvw+b2v2w+ c0u4 + c1u3v+ c2u2v2 + c3uv3 + c4v4 . (7.53)

If we take the coefficients bi and ci to be constant, this defines a genus-one curve as long as bw is
non-vanishing; it can hence scaled to one [196]. The most general such genus-one curve does not
admit a rational point. However, setting c4 ≡ 0 gives rise to the two rational points

s1 : [u : v : w] = [0 : 1 :−b2], s2 : [u : v : w] = [0 : 1 : 0] , (7.54)

which indeed generate the Mordell-Weil group of Eτ . With c4 ≡ 0 the above hypersurface is not
the most general one of its degree any more, but this can be remedied by introducing an exceptional
divisor and hence changing the ambient space to Bl1P112, the blowup of P112 in one point. The
most general hypersurface of degree four (with respect to the scaling of [u : v : w]) in Bl1P112 has
then two independent rational points. We will describe the blowup in more detail below. This is
the result predicted by Deligne’s algorithm.

With ci and bi sections of appropriate line bundles on Bn, (7.53) defines a Calabi-Yau space
which is torus-fibered over Bn. A special case is the one where bw ≡ 1 globally; unlike for the case
of a genus-one curve, as treated by Deligne’s argument, this is not strictly necessary to the extent
that the fiber of a genus-one fibration is only required to be a genus-one curve over generic points.
The model of [196] makes this restriction. We will stick to this choice for now and comment on
generalizations in section 7.5. The classes of bi and ci are displayed in table 7.1 with β some class
on Bn such that all [bi] and [ci] are effective classes. This is required in order for the model to exist
with holomorphic polynomials.

In order to obtain an elliptic fibration with two independent sections, we set c4 ≡ 0 globally,
which leads to the elliptic fibration

Yn+1 : PMP = 0 (7.55)

with

PMP = w2 +b0u2w+b1uvw+b2v2w+ c0u4 + c1u3v+ c2u2v2 + c3uv3 . (7.56)

The two independent sections are the divisors associated with the two independent rational points
(7.54). The elliptic fibration Yn+1 obtained in this way is singular: Its defining equation can be
written globally in conifold form

w(w+b0u2 +b1uv+b2v2) = u(c0u3 + c1u2v+ c2uv2 + c3v3) (7.57)

with a conifold singularity at

{u = 0}∩{w = 0}∩{b2 = 0}∩{c3 = 0} . (7.58)
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The section s2 passes through the singularity and is hence only a rational section. This is analogous
to the behaviour encountered around (7.35). A blowup is required to remove this singularity, and
after the blowup the section will wrap the exceptional fibral curve over the base locus

CI :=Cb2c3 ≡ {b2 = 0}∩{c3 = 0} . (7.59)

Even before coming to the resolution, we need to elaborate on a new phenomenon that we have not
seen in the model of section 7.3: The unresolved singular fibration (7.56) (as well as the smooth
genus-one fibration with non-zero c4) contains smooth I2 fibers. This is to be contrasted with the
situation in a Weierstrass model: The generic Weierstrass model is smooth and has only fibers
of Kodaira type I0, Kodaira type I1 and type II. A generic P112[4]-fibration with non-zero c4 is
also smooth, but it allows in addition for smooth fibers of I2 consisting of two rational curves
intersecting at two points. The appearance of conifold singularities in model (7.56) does not affect
the existence of such smooth I2 fibers even in the singular model with c4 ≡ 0. The richer set of
smooth fiber types in elliptic fibrations not in Weierstrass form has been stressed, independently of
the relation to the Mordell-Weil group, amongst other places in [45]. It is in perfect agreement with
the fact that every elliptic fibration can be cast in Weierstrass form - up to birational equivalence:
the degenerate fibers in higher codimension will in general change under the birational map relating
both descriptions of the fibration.

To find the smooth I2 fibers we adopt the procedure developed in [196], where we follow
the presentation in [204]: At the location of a smooth I2 fiber, the defining equation (7.56) must
factorise. The hypersurface equation can in fact be written as

P1 =

[
w+

1
2
(b0u2 +b1uv+b2v2)

]2

+(c0−
1
4

b2
0)u

4 +(c1−
1
2

b0b1)u3v+(c2−
1
2

b0b2−
1
4

b2
1)u

2v2 +(c3−
1
2

b1b2)uv3− 1
4

b2
2v4 .

(7.60)
In order for P1 to factorise the expression in the second line must form a perfect square. Let us
therefore make an ansatz of the form (au2+buv+Cv2)2 for the second line. Comparing coefficient
gives five equations. Three of these determine a, b and c, and the remaining two equations define
the codimension-two locus on the base where the factorization occurs. Since in the process of
solving for a and b we must divide by b2 and by 2c3− b1b2, the two equations obtained in this
way are only valid away from the locus where the latter vanish. In fact, we know already that over
b2 = c3 = 0 the fibration is singular, and this locus hence does not describe smooth I2 fibers prior
to resolution. The factorization locus is given by the vanishing locus V ( f1, f2) of f1 and f2 with

f1 =−c1b4
2 +b1b3

2c2 +b0b3
2c3−b2

1b2
2c3−2b2

2c2c3 +3b1b2c2
3−2c3

3

f2 =−c2
3b2

0 +b1b2b2
0c3−b1b2

2b0c1 +b2
2c2

1 +b2
1b2

2c0−4b1b2c0c3 +4c0c2
3 ,

(7.61)

with the understanding that the locus (7.59) must be exempt from this as explained above. Tech-
nically, this is done by performing a primary ideal decomposition, e.g. using the computer algebra
programme SAGE, of the ideal generated by 〈 f1, f2〉. Each primary ideal describes an irreducible
locus on Bn. One of them, as it turns out, is the locus (7.59). The remaining locus is described by
a complicated primary ideal which, in this case, has 15 generators. We denote this locus as

CII =V ( f1, f2)\CI . (7.62)
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fibre over CI

AI BI

fibre over CII

AII BII

Figure 1: I2-fibres over the singlet curves CI and CII of the Bl1P112[4]-fibration (7.64) of [196].
Blue represents the rational section S and green the zero-section S0. The picture is taken from
[205].

We can now proceed to resolve the conifold singularity over (7.59). This is possible again in
terms of a blow-up

u→ us w→ ws . (7.63)

The resolved space Ŷn+1 is the hypersurface in the Bl1P112[4]-fibration cut out by

P̂MP = sw2 +b0s2u2w+b1suvw+b2v2w+ c0s3u4 + c1s2u3v+ c2su2v2 + c3uv3 . (7.64)

The scaling relations are32

(u,v,w,s)' (λu,λ µv,λ 2
µ w,µ s) (7.65)

leading to the SR-ideal

SR = {uw,vs} . (7.66)

Over CI the fiber factorises into the exceptional curve AI wrapped by the extra section S1 and the
remaining fiber component BI with intersection numbers

[S] · [AI] =−1, [S] · [BI] = 2 (7.67)

[S0] · [AI] = +1, [S0] · [BI] = 0 . (7.68)

The fiber over CII continues to factorise as in the singular model prior to resolution into two fibral
curves AII and BII with

[S] · [AII] = 0, [S] · [BII] = 1 (7.69)

[S0] · [AII] = 1, [S0] · [BII] = 0 . (7.70)

The situation is depicted in Figure 1. After the blowup, the section divisor associated with s1

is replaced by the holomorphic section S0 = {u = 0}, and the singular section s2 by S : {s = 0}.
It is rational and wraps the exceptional curve AI in the fiber over CI . Since the section divisors S0

and S1 are given by toric divisors, i.e. by the vanishing locus of toric ambient space coordinates

32We are combining here the original scaling of [u : v : w] with the one from the blow-up.
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on the hypersurface, the sections are called toric sections. This need not always be the case, and
non-toric sections may well exist (possibly in addition to obvious toric ones). In the present model
the Mordell-Weil rank is indeed one and hence no independent non-toric sections exist.

As a novelty compared to the model of section 7.3, S0 and S1 intersect over {b2 = 0} so that

π∗(S ·S0) = b2 , (7.71)

where we are denoting by b2 also the divisor associated with {b2 = 0}. This leads to the Shioda
map and height pairing

σ(S) = S−S0− (K̄ +b2) , bSS = 2K̄ +2b2 . (7.72)

There are now two types of charged matter: An M2-brane wrapping the exceptional fiber AI

over CI gives rise to states of charge |q1|= 2, while M2-branes wrapping the fiber BII over CII carry
charge q2 = 1. As usual, adding and subtracting the full fiber class reproduces the whole tower of
KK states in M-theory.

The discussion of this elliptic fibration has been phrased entirely in the language of the special
P112[4]-fibration (7.56) and its resolution (7.64), because the starting point was Deligne’s algorithm
to produce elliptic curves with two rational points. It must of course be possible to bring the
fibration into Weierstrass form by a birational transformation. By definition, after such a change the
fibers in codimension one or higher might differ. The birational map from (7.56) to the Weierstrass
model has been worked out in [196], leading to

PW−U(1) : y2 = x3 + f xz4 +gz6

f = e1 e3−
1
3

e2
2−4e0 e4 , g =−e0e2

3 +
1
3

e1e2e3−
2
27

e3
2 +

8
3

e0e2e4− e2
1e4

(7.73)

with

e0 =−c0 +
1
4

b2
0, e1 =−c1 +

1
2

b0b1,

e2 =−c2 +
1
2

b0b2 +
1
4

b2
1, e3 =−c3 +

1
2

b1b2, e4 =
1
4

b2
2.

Note that [196] first set b0 ≡ 0 and b1 ≡ 0 by a change of coordinates in (7.56). What is important
is that all ei are generic polynomials except for e4, which is a perfect square. In the Weierstrass
model the smooth I2 fibers of (7.56) over CII are contracted to singular I2 fibers, which, together
with the conifold locus at CI , form the singularities of the fibration.

7.5 Generalisations and systematics

It is natural to wonder if the elliptic fibration (7.56) or its associated Weierstrass model (7.73)
represent the most general fibration with a Mordell-Weil group of rank one. In particular, it is of
great interest in physics to determine the possible U(1) charges in F-theory. Part of the fascination
of these questions from a physics perspective is because they might allow us to distinguish the
landscape of consistent (non-perturbative) vacua of string and M-theory from the swampland of
seemingly consistent supergravity theories with no quantum gravity completion. Questions con-
cerning abelian gauge symmetries and the allowed charges have been addressed in particular in the
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context of 6d F-theory compactifications, where the supergravity constraints due to anomalies are
particularly stringent, see section 10.1.

While the general answer to this question has not been settled as of this writing, let us briefly
summarize the current state of the art: The resolved fibration (7.64) is a hypersurface in a toric
ambient space. It has already been pointed out at the end of section 4.5 that this construction is
defined in terms of a two-dimensional reflexive polygon and its dual; they encode, respectively, the
toric ambient space coordinates and the monomials appearing in the hypersurface equation. There
are, in fact, 16 inequivalent such two-dimensional reflexive polygons (see [92,206] for background
information and references). Both (7.64) and the U(1) restricted model (7.38) are included in this
list. The toric Mordell-Weil group of these 16 toric hypersurface models has been determined in
[206,207]. In [208] the genus-one fibrations obtained by fibering all of these 16 toric hypersurfaces
over a general base have been analyzed in detail along the lines of the discussion exemplified here
for the models (7.38) and (7.64). This list turns out to include in particular one model with a
Mordell-Weil group of rank r = 1 which contains massless matter of charges q = 1,2,3. In [115]
it is observed that the associated Weierstrass model is not the form (7.73), which can therefore not
give the most generic such elliptic fibration. Nonentheless, one can associate to the model with
q = 3 matter a non-Calabi-Yau fibration in Weierstrass form of the type (7.73) [209].

The mismatch is due to subtle effects which involve so-called non-UFDs (universal factoriza-
tion domains). In [210], a general and systematic ansatz has been used to derive Weierstrass models
with charges q = 3, which are indeed not of the form (7.73). The starting point is a Weierstrass
model with a section

s1 : [x : y : z] = [x̂ : ŷ : ẑ] . (7.74)

Note that the coordinates of the section, x̂, ŷ and ẑ, are functions in the coordinate ring R of the base
Bn. Since s1 must lie on the elliptic fiber, the functions f and g defining the Weierstrass model are
constrained as

ŷ2− x̂3 = ẑ4( f x̂+gẑ2) . (7.75)

The idea is then to make a general ansatz for x̂ and ŷ as a power series in ẑ such as to satisfy (7.75)
and to read off the corresponding form of f and g. The crucial point is now whether the divisor
ẑ = 0 defines a smooth or a singular variety on the base Bn [210].33 If it is smooth, the quotient
R/〈z〉 is a so-called UFD (unique factorization domain). The general ansatz for x̂ and ŷ in terms of
ẑ then reproduces precisely the form (7.73). If ẑ = 0 is a singular variety, R/〈z〉 is a non-UFD, and
more general solutions to the ansatz, making use of techniques in [105], are possible. The model
of [208] with a q = 3 state has exactly the property that ẑ = 0 is singular, in agreement with the
findings of [115]. More general models with q = 3 are likewise found in this way [210], but the
most general such model is still not determined. Another remaining challenge is that these highly
non-generic Weierstrass models are not yet resolved.

Ref. [210] also finds the first example of an elliptic fibration with Mordell-Weil rank r = 1 and
a q = 4 states (albeit with a different technique). As of this writing it remains an open question

33At the end of section 5.1 we have noted that it makes an important difference if a discriminant component is smooth
when it comes to classifying the possible non-abelian representations with respect to the associated non-abelian gauge
algebra. Here smoothness of ẑ = 0 poses restrictions on the abelian models for very similar reasons.
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how to generalize these results to higher charges in practice and what the upper limit of possible
charges in such F-theory construction might be.

Another line of generalisation is to increase the rank of the Mordell-Weil group. Promot-
ing the elliptic curve (7.51) obtained via Deligne’s argument to an elliptic fibration produces a
Mordell-Weil group of rank r = 2, corresponding to an F-theory gauge group U(1)×U(1). These
geometries have been investigated in [199–202]. In particular, there are six types of charged sing-
lets. Again the manipulations, in particular the fibral coordinate transformations, leading to the
specific form of these fibrations are the most general ones for elliptic curves with three independ-
ent rational points, but not necessarily for the associated fibrations. This is explained in [114],
which provides a generalisation of these fibrations: In the more general models, there are even nine
types of charged singlets and correspondingly a richer Higgs branch.

As we increase the rank of the Mordell-Weil group, we are bound to leave the regime where
the elliptic fiber is merely a hypersurface in a toric ambient space - at least if we are trying to find
the most generic, i.e. ’normal forms’ for the fibration as opposed to highly constrained and hence
somewhat unwieldy Weierstrass models. For instance, extrapolating again Deligne’s result, such
a normal form for a Mordell-Weil group of rank r = 3 involves a complete intersection within a
toric hypersurface [203]. Similar in spirit to the classification of the genus-one fibrations obtained
as hypersurfaces in toric ambient space, [211] analyses all possible 3134 complete intersection
representations of genus-one fibers and discusses the toric Mordell-Weil group. The maximal rank
found is r = 4. By contrast, the maximal rank which can be obtained by hypersurfaces in toric
ambient spaces is r = 3 [206–208].

Up to this point we have tried to explicitly construct an elliptic fibration with extra sections
or certain properties. The inverse problem starts with a given Calabi-Yau and asks whether this
geometry admits for an elliptic fibration structure, and if so whether the fibration has a non-trivial
Mordell-Weil rank. As explained at this TASI school in [212], a criterion when a fibration is at
least a genus one fibration (not necessarily with a section) was given by Oguiso [213] and Wilson
[214] for Cablabi-Yau 3-folds; it is conjectured by Kollár [215] to hold also for higher Calabi-
Yau n-folds. Interestingly, almost all complete intersection Calabi-Yau threefolds [216, 217] and
fourfolds [218] in projective spaces admit for (oftentimes even multiple) genus-one fibrations, and
most toric hypersurface Calabi-Yau varieties seem to share this property (see e.g. [219, 220]). For
details and more references we recommend sections 3.5 and 3.6 of [212]. To specify if the genus-
one fibration is elliptic and whether it has extra independent sections, an algorithm is needed to
determine if one (or several) of the divisors of the Calabi-Yau can play the role of a meromorphic
section. In particular, a putative section must satisfy the intersection numbers (7.8) - (7.11). Tools
to systematically study this problem have been developed in [221].

7.6 Combining abelian and non-abelian gauge algebras

Rational sections can of course be combined with fiber degenerations in codimension-one
leading to non-abelian gauge algebras. Such constructions are, in fact, of great importance in
model building given the structure of the Standard Model gauge algebra or the relevance of extra
abelian gauge symmetries (once rendered massive by a Stückelberg mechanism) as extra selection
rules. This in fact partly motivated the interest in the F-theory community in elliptic fibrations with
sections.
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Localised charged matter in representation R under the non-abelian part of the gauge algebra
now carries in addition charges with respect to the abelian gauge algebra generated by the sec-
tion34. In particular, different abelian charges can occur for the same non-abelian representation
R. Compared to generic elliptic fibrations with the same non-abelian enhancement, this leads to a
refinement of the codimension-two enhancement loci corresponding to the abelian charges. If the
base has dimension n = 3 or n = 4, engineering a section then splits (some of) the codimension-
two matter curves or surfaces, respectively, into various irreducible components. The mathematical
reason for this is the specialization of the Weierstrass polynomials responsible for the appearance
of a section.

If the elliptic fibration is given in Weierstrass or Tate form, the same algorithms to engineer
non-abelian gauge algebras can be applied. The first systematic analysis has appeared in the context
of the U(1) restricted Tate model of section 7.3 combined with an enhancement to gauge algebra
su(5) over a divisor [96] (generalized to In with n ≤ 5 in [54]). At the level of the Tate model
the enhancement from the generic I5-model (6.1) to its U(1) restricted version proceeds again by
setting a6 ≡ 0. As is apparent from (6.4), this leads to a factorization of the codimension-two locus
carrying the 5-representation of su(5). The two loci

C5−3/5 = {w = 0}∩{a3,2 = 0} , C52/5 = {w = 0}∩{a2,1a3,2−a1a4,3 = 0} (7.76)

are now distinguished by their U(1) charges. To compute these, an explicit resolution must be
analyzed. For the I5 U(1)-restricted model, there are six birationally equivalent resolutions [96].
The Shioda map takes a slightly different form in each of these resolutions due to the different
intersection pattern of the section with the resolution divisors. Nonetheless, the final result for the
matter charges is the same

10−1/5, 5−3/5, 52/5, 1−1 . (7.77)

Note that the curve C10 is unchanged by the engineering of the extra section. Furthermore the
singlets 1−1 are localised along C1−1 = {a3,2 = 0} ∩ {a4,3 = 0} and hence not contained in the
discriminant divisor Σ1 wrapped the su(5) 7-brane stack. Its intersection with Σ1 forms a triple
intersection with C5−3/5 and C52/5 : Here triple Yukawa couplings of the form 11 5−3/55̄−2/5 + c.c
appear, which are, of course, absent in the generic I5-model.

To get a better handle on the systematics, observe first that the I5 U(1)-restricted Tate model is
an example of a toric model: The fiber ambient space Bl1P231 is a toric space and the specification
of the non-abelian gauge algebra is due to certain vanishing orders of the polynomials defining the
hypersurface along a divisor in the base. The situation is therefore largely parallel to that of the
Tate model without the U(1) restriction a6 ≡ 0, as discussed in section 4.5. The vanishing orders
leading to a certain gauge algebra of the subset of toric models are the same as the ones in table
2 of [70] for the model a6 6= 0, modulo one caveat: Since a6 vanishes to all orders, if two models
differ only by the vanishing order of a6, then the model with the lower vanishing order of a6 is
automatically enhanced to the higher one. In the present case, the vanishing orders are obtained by
imposing the form ai = ai, jw j as in (6.1) (with a6 ≡ 0). This can be enforced torically by setting

34The non-localised matter along the bulk of the 7-branes remains massless due to the normalization of the U(1)A

such that [σ(sA)] · [P1
iI ] = 0
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all monomials ai,kwk with k < j to zero. In fact the polygon of the toric ambient space of the U(1)
restricted model is polygon 11 in the classification of [92]. We recall from section 4.5 that the toric
non-abelian enhancements are given in terms of so-called toric tops [90]. The toric tops of all 16
hypersurface polygons have been classified in [92]. For instance, for In models within the polygon
11 there exists only one such top in the list of [92], and hence only one type of toric model, in
agreement with application of Tate’s algorithm.

For some of the other 16 polygons there exist several inequivalent toric tops, or equivalently
toric models, realising a given non-abelian gauge algebra. These typically differ in the U(1) charges
of the representations. All toric tops with gauge algebra su(5) within polygon 6, corresponding to
the Bl1P112[4] fibration reviewed in section 7.4, have been worked out in [199, 202], leading to
more general charge assignments compared to (7.77). The toric tops now describe all possible
ways to engineer a non-abelian gauge algebra by constraining the polynomials in (7.56) to take
the form bi = bi, jw j and ci,kwk, with bi, j and ci,k otherwise generic. [202] also provides an ana-
lysis of the su(5)-tops of various other polygons with an extra abelian gauge factor including the
resulting Shioda-map and charge assignments. The toric SU(5) tops for all 16 hypersurfaces are
independently analyzed in [207].

In the context of the Bl2P111[3] elliptic fibrations with Mordell-Weil rank r = 2, all toric en-
hancements to gauge algebra su(5) have been studied in full detail in [199, 202] (see also [201]).
This corresponds to polygon 5 in the list of [92]. The same fibration has been combined with gauge
algebra su(3)⊕ su(2) in [222], where all toric tops of type I3 and I2 are worked out.

Some of the toric hypersurfaces of [208] generically exhibit extra non-abelian enhancements
without the need of restricting the defining polynomial. This includes one with total gauge algebra
su(3)⊕ su(2)⊕u(1), as analysed further in [223]. The same phenomenon also occurs in some of
the complete intersection models analyzed in [211].

The toric models form a subset of the possible gauge enhancements. More generally, there
can be non-trivial relations between the non-vanishing monomials. The first example where this
has been put to use in the presence of abelian gauge symmetry is [224], which considers Bl1P112[4]
with an su(5) gauge algebra realized in a non-generic way by exploiting exactly such relations
among the monomials. The explicit resolution of this model requires representing the fiber ambient
space as a complete intersection [224]. Unlike the toric hypersurfaces models, this induces for
instance a splitting of the 10 curve as envisaged in the phenomenologically appealing semi-global
split spectral covers of [178, 180]. Other examples with this property are provided, amongst other
things, in [225], and more complete intersections with this property are discussed in [211].

A systematic investigation of Tate’s algorithm in the context of the Bl1P112[4] fibration re-
viewed in section 7.4 has been provided in [226]. This reference first classifies all possible canon-
ical Tate forms in the presence of an extra abelian gauge group factor realized via the Bl1P112[4]
construction. The canonical models coincide with the toric models described above in that the
singularity is engineered entirely on the basis of the vanishing orders of the polynomials. All pos-
sible canonical models within the Bl1P112[4] fibration are classified in [226]. In addition, in non-
canonical models, the bi, j and ci,k may satisfy relations such that non-trivial cancellations are re-
sponsible for the appearance of the gauge algebra. Examples of this phenomenon are also analysed
in [226]. These models cannot be realized torically. An analysis of both canonical (or toric) and
non-canonical Tate forms and the resulting charges for the Bl2P111[3]-fibration of [199–202] with
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two abelian gauge factors has been provided in [227]. A detailed recent comparison between toric
methods and Tate tunings, including situations with abelian gauge groups, is carried out in [101].

Independently of concrete constructions, it is an important question which abelian charges
can occur even in principle for a given non-abelian gauge algebra, and coexist at the same time.
This question is answered in [228] for non-abelian algebra su(5) under the hypothesis that both
the section generating the abelian part and also su(5) discriminant divisor are smooth (the latter
is required to constrain the non-abelian representations occurring). The analysis is very general in
that it proceeds entirely in terms of the possible intersection structure of the extra section with the
fibral curves in codimension-two. It reproduces all U(1) charge patterns in previously constructed
su(5) fibrations, along with more general charge assignments without a concrete realisation as of
this writing.

7.7 Torsional sections and the global structure of the gauge group

The torsional part of the Mordell-Weil group has an interpretation rather different from the
free subgroup: It is related to the global structure of the gauge group [174, 229]. The argument
presented in [229] is as follows: Consider first the situation where the gauge algebra consists
only of one single non-abelian summand gI , and the Mordell-Weil group of the fibration Ŷn+1 is
generated by a k-torsional section sk. By definition s�k

k = sk� . . .�sk = s0. Consider the associated
divisor Sk = div(sk) and define the object

σ(sk) = Sk−S0−π
−1(Dk)+∑

iI

`iI
k EiI ∈ NS(Ŷn+1)⊗Q . (7.78)

This is the analogue of the Shioda map (7.16) for non-torsional sections. The coefficients `iI
k are

computed as in (7.15), and we assume for now at least one of them to be non-zero. We have further-
more introduced the notation Dk = π∗(Sk−S0) ·S0. Since the Shioda map is a group homomorphism
from MW(π) to NS(Ŷn+1)⊗Q, it is clear that

0 = σ(s0) = σ(s�k
k ) = k σ(sk) . (7.79)

Since NS(Ŷn+1)⊗Q is torsion-free, this implies that

σ(sk) = 0 ∈ NS(Ŷn+1)⊗Q . (7.80)

First of all, this shows that torsional sections do not give rise to abelian gauge factors because
the Shioda map leads to a divisor which is trivial in NS(Ŷn+1)⊗Q. Instead, the existence of
the k-torsional section affects the gauge theory as follows [229]: The coefficients `iI

k in the linear
combination (7.78) are in general rational due to the appearance of the inverse Cartan matrix in
their definition (7.15). As we will justify below, k `iI

k ∈ Z, which allows us to write

`iI
k =

1
k

ˆ̀iI
k ,

ˆ̀iI
t ∈ Z . (7.81)

It follows that

k (Sk−S0−π
−1(Dk)) =−∑

iI

ˆ̀iI
k EiI ∈ NS(Ŷn+1) , (7.82)
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or

Sk−S0−π
−1(Dk) =−

1
k ∑

iI

ˆ̀iI
k EiI . (7.83)

The right-hand side of (7.83) is therefore an integer cycle even though it is a linear combination of
divisors with Q-coefficients. One way to read (7.82) is to state that Sk− S0−π−1(Dk) defines a
k-torsional cycle in NS(Ŷn+1)/〈EiI 〉Z. A more useful conclusion is the following: The intersection
number of the RHS of (7.82) with any fibral curve must lie in kZ. Given the general relation (5.8)
between such intersection numbers and the weights of the representations, this acts as a constraint
on the weight lattice of the fibration: Every representation R which does not satisfy the constraint

1
k ∑

iI

ˆ̀iI
k β

a
iI (R) ∈ Z (7.84)

is absent from the spectrum. This has implications for the global structure of the gauge group.
Let us denote by G(0)

I = exp(gI) the universal cover group of the Lie algebra gI . By definition,
this group is simply connected. The resolution divisors EiI span to coweight lattice Λ∨ of the gauge
group. This is just the familiar statement that their intersection numbers with the fibral curves
produce the weights. Since the fractional linear combination 1

k (∑iI
ˆ̀iI
k EiI ) is integral, the coweight

lattice is finer by order k compared to the coweight lattice of G(0)
I . In group theory this means

that the gauge group is not G(0)
I , but GI = G(0)

I /Zk. This group is not simply-connect and has
π1(GI) = Zk.

The converse statement is also true: Whenever the gauge group is of the form GI = G(0)
I /Zk

(with G(0)
I the covering group of a non-abelian Lie algebra gI), the fibration exhibits a k-torsional

section whose Shioda map involves the resolution divisors associated with gI . To see this, observe
that GI = G(0)

I /Zk means that there exist integers aiI (not all zero) such that for all weight vectors
1
k ∑iI aiI β

a
iI (R) ∈ Z. Given the relation between the weights and the intersection numbers of the EiI

with the fibral curves in codimension-two, this implies that 1
k ∑iI aiI EiI is an integer cycle. Let us

write

k Ξk = ∑
iI

aiI EiI . (7.85)

To proceed, we need to recall a more precise formulation of the Shioda-Tate-Wazir theorem [189,
190] encountered before: First, there exists a surjective homomorphism

ψ : NS(Ŷn+1) → MW(Eτ) (7.86)

D 7→ D|Eτ
− (D ·Eτ)O , (7.87)

where MW(Eτ) is the Mordell-Weil group of the generic fiber, defined as the additive group of
rational points on the fiber with zero-element O. According to the Shioda-Tate-Wazir theorem the
kernel T of this map within NS(Ŷn+1) is the subgroup of NS(Ŷn+1) spanned by the zero-section s0,
all vertical divisors pulled back from the base, and the resolution divisors EiI . Now, according to
(7.85), the divisor k Ξk lies in the kernel T because the objects on the right are divisors of the right
type with integer coefficients.35 At the same time, Ξk only lies in the span of these divisors with

35Note that k Ξk cannot be a vertical divisor because any vertical linear combination of the resolution divisors must
include the fibration of the affine node E0I as in (4.25).
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Q coefficients. Hence, possibly after subtracting a suitable vertical divisor, Ξk = Ξ̃k +π−1(δ ), Ξ̃k

must be a torsional section, i.e. ψ(k Ξ̃) = 0 ∈MW(Eτ) but ψ(Ξ̃) as such is torsion. This reasoning
also explains why the fraction in (7.83) must agree with the order of the torsional section k. If the
equation were satisfied with k replaced by q, then q(Sk− S0) would be in the kernel of ψ within
NS(Ŷn+1) and Sk would hence be a q-torsional section.

We can generalize the construction by starting with a non-abelian gauge algebra

g= g1⊕g2 , (7.88)

where both g1 and g2 can be taken to be semi-simple. Suppose again that MWtors(π) = Zk and
that the Shioda map associated with the k-torsional generator involves only the resolution divisors
associated with g2. Then by the above reasoning the total gauge group is

G = G(0)
1 × (G(0)

2 /Zk) . (7.89)

In particular,

π1(G)tors = MWtors(π) . (7.90)

The conclusion (7.90) continues for general MWtors(π) = Zk1 ⊕ . . .⊕Zkn . This interpretation of
the torsional Mordell-Weil group has been illustrated, in [229], in many examples taken from [174]
(some of which were also studied form a slightly different perspective in [44]) by explicitly con-
structing the torsional section in the resolution and constructing the weight lattice. The Mordell-
Weil torsion encountered in the realizations of the elliptic fiber as a hypersurface in toric ambient
space has been classified in [206–208], and the torsion associated with the complete intersection
fibers in [211]. The maximal torsion group which can occur in hypersurfaces and complete inter-
sections is Z3 and, respectively, Z4. Another interesting phenomenon is that Higgsing phenomena
can interpolate between non-torsional and torsional sections [230].

We have been careful to stress that we have been working, up to now, in a context where the
gauge algebra is purely non-abelian. The reason is that in the presence of abelian gauge factors,
the nature of the Shioda map implies that the global structure of the gauge group is more subtle,
as discussed independently and with complementary methods in [231] and [232]. Consider a Lie
algebra gI ⊕ u(1) with gI semi-simple. Then even in absence of Mordell-Weil torsion, the global
structure of the gauge group is [232]

(G(0)
I ×U(1)A)/ZnA (7.91)

where the integer nA is the smallest integer such that the coefficients nA `
iI
A in the Shioda map

are integer. This is in fact a statement about the quantization of the U(1)A charge carried by a
non-abelian representation R (rather than about the absence of certain representations from the
non-abelian weight lattice as before). This effect must be taken into account in the presence of
both torsional and non-torsional sections as illustrated in [232].

8. Genus-one fibrations and discrete gauge symmetries

Given that we have spent so much time on the origin of continuous gauge symmetries in
F-theory, what about discrete symmetries? Such symmetries are very well-motivated from the
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perspective of particle physics applications, where discrete symmetries are oftentimes invoked to
control dangerous couplings such as dimension-four and -five proton decay operators or act as
flavour symmetries. The most famous example is probably matter parity in the MSSM (see e.g.
[233] and references therein). Discrete symmetries are also fascinating to study from a fundamental
point of view: According to a general conjecture, continuous global symmetries cannot exist in any
consistent quantum gravity of dimension at least four. This is concisely summarized in [234], which
also contains a review of much of the original literature. Even though black hole arguments are
less compelling in this case, it is believed that the same is true for discrete global symmetries in
quantum gravity [234].

Irrespective of these quantum gravity considerations, it is quite generally the case in string
theory that what appears as a global symmetry in the low-energy effective action originates in
a gauge symmetry in the ultra-violet. F-theory is no exception here. In particular, as we will
review in this section, abelian discrete symmetries are really to be thought of as ’massive’ gauge
symmetries in F-theory, in perfect agreement with quantum gravity reasoning.

The systematic investigation of Zk gauge symmetries in F-theory began with an analysis of
genus-one fibrations with a k-section [134], whose role in the context of Zk symmetries in F-theory
was subsequently better understood in [235] [236] [208] [204,205,237,238]. For pedagogical reas-
ons we present the material not following this historical path, but start by explaining the origin of
discrete symmetries in terms of torsional cohomology [205], which, in our opinion, is the simplest
and most direct picture from a physics points of view. The subtle relation to genus-one fibrations
and the Tate-Shafarevich group will then be reviewed in section 8.2.

8.1 Discrete gauge groups and torsional cohomology

According to the general lore applied many times in these lectures, a massless gauge po-
tential in M-theory and its dual F-theory is obtained by reducing the M-theory 3-form C3 as
C3 = AX ∧wX + . . . with wX a harmonic 2-form on Ŷn+1 representing a non-trivial cohomology
class in H2(Ŷ4,R). On the other hand, if the 2-form is non-harmonic, the 1-form A will be massive
and hence its gauge invariance is broken. More precisely, suppose there exist a non-harmonic
2-form w2 and a non-harmonic 3-form α3 on Ŷn+1, related by

dw2 = k α3 . (8.1)

Consider the Kaluza-Klein ansatz

C3 = A∧w2 + cα3 (8.2)

with A a 1-form and c a scalar field. The derivative dC3 = dA∧w2 +(kA+dc)∧α3, once inserted
into the 11d kinetic term of C3, yields a kinetic term in the effective action

S'
∫
(dc+ kA)∧∗(dc+ kA)+ . . . (8.3)

The 1-form potential hence acquires a mass term in the M-theory effective action by absorbing the
real axionic scalar c. The kinetic term is invariant under a simultaneous gauge transformation

A→ A+dχ c→ c− k χ , (8.4)
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which allows us to go to a gauge with only a massive vector field. This is nothing but the M/F-
theoretic version [198] of the celebrated Stückelberg mechanism. It is a consequence of a gauging
of the axionic shift symmetry c→ c+ const. The charge of the axion c is k.

As is known on general grounds [234], a Stückelberg mechanism with a charge k axion breaks
a U(1) gauge symmetry to a Zk gauge symmetry. The realisation of a discrete Zk symmetry via
a reduction ansatz of the form (8.1), (8.2) was first described in the Type II RR sector and in M-
theory in [239] 36. This is also the description of Zk gauge symmetries in F-theory which is perhaps
the most immediate from a physical perspective [205].

The 3-form α3 has the property that k α3 is exact and hence defines a trivial cohomology class.
By definition α3 therefore takes its value in the torsion cohomology group Tor(H3(Ŷn+1,Z)). In
particular, a Zk discrete gauge symmetry appears both in F-theory and simultaneously its M-theory
dual if [205]

Tor(H3(Ŷn+1,Z)) = Zk . (8.5)

Many useful properties of torsional cohomology groups are reviewed in [239], including the rela-
tions

Tor(Hk(Xd ,Z))' Tor(H2d−k(Xd ,Z)), Tor(Hk(Xd , ,Z))' Tor(Hk+1(Xd ,Z)) , (8.6)

where Xd is a complex variety of complex dimension d. Here Tor(Hk(Xd ,Z)) denotes the group of
torsional k-cycles, i.e. k-chains γk such that k γk = ∂Σk+1. The first relation is Poincaré duality, and
the second follows from the so-called universal coefficient theorem.

A special case of this construction occurs for k = 1. In this situation, which was studied in
[136,198], the U(1) gauge symmetry is broken completely, up to the effects analyzed in [137,142].

Of particular interest are of course massless states which are charged under the Zk symmetry.
Given the origin of the discrete gauge symmetry in modes of C3, these must be due to M2-branes
wrapping suitable 2-chains. We are most interested in the discrete symmetries in M-theory which
uplift to discrete 1-form symmetries in F-theory; in this case, the relevant M2-branes wrap chains
in the fiber over codimension-two loci on the base. This leads to an immediate complication: As
we recall from previous sections, when the states charged under a U(1) gauge symmetry become
massless, the fibral curve wrapped by the M2-brane shrinks to zero volume and creates a singu-
larity; resolving this singularity, in turn, corresponds to moving along the Coulomb branch of the
U(1) gauge symmetry. In the case of a discrete gauge symmetry, we should think of the gauge
potential as having a mass, as motivated above. This clearly lifts the Coulomb branch. If we start
from the origin of the Coulomb branch, where the charged particle is massless, a quadratic poten-
tial prevents us from continuously deforming the theory and hence resolving the singularity in a
supersymmetric way. Put differently, moving out on the Coulomb branch by resolving the singu-
larity costs energy and thus breaks supersymmetry. As a result, the codimension-two singularity in
the fiber cannot be crepant resolvable [132, 134, 136]. In the language of section 5.6, it must be a
Q-factorial terminal singularity.

36A systematic investigation of discrete gauge symmetries in open string Type II models can be found e.g. in
[240–242].
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A simple procedure to engineer a Weierstrass model Yn+1 with a Zk discrete gauge symmetry
is to start with a model with a massless U(1) gauge symmetry and a charge k massless state and to
perform a Higgsing U(1)→ Zk [235]. As always we are working not directly in F-theory, but in
M-theory. If the elliptic fibration with Mordell-Weil group of rank 1 is given as a smooth manifold
Ŷn+1, we must first take the limit of vanishing fibral curve associated with the charge k-state. More
precisely, we are moving to the origin of the Coulomb branch, where all U(1) charged singlets (with
vanishing M-theory KK charge) become massless. Let us denote the resulting singular fibration
again as Yn+1. As the k-charged matter is massless, we can give it a vacuum expectation value, i.e.
we move from the M-theory Coulomb branch onto the Higgs branch. Geometrically, the Higgsing
corresponds to a complex structure deformation smoothing out the singularity in codimension-two
associated with the former charge k states. This is, in fact, a generalisation of a conifold transition
[54, 126, 194]. After the deformation the singular elliptic fibration Yn+1 must have trivial Mordell-
Weil group, but Q-factorial terminal singularities of Kodaira fiber type I2 over codimension-two
loci. The states with former U(1) charge q now have Zk charge q modk and are trapped in the
singular fibers.

Such a transition has first been described in [235] by Higgsing the Bl1P112[4] fibration of
section 7.4 with the state with charge q = 2. To realize the Higgsing outlined above we first pass
from the smooth Bl1P112[4]-fibration P̂MP, (7.64), to the birational Weierstrass model PW−U(1),
(7.73), describing the origin of the U(1) Coulomb branch in M-theory. Recall that the Weierstrass
model PW−U(1) has two types of I2 singularities - one over the locus CII in (7.62) with matter of
charge q = 1 and another over CI , given in (7.59), with matter of charge q = 2. More precisely,
moving to the Weierstrass model contracts both the curves BI and BII in the fibers over CI and CII

which are not intersected by the zero-section.37 Their intersection numbers are listed in (7.69) and
(7.67). Importantly, the massless states after the contraction hence carry vanishing Kaluza-Klein
charge in M-theory [204, 205].

To Higgs U(1)→ Z2 we must deform the model such as to smoothen out the singularity over
the charge-two locus CI . The resulting Weierstrass model is called PW−Z2 . It turns out [235] that
the correct transformation is by growing back a non-zero coefficient c4, which had been set to zero
in (7.56). To see the effect of this, one has to repeat the analysis of [196] and map the full model
with c4 6= 0 into Weierstrass form. The result is to render the polynomial e4 appearing in (7.73) and
(7.74) generic,

PW−Z2 = PW−U(1) with e4→−c4 +
1
4

b2
2 (8.7)

The singular I2 fiber over CII is essentially unaffected by this deformation, but it now corres-
ponds, as discussed above, to a Q-factorial terminal singularity, which is in fact of (non crepant
resolvable) conifold type.

What remains to show is that Tor(H3(PW−U(1),Z)) =Z2. This is argued to be the case in [205]
(possibly up to subtle effects associated with the terminal singularities), focusing for simplicity
on 3-folds. The strategy is to follow various divisors and curves through the generalized coni-
fold transition to observe the emergence of torsional cycles and their dual torsional cohomology

37Recall that in a Weierstrass model, singularities in the fiber are always away from the holomophic zero-section
z = 0.
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groups. In fact, [243] shows in a model with Z3 symmetry that the Weierstrass fibration has, after
a blowup of the base to remove the terminal singularities and a resolution of the fiber, Z3 torsional
3-cohomology. This fact is also stressed in [134]. It would be very desirable to develop techniques
to directly compute this torsional cohomology on the singular space described by PW−Z2 , and we
conjecture that the physical effect of torsion cohomology should be detectable also in the singular
geometry.

Barring this subtle point, as a result of the torsional cohomology group the effective action
in M-theory and F-theory both contain a discrete Z2 gauge group [205]. We are summarizing the
transition in (8.8), where the two last lines refer to the gauge group in M-theory and F-theory.
By U(1)S−S0 we refer to the abelian group generated by the Shioda map σ(S) = S−S0 + . . . of the
rational section S, and U(1)S0 is the Kaluza-Klein U(1) in the S1-reduction of F-theory to M-theory.

P̂MP

−→

PW−U(1)

−→

PW−Z2

rk(MW) = 1 rk(MW) = 1 rk(MW) = 0

Tor(H3) = 0 Tor(H3) = 0 Tor(H3) = Z2

M : U(1)S0×U(1)S−S0 M : U(1)S0×U(1)S−S0 M : U(1)S0×Z2

F : U(1)S−S0 F : U(1)S−S0 F : Z2

(8.8)

8.2 Genus-one fibrations without sections

To recap, the transition (8.8) produces a singular Weierstrass model which exhibits a Zk gauge
symmetry both in the F-theory and the M-theory effective action, and the Zk gauge theory is to
be interpreted as a U(1) gauge theory with a mass term for the gauge potential. In the M-theory
effective action, the mass of the gauge potential lifts the M-theory Coulomb branch and obstructs
small continuous deformations away from its origin. However, by general field theory reasoning
such a theory still allows for another k− 1 degenerate vacua on the Coloumb branch which are
macroscopically far away from its origin. These correspond to a vacuum expectation value

ξ = n mod k (8.9)

for the scalar field ξ in the (massive) M-theory vector multiplet. In other words, there exist k
supersymmetric isolated vacua along the M-theory Coulomb branch which are identified modulo
k [235]. From an F-theory perspective these k inequivalent vacua correspond to k different values
for the Wilson lines of the Zk F-theory gauge field A along the F-theory circle, according to the
usual identification (4.44), ∮

S̃1
B

A= ξ . (8.10)

All of these k different M-theory vacua map to the same F-theory vacuum upon decompactification
of the F-theory circle S̃1

B. This prompts the question which geometries describe the remaining k−1
inequivalent M-theory vacua associated with an F-theory model with discrete gauge group Zk. The
other vacua in M-theory have the property that the Zk charged states acquire a mass due to the
discrete vacuum expectation value of the Wilson line scalar even though this vacuum expectation
value cannot be reached continuously starting from the origin of the Coloumb branch. This means
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in particular that the associated geometry is smooth as the terminal I2 fibers are replaced by smooth
I2 fibers.

To stay in the example of the Z2-model, the natural candidate for the geometry describing the
second possible phase of the Coloumb branch is the geometry described by

PMP−Z2 = w2 +b0u2w+b1uvw+b2v2w+ c0u4 + c1u3v+ c2u2v2 + c3uv3 + c4v4 . (8.11)

This is the singular Bl1P112[4]-fibration with c4 grown back such as to render the fibration max-
imally generic. The resulting elliptic fibration has vanishing Mordell-Weil rank and no degenerate
fibers over CI , and it is smooth. By similar logic as spelled out around (7.60), the fiber over the
analogue of the locus CII is a smooth I2 fiber. However, the fibration has not only no extra ra-
tional sections, it has no rational sections at all! It is an example of a genus-one fibration with no
section [134].

Before addressing the absence of a zero-section in more detail, let us first verify via the
Higgsing perspective that (8.11) describes the other Coulomb branch phase in M-theory. Start-
ing from the U(1) model (7.64) the first step is to blow down the resolution divisor S. This process
contracts the fibral curve AI over CI wrapped by S (recall figure 1). This is notably different from
the contraction summarized in (8.8), where the fibral curve BI over CI is blown-down, along with
BII over CII . After the contraction, the deformation by growing c4 breaks U(1)S−S0 . This time the
state which obtains a VEV is the M2-brane wrapping the contracted fiber AI over CI (indeed this
is the massless state). As can be seen from (7.67), the associated state ϕAI is charged under the
M-theory KK U(1)S0 , but uncharged under the linear combination U(1)S−S0 +2U(1)S0 [204,205].
In terms of the original gauge symmetries a Higgs-VEV 〈ϕAI 〉 6= 0 hence induces the breaking

U(1)S0×U(1)S−S0 −→U(1)Ũ =U(1)S−S0 +2U(1)S0 , (8.12)

with no no additional Z2 gauge group in M-theory. Indeed, the geometry (8.11) has no torsional
cohomology and hence cannot describe an extra Z2 gauge symmetry in M-theory in addition to
U(1)Ũ . Fortunately this is not necessary because the Z2 symmetry which appears in F-theory is a
subgroup of U(1)Ũ [205]. This is important because from the perspective of the Wilson line, the
other vacuum with ξ = 1 should not break the discrete symmetry.

As noted already, (8.11) has no globally defined rational section [134]. Rather, if we consider
the analogue of the zero-section u = 0 on the model (7.56) with c4 = 0, we observe that

PMP−Z2 |u=0 = w2 +b2v2w+ c4v4 = w± 1
2

√
b2v2−4c4v4 . (8.13)

Locally, the equation describes two points in the fiber, which are exchanged by a global monodromy
as a result of the square-root. This is what defines a bisection, and we denote the associated divisor
by Ũ . As we tune c4→ 0 the two points in the fiber asymptote to the two rational points s1 and s2

in (7.54). Conversely, the two independent rational sections of the elliptic fibration (7.56) combine
into a bisection in (8.7). The correspondence between the bisection Ũ and S+S0 prior to Higgsing
is of course in exact agreement with (8.12). As we go from M to F-theory, U(1)Ũ becomes part of
the higher-dimensional Poincaré symmetry (which is the usual behaviour for a KK U(1)), but a Z2

subgroup is realized in addition as the F-theory discrete symmetry. In this sense one can interpret
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the U(1)Ũ in M-theory compactification with a bisection Ũ as a mixture of the KK U(1) and the
Z2 gauge field in F-theory [205].

There is another view on the Higgsing process: As discussed, the Higgs field prior to Higgsing
carries KK charge and hence has a varying field profile along the circle S̃1

B. Its derivative can
be identified with a flux along the circle. This makes contact with the analysis of [236], which
interprets the genus-one fibration in terms of a Stückelberg mechanism. The connection between
both pictures is to view the Stückelberg axion c as the argument of the complex Higgs field ϕAI =

|ϕAI |eic which triggers the transition [205].
The second transition and its F and M-theory interpretation can be summarized as follows:

P̂MP

−→

PMP

−→

PMP−Z2

rk(MW) = 1 rk(MW) = 1 rk(MW) = 0

Tor(H3) = 0 Tor(H3) = 0 Tor(H3) = 0

M : U(1)S0×U(1)S−S0 M : U(1)S0×U(1)S−S0 M : U(1)Ũ
F : U(1)S−S0 F : U(1)S−S0 F : Z2

(8.14)

This pattern is expected to generalize to general Zk theories. In [238], the case of a Z3 sym-
metry has been investigated. The starting point is the toric hypersurface fibration with rk(MW) = 1
and charged matter with q = 1,2,3 found in [208]. Upon Higgsing with the charged 3 states in
three possible ways as dictated by the above reasoning, perfect match with the geometry is found.

Mathematically, the k different geometries associated with a Zk symmetry in F-theory gener-
ate the Tate-Shafarevich group associated with a Jacobian fibration, which in this case is Zk. A
summary of its main properties in the present context can be found in [134]. The Tate-Shafarevich
group can be thought of as all genus-one fibrations with the same Jacobian fibration [243]. The
zero-element is the Jacobian itself, i.e. the Weierstrass model with k-torsional homology (again
possibly up to subtle effects from the singularities) and Q-factorial terminal singularities [243]. It
is the only geometry which gives rise to a separate Zk gauge symmetry (not contained in an abelian
group) both in F-theory and M-theory. The remaining k− 1 geometries are smooth, non-elliptic,
k-section fibrations. They describe a U(1) gauge theory in M-theory (containing the Zk as a sub-
group), whose subtle F-theory uplift gives the same effective action in F-theory as the singular
Weierstrass model.

Various other examples of k-section geometries have been studied in the F-theory literature.
The highest Zk symmetry obtained in this way in toric hypersurface models over generic bases
is Z3 [208] and in complete intersection fibrations over generic bases Z4 [211]. Other examples
of multi-section fibrations include [244] [245]. The physical effect of a k-section (leading to Zk

discrete symmetry) is very different from that of a k-torsional section (leading to π1(G) = Zk as
described in section 7.7). Even more strikingly, both types of geometries are related by mirror
symmetry in the fiber, as explained and verified both for hypersurface and complete intersection
fibrations in [208, 246]. The relation between genus-one fibrations and the appearance of multiple
fibers has been discussed, along with interesting physics applications, in [247].

We have up to here studied k-section fibrations without non-abelian gauge symmetries. In
presence of such gauge symmetries, a number of interesting new effects occur, some of which
have already been pointed out in [134]. From a model building perspective, the relevance of a
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Zk discrete symmetry becomes particularly evident as a selection rules governing the structure of
Yukawa couplings [204, 205, 237, 248].

9. Gauge backgrounds and zero-mode counting

We have, up to this point, focused on the geometry of the elliptic or torus fibration underlying
an F-theory compactification. The definition of the vacuum, however, depends on additional data.
The missing ingredient is a choice of background value for the M-theory 3-form potential C3 and
its field strength G4, which enter the M-theory effective action as in (2.61). In Type IIB language,
these data encode both the background values of the 2-form potentials B2 and C2 and the gauge
background along the 7-branes. This reflects the general picture that what appears, to leading
order, as a separate closed and open string sector from the perturbative Type IIB perspective is
in fact unified into a common moduli space in F-theory. After some introductory remarks in 9.1
regarding the very nature of the 3-form background we first focus on its discrete part in section 9.2
and 9.3. A finer analysis of the gauge backgrounds is possible in terms of the Deligne cohomology
group, which in turn can be parametrized by elements of the Chow group, as we describe in section
9.4. This geometric formalism allows us to compute the massless spectrum of charged matter in
F-theory beyond the chiral index (cf. section 9.5).

9.1 Flux versus Deligne cohomology

An M-theory 3-form background involves two types of data: The background value of the field
strength G4 is called 4-form flux and is discrete in nature. More precisely, G4 takes values in the
cohomology group H4(Ŷn+1,R) and is in general half-integer quantized in such a way that [249]

G4 +
1
2

c2(Ŷn+1) ∈ H4(Ŷ4,Z) . (9.1)

While every element of this type represents a flux background in M-theory, in order for it to lift to
a background flux in a Lorentz invariant F-theory vacuum additional conditions must be imposed,
as will be discussed in the next section. A G4 background is incompatible with supersymmetry in
F-theory compactifications to six dimensions, i.e. on Ŷ3, but plays a crucial part in 4d/2d F-theory
compactifications on 4-/5-folds. In both situations, superymmetry requires that [250–253]

G4 ∈ H2,2(Ŷn+1,R)∩H4(Ŷn+1,Z/2) =: H2,2
Z/2(Ŷn+1) (9.2)

together with a primitivity condition J ∧G4 = 0. For definiteness we will focus on the four-
dimensional case in the sequel.

There can, however, exist flat, but topologically non-trivial 3-form backgrounds even in the
absence of G4-fluxes. Such backgrounds correspond to a non-zero vacuum expectation value of
C3 with 〈dC3〉 = 0. By gauge invariance we identify C3 ' C3 + dχ for a 2-form χ so that the
flat background values of C3 take values in H3(Ŷ4,R). Large gauge transformations identify back-
grounds differing by elements in H3(Ŷ4,Z). Taking into account that H i,0(Ŷ4) for i = 1,2,3 due to
the Calabi-Yau condition, this leads us to identifying the ’Wilson line background’ with elements
in the intermediate Jacobian

J2(Ŷ4) = H3(Ŷ4,C)/(H2,1(Ŷ4,C)+H3(Ŷ4,C)) . (9.3)
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Such continuous flat gauge backgrounds are therefore possible if Ŷ4 has a non-vanishing cohomo-
logy group H2,1(Ŷ4,C). This cohomology group has been studied in detail in [254, 255].

The information about both the discrete 4-form flux and the flat Wilson line background is con-
veniently encoded in the so-called Deligne cohomology group H4(Ŷ4,Z(2)).38 It has the property
that it fits into the short exact sequence

0 J2(Ŷ4)︸ ︷︷ ︸∮
C3 ′Wilsonlines′

H4
D(Ŷ4,Z(2))︸ ︷︷ ︸

Delignecohomology

ĉ2−−→
onto

H2,2
Z (Ŷ4)︸ ︷︷ ︸

fieldstrengthG4

0 . (9.4)

This just means that there exists a surjective map ĉ2 which maps each element A ∈ H4(Ŷ4,Z(2))
to a flux configuration G4 = ĉ2(A ) ∈ H2,2

Z (Ŷ4). This map is in general not injective, and its kernel
is given exactly by the intermediate Jacobian J2(Ŷ4). Indeed the elements of J2(Ŷ4) correspond
precisely to the 3-form backgrounds whose associated flux G4 vanishes.

For many purposes it suffices to consider exclusively the information encoded in the field
strength G4. These include the computation of the flux induced F-term and D-term potential as
well as the computation of the chiral index of the charged massless spectrum. The non-chiral part
of the charged massless spectrum, by contrast, requires finer information and makes connection
with the more sophisticated description of the gauge background as in (9.4). Even if h2,1(Ŷ4) = 0 so
that there are not flat Wilson lines on Ŷ4, such a refined description is necessary because non-trivial
Wilson lines can occur on the matter loci. The fact that the Deligne cohomology is the correct
object characterizing the gauge background was first pointed out, via duality with the heterotic
string, in [256]. More information on its definition can be found in [127] and the original literature
referenced therein.

In the sequel we will mostly be working, as our notation suggests, on a smooth resolution Ŷ4 of
the elliptic fibration. The reason is that this avoids the intricacies of which cohomology theory to
use on singular spaces. The price to pay is the following limitation: Since the process of resolving
the singularities corresponds to moving to the Coulomb branch of the gauge theory (in M-theory),
the Deligne cohomology (or ordinary cohomology, if we restrict ourselves to the flux part) on the
resolved space can only detect the gauge backgrounds in the Cartan of the F-theory gauge algebra.
For many purposes, this is sufficient, in particular to engineer a chiral spectrum. Nonetheless, it
is important to keep in mind that this approach misses truly non-abelian data such as non-abelian
vector bundles on brane stacks. A related piece of information that cannot be described in this way
is the so-called T-brane data [140,160,257–265]. In principle the Deligne cohomology can also be
defined on singular spaces, first directions having been taken in the context of describing T-branes
in [266, 267]. In [268], gauge backgrounds are addressed directly on the singular space.

9.2 Discrete flux data: Constraints and chirality

The structure of the middle cohomology group H4(Ŷ4,C) of a Calabi-Yau 4-fold is rather
complicated. Its so-called horizontal piece

H4(Ŷ4,C) = H4,0(Ŷ4,C)⊕H3,1(Ŷ4,C)⊕H2,2
hor(Ŷ4,C)⊕H1,3(Ŷ4,C)⊕H0,4(Ŷ4,C) (9.5)

38We are ignoring here, for simplicity, the potentially half-integer shift in the quantization condition (9.1).
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contains the cohomology group spanned by the unique harmonic (4,0) form Ω4. Under variation of
complex structure, Ω4 picks up, to first order, components along H3,1(Ŷ4,C), to second order com-
ponents along H2,2

hor(Ŷ4,C) etc. For given complex structure, H2,2(Ŷ4) itself enjoys a decomposition
into orthogonal subspaces [269, 270]

H2,2(Ŷ4,C) = H2,2
hor(Ŷ4,C)⊕H2,2

vert(Ŷ4,C)⊕H2,2
rem(Ŷ4,C) . (9.6)

The primary vertical subspace is spanned by the product of (1,1) forms,

H2,2
vert(Ŷ4,C) = 〈H1,1(Ŷ4,C)∧H1,1(Ŷ4,C)〉 . (9.7)

In addition there exists a remainder piece H2,2
rem(Ŷ4,C) which neither descends from H4,0(Ŷ4,C)

by variation of Hodge structure nor does it lie in (9.7) [270]. Note that both H2,2
vert(Ŷ4,C) and

H2,2
rem(Ŷ4,C) are of (2,2) Hodge type for every value of the complex structure moduli while primit-

ivity is a non-trivial constraint only for fluxes in H2,2
vert(Ŷ4,C).

As noted already, in order for G4 not only to represent a valid 4-form flux within the context
of M-theory compactified on Ŷ4, but also in the dual F-theory vacuum, additional constraints must
be imposed. There are various equivalent ways of understanding the origin of these constraints.
According to [271], in order for an M-theory flux not to spoil Poincaré invariance in the dual F-
theory vacuum, the associated harmonic 4-form should have ’1 leg in the fiber’, i.e. it should
neither be the pullback of a 4-form entirely defined on the base of the elliptic fibration nor should
it give a non-zero value upon integration along the full elliptic fiber. These conditions are derived
in [271] by applying the simple rules reviewed in section (2.3) for the definition of the F/M-theory
duality. They can be imposed by requiring the transversality conditions

[G4] · [S0] ·π∗[Db
α ] = 0, [G4] ·π∗[Db

α ] ·π∗[Db
β
] = 0 (9.8)

for every Db
α ∈ H1,1(B3). These two conditions have also been recovered for elliptic fibrations

in [63, 85] by matching the flux-induced Chern-Simons terms in the effective action of M-theory
on Ŷ4 with the Chern-Simons terms induced at 1-loop level in the circle reduction of the dual F-
theory effective action. We will understand these constraints, in section 9.5, as the statement that
the tower of KK modes and the M2-brane states wrapped on curves in the base are not affected
by the flux background. On genus-one fibrations without section, the class of the multi-section
replaces [S0] in the first constraint [248].

Apart from these two ’kinematical’ conditions, the flux induces a dynamical potential on the
moduli. If we consider M-theory on Calabi-Yau 4-folds, the presence of flux in general generates
a Gukov-Vafa-Witten superpotential [251, 252]

W =W1 +W2 W1 =
∫

Ŷ4

Ω4∧G4 , W2 =
∫

Ŷ4

J∧ J∧G4 . (9.9)

The scalar potential resulting from W1 involves the complex structure moduli and enforces the
condition (9.2). This can be viewed as a result of the stabilization of (part of) the complex structure
moduli such that the flux aligns along the (2,2) component of the middle cohomology. According
to our discussion above, this results in a non-trivial constraint only for fluxes in H2,2

hor(Ŷ4,C). Note
again that the M-theory complex structure moduli describe both the closed string Type IIB complex
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structure moduli and the open string D-brane moduli (see, e.g., [272–274] in the present context).
The scalar potential from W2 induces a D-term in the dual F-theory proportional to [58,59,198,275]

VD '
∫

Ŷ4

π
∗J∧wΛ∧G4 , (9.10)

where wΛ refers both to the resolution divisors EiI and the Shioda map σ(sA) in the presence of
extra U(1)A gauge factors and JB is the Kähler form on the base. For vanishing charged matter
field VEVs this D-term potential must be zero, thereby constraining the Kähler moduli. This is
the effective action realisation of the primitivity condition on the fluxes. Note that VD vanishes
identically for fluxes in H2,2

hor(Ŷ4,C) and H2,2
rem(Ŷ4,C) due to the orthogonality, with respect to the

intersection product on Ŷ4, of the decomposition (9.6). If non-zero, VD plays the role of what is
sometimes called ’field dependent Fayet-Iliopoulos term’ for the Cartan U(1)iI or the non-Cartan
U(1)A. At the same time, the gauging of the axionic partners of the Kähler moduli induces a
Stückelberg mechanism for the respective abelian gauge boson. This is precisely the ’flux-induced’
Stückelberg mechanism we have alluded to at the end of section 7.1 and in various other places.

Finally, the Chern-Simons coupling in the effective action (2.61) shows that non-vanishing
4-form flux contributes to a net M2-brane tadpole on Ŷ4. Tadpole cancellation is equivalent to the
integrability condition for the Bianchi identity for G4 and implies [271, 276, 277]

−1
2

∫
Ŷ4

G4∧G4 +
1
24

χ(Ŷ4) = NM2
!
≥ 0 . (9.11)

The second term involving the Euler characteristic χ(Ŷ4) =
∫

Ŷ4
c4(Ŷ4) of the elliptic fibration rep-

resents the M2-brane charge induced by the curvature dependent part of the M-theory Chern-
Simons action. The number NM2 of spacetime-filling M2-branes in M-theory equals the number of
spacetime-filling D3-branes in the dual F-theory vacuum and must be non-negative if the vacuum is
to preserve supersymmetry. The fact that the right-hand side is integer is a non-trivial consequence
of the quantization condition (9.1).

Apart from inducing a non-trivial F- or D-term potential for the complex structure or Kähler
moduli, respectively, an important effect of flux is to generate a non-trivial chiral index for massless
charged matter in F-theory. The chiral index admits an intuitive expression given by integrating G4

over the ’matter surface’ associated with the multiplet. Consider first the case of localised matter in
representation R along an irreducible matter curve CR on B3, in the notation introduced in section
5.4.2. Recall that to each element of the weight vector β a(R), a = 1, . . . ,dim(R) one associates
a rational curve in the fiber over CR such that an M2-brane wrapping this combination of curves
gives rise to matter with Cartan charges β a(R). The fibration of this curve of the matter allows us
to define a surface Sa(R) called ’matter surface’. The final result is that the chiral index of massless
matter associated with weight β a(R) can be computed as [6] [194] [95] [96] [63]

χ(β a(R)) =
∫

Sa(R)
G4 . (9.12)

From this we conclude that a necessary condition for the flux G4 to leave the non-abelian gauge
group along the 7-branes unbroken in the F-theory limit is that

G4 · [EiI ] ·π∗[Db
α ] = 0 . (9.13)
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This guarantees that the chiral index for all weights of a given representation are the same, and we
can hence write

χ(R) =
∫

Sa(R)
G4 (9.14)

for any choice of Sa(R). We will present a one-line derivation of the formula (9.12) in section
(9.5), equ. (9.35), and also see that the condition (9.13) is indeed only necessary, not sufficient.
The correct condition is (9.45).

The same formula counts chiral massless matter associated with some of the roots, i.e. the
weights of the adjoint representation of gauge algebra gI . The associated matter is localized along
the entire 7-brane divisor. Nonetheless, one formally define a matter surface whose overlap with
the gauge flux, (9.13), counts the chiral index of such states. The matter surface is a suitable linear
combination of 4-cycles obtained by restricting the resolution divisors EiI to the anti-canonical
divisor K̄ΣI , see equ. (9.44) in section 9.5 [278]. The expression for the chiral index of such states
is only non-zero if (9.13) is not obeyed.

9.3 Examples of fluxes

Let us now provide a few examples of background fluxes with values in each of the three
orthogonal subspaces of the decomposition (9.6).

9.3.1 Horizontal fluxes

By definition, the horizontal subspace H2,2
hor(Ŷ4) is generated by cohomology classes which are

of (2,2) Hodge type only on a special subspace of the complex structure moduli space of Ŷ4. The
dual homology class is hence the class of a complex 2-cycle which is algebraic only for certain
complex structure moduli. To arrive at a simple example of such a situation, we follow [194] and
start from a generic Tate model (4.48) over a base B3. The elliptic 4-fold Ŷ4 is embedded into
an ambient 5-fold X̂5 obtained by fibering the fiber ambient space P231 over B3. We have already
observed before that the hypersurface can be written as AB=CD+a6z6 as discussed around (7.35).
Suppose now that the polynomial a6 factorises as a6 = ρ τ , where ρ and τ are two holomorphic
polynomials on B3 whose classes add up to 6K̄B3 . The complete intersection within the ambient
5-fold X̂5 given by

Γ =V (A,C,ρ) = {A = 0}∩{C = 0}∩{ρ = 0} ⊂ X̂5 (9.15)

lies on Ŷ4 and defines an algebraic complex 2-cycle thereon - at least as long as a6 = ρ τ . Away
from this special locus in complex structure moduli space, Γ is no longer algebraic as a complex
2-cycle on Ŷ4. Its Poincaré dual 4-form is therefore exactly of the type we are after [194]. Note that
even for a6 = ρ τ , the surface Γ is represented by a complete intersection only on the ambient space
X̂5, but not on Ŷ4 because it cannot be written as the vanishing locus of the defining hypersurface
equation (7.35) with two further polynomials on X̂5.

Suppose now that we switch on a background flux G4 = [Γ] on Ŷ4. This flux is of (2,2) Hodge
type only for a6 = ρ τ . Since fluxes which are not of (2,2) Hodge type break supersymmetry by an
F-term, such flux dynamically drives Ŷ4 to the critical locus in complex moduli space along which
it is (2,2). This is precisely a consequence of the Gukov-Vafa-Witten superpotential W1 in (9.9).
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The flux dual to (9.15) and its generalizations in fact play an important role in conifold transitions
in 4-folds including genus one fibrations with and without section [54, 126, 194, 204, 248, 279].

A systematic analysis of the complex structure moduli stabilizing effect of horizontal gauge
fluxes requires the computation of the 4-form periods which enter the Gukov-Vafa-Witten super-
potential. The state of the art as of this writing can be found in [280–282] and references therein.

9.3.2 Vertical fluxes

Fluxes in H2,2
vert(Ŷ4) have been constructed and analysed in the F-theory context, for instance,

in [54,95,96,175,194,201,202,223,248,278,281,283,284]. Many detailed explanations and more
references can be found in [284]. Conceptually, the primary vertical fluxes are perhaps the most
immediate to construct, and at the same time they are the only ones generating a chiral index.39

Recall that according to the Tate-Shioda-Wazir theorem H1,1(Ŷ4) is given by the span

H1,1(Ŷ4) = 〈[S0], [SA], [EiI ],π
∗[Db

α ]〉 , (9.16)

and H2,2
vert(Ŷ4) is generated by all linear combinations of products of two such elements. In gen-

eral, the resulting products obey a number of cohomological relations within H2,2(Ŷ4) so that the
dimension of H2,2

vert(Ŷ4) is considerably smaller than the naive value 1
2 h1,1(Ŷ4)(h1,1(Ŷ4)+ 1). On a

concrete elliptic fibration Ŷ4 the intersection numbers H2,2(Ŷ4)×H2,2(Ŷ4)→ Z can be evaluated
explicitly and expressed in terms of intersection numbers of divisors on the base. By dividing
out the so-obtained numerical relations one arrives at a generating set of H2,2

vert(Ŷ4). A detailed
explanation how to systematically reduce these intersection numbers to intersections on B3 in a
base-independent manner can be found in [283, 284].

By construction, since the generators in (9.16) are elements of H2(Ŷ4,Z) the resulting gener-
ating set of H2,2

vert(Ŷ4) is guaranteed to be integer, but the real challenge lies in finding the minimal
integral basis of H2,2

vert(Ŷ4). This is important when it comes to implementing the quantization con-
dition (9.1) on the fluxes [281]. Oftentimes in the literature, necessary conditions for (9.1) to hold
are checked by verifying intersection numbers with explicitly known algebraic cycles. To ensure
that the resulting 4-forms uplift to suitable fluxes in F-theory, it remains to implement the trans-
versality conditions (9.8). This is achieved by making an ansatz for a linear combination in terms
of the generating set of H2,2

vert(Ŷ4) and imposing the intersections (9.8).
While in principle one can simply run this algorithm to systematically arrive at a basis of valid

vertical F-theory fluxes, it is useful to have an intuition for what types of vertical fluxes can occur.
These are, in fact, of two types:

First, in the presence of a non-trivial Mordell-Weil group, from each independent rational
section SA and its image under the Shioda map UA one can construct a so-called U(1)A flux [175]

π
∗F ∧ [σ(sA)] with F ∈ H1,1(B3) . (9.17)

Note that by virtue of the Shioda map, this flux automatically satisfies the transversality condition
(9.8) and the gauge invariance condition (9.13). Similarly,

π
∗F ∧ [EiI ] with F ∈ H1,1(B3) (9.18)

39This follows from orthogonality of the decomposition (9.6) and is true provided the matter surfaces [Sa(R)] do not
receive contributions from H2,2

rem(Ŷ4).
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represents the gauge flux associated with the U(1)iI Cartan subalgebras. It is transversal, but by
construction breaks the Lie algebra gI → hiI ⊕ u(1)iI with hiI the commutant of u(1)iI within gI .
This type of flux is localized in a manifest manner in the sense that F |ΣI represents the correspond-
ing Cartan gauge flux along the 7-brane stack ΣI in Type IIB language. Such an interpretation is
less immediate for the non-Cartan U(1)A flux (9.17). In this case, what is relevant to understand
the massless spectrum is the restriction of F to the matter curves on the base, as will be discussed
below.

Even in absence of non-Cartan U(1)A gauge groups, extra types of vertical gauge fluxes are
possible. These are related to the Poincaré dual cohomology classes of the matter surfaces Sa

R in-
troduced before (9.13), as first exemplified in [95] and systematized in [202,278]. The cohomology
class [Sa

R] satisfies the transversality conditions (9.8) by construction and is hence a candidate for a
4-form flux. With one exception [285], in all cases studied in the literature to date [Sa

R] lies in the
vertical part of the middle cohomology (as opposed to the remainder). In order to implement also
the gauge invariance condition (9.13), one has to add a vertical correction term. The result is the
so-called matter surface flux

[Aa(R)] = [Sa
R]+ [∆a(R)], ∆

a(R) = β
a(R)T

iI (C
−1)iI jJ E jJ |CR . (9.19)

Note that this object is independent of the choice of weight a: Since two weights β a(R) and
β b(R) differ by a root, the difference [Sa

R]− [Sb
R] is given simply by the restriction of a linear

combination of resolution divisors EiI |CR . This difference is then offset by the correct terms and
overall [Aa(R)] = [Ab(R)].

In general, the fluxes associated with all matter surfaces are not cohomologically independ-
ent. In fact, some of the cohomological relations are a consequence of anomaly cancellation in
the 4-dimensional effective action, as described in [22]. The relations following from anomaly
cancellation take the form

∑
R

∑
a

na
iI jJkK

(R) [Aa(R)]vert = 0 ∈ H2,2(Ŷ4)

∑
R

∑
a

na
AΣΓ (R) [Aa (R)]vert −3

[
U(A
]
·
[
π∗
(
FΣ ·FΓ)

)]
= 0 ∈ H2,2(Ŷ4)

∑
R

∑
a

qA [Aa (R)]vert +6 [UA] ·
[
KB3

]
= 0 ∈ H2,2(Ŷ4) .

(9.20)

(9.21)

(9.22)

Here FΣ ∈ {σ(sA),EiI} refers to any of the Cartan or non-Cartan generators and

na
ΣΛΓ = β

a
Σ(R)β a

Λ(R)β a
Γ(R) (9.23)

with the understanding that β a
A(R) = qA is the U(1)A charged of representation R. The second term

in (9.21) and (9.22) represent special types of U(1)A and Cartan fluxes. Relation (9.20) can be
derived from the requirement that all cubic non-abelian anomalies must cancel, whereas (9.21) and
(9.22) follow from the cancellation of the mixed abelian-non-abelian and mix abelian-gravitational
anomalies via the Green-Schwarz mechanism. In particular the second term in (9.21) and (9.22)
follows from the Green-Schwarz counter-terms derived in [85].

As an example for the construction of vertical fluxes, consider the SU(2) Tate model of section
5.3. In absence of non-Cartan abelian gauge symmetries, a candidate for a vertical gauge flux which
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does not break the SU(2) gauge symmetry in the F-theory limit is the matter surface flux associated
with the representation R = 2. As it turns out, this flux is in fact trivial: Indeed, fibering each of
the two curves C(1)

sp and C(2)
sp over the matter curve C2 in the base gives rise to a surface which we

call Ĉ(1)
sp and Ĉ(2)

sp . As a result of (5.20), these are homologous. Furthermore

[Ĉ(1)
sp ]+ [Ĉ(2)

sp ] = 2[Ĉ(1)
sp ] = 2[Ĉ(2)

sp ] = [E1|C2 ] . (9.24)

According to (5.23) we can define the classes of the matter surface associated with the weights
β 1(2) and β 2(2) as

[S1(R)] =−[Ĉ(2)
sp ], [S2(R)] = [Ĉ(1)

sp ] . (9.25)

Evaluating (9.19), with Cartan matrix C11 = −2, we deduce from (9.24) that the flux is indeed
trivial. Hence in this model, the only possible vertical gauge flux corresponds to the Cartan flux
E1 ∧ π∗F for some F ∈ H1,1(Ŷ4), which breaks the non-abelian gauge symmetry in the F-theory
limit to the Cartan subgroup. This is in agreement with the intuition that vertical gauge fluxes
induce chirality in the massless charged spectrum. But the fundamental representation 2 of SU(2)
is pseudo-real and hence there exists no notion of chirality compatible with an unbroken SU(2)
gauge group. In Type IIB language, all chirality inducing candidate fluxes are ruled out by the D5
tadpole cancellation condition [54].

In more complicated fibrations the matter surface fluxes can well be non-trivial. For the In

series realized as a Tate model, the first model where this is the case is the I5 Tate model with gauge
algebra su(5). For n= 3 and n= 4, the triviality of the matter surface fluxes is in fact a consequence
of the relations (9.20) [22]. For the generic I5 Tate model, on the other hand, there exist a priori
two different matter surface fluxes [A(10)] and [A(5)] associated with the two representations of
localized charged matter. These satisfy the cohomological relation

[A(10)]+ [A(5)] = 0 , (9.26)

in agreement with (9.20).

9.3.3 Fluxes in H2,2
rem(Ŷ4)

As a starting point to exemplify a flux in the remainder piece H2,2
rem(Ŷ4) [270], consider a com-

ponent Σ of the discriminant divisor associated with the some Lie algebra g. The embedding
ι : Σ→ B3 embeds all curves on Σ into B3 and hence the full fibration Ŷ4. In general, two curves
on Σ which are independent in the homology of Σ need not be homologically independent on B3.
In particular, we can consider a curve C on Σ with [C] 6= 0 ∈ H2(Σ,Z), but ι∗[C] = 0 ∈ H2(B3,Z).
Such a curve on Σ cannot arise by intersecting Σ with a divisor on B3.

Consider now the resolution divisors Ei, which by construction are fibered over Σ. We can
hence restrict each Ei to C on Σ and obtain a non-trivial surface Ei|C [285, 286]. Its cohomology
group [Ei|C] is generally non-zero within H2,2(Ŷ4),40 but it does not lie within H2,2

vert(Ŷ4) because it
cannot be written as the linear combination of an intersection of divisors on Ŷ4. On the other hand,

40For example, its self-intersection is generically non-vanishing as long as [C] has a non-zero self-intersection number
within Σ because

∫
Ŷ4
[Ei|C]∧ [E j|C] =−Ci j

∫
Σ
[C]∧ [C] by means of (4.22).
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the surface Ei|C is algebraic for every choice of complex structure of Ŷ4. Its class is hence always
of (2,2) Hodge type and therefore [Ei|C] is not in H2,2

hor(Ŷ4) either. We are forced to conclude that
[Ei|C] ∈ H2,2

rem(Ŷ4). Explicit examples of this type have been provided in [285]; in these examples,
the 4-cycle classes can be written as a complete intersection of three divisors in a ambient complex
5-fold into which Ŷ4 is embedded as a hypersurface, even though they are no complete intersections
on Ŷ4 itself.

From the perspective of the gauge theory along Σ, this flux corresponds to a line bundle L
on Σ with c1(L) = [C] ∈ H2(Σ) and structure group the Cartan factor U(1)i. Such a line bundle
breaks the gauge group along Σ to the commutant of U(1)i in the F-theory limit. At the same time,
the flux obeys the necessary condition (9.13) for gauge invariance because of the orthogonality of
H2,2

vert(Ŷ4) and H2,2
rem(Ŷ4). This condition must therefore be modified as will be discussed in section

9.5. In fact, in the context of SU(5) GUT models fluxes of this type [285, 286] can be invoked
to break the GUT group to the Standard Model gauge group by choosing the Cartan subgroup to
be the hypercharge group U(1)Y ⊂ SU(5). The condition ι∗[C] = 0 ∈ H2(B3,Z) ensures that no
Stückelberg mechanism renders the U(1)Y gauge potential massive [287]. In this sense, fluxes in
H2,2

rem(Ŷ4) lie at the heart of the SU(5) F-theory GUT paradigm of [6–9].

9.4 Chow groups and gauge backgrounds

If we are interested in determining not only the chiral index of charged matter zero modes, but
the exact number of massless chiral and anti-chiral multiplets, we must specify the gauge back-
ground beyond the field strength G4. To this end we will first describe a practical parametrization
of the Deligne cohomology group encoding the full gauge background and then extract a formula
counting the massless matter states [127, 278].

At the level of the gauge flux, G4 is specified by an element in the middle cohomology group.
By Poincaré duality this defines a 4-cycle class in H4(Ŷ4). The Hodge conjecture states that every
element in H4(Ŷ4,Q) is in fact dual to the homology class of an algebraic complex 2-cycle. Assum-
ing this for now, a natural way to think about the flux background is therefore in terms of complex
2-cycle classes modulo homological equivalence [194]. The chiral index (9.14) can in particular
be understood as the topological intersection number between a matter surface class and the flux
cycle class, up to homological equivalence. Indeed, changing e.g. the class of the matter surface
by a homology transformation leaves this intersection product invariant and hence does not change
the chiral index.

As it turns out, identifying complex 2-cycles up to homological relations loses in general too
much information to capture not only the field strength G4, but the full information encoded in
H4

D(Ŷ4,Z(2)). A more refined notion of equivalence suitable for our purposes is given by rational
equivalence. More explanations of the following summary and references to the mathematics liter-
ature can be found in [127].

Two complex p-cycles Z1 and Z2 are called rationally equivalent if they are two members of
a rationally parametrized family of p-cycles, i.e. if there exists a family of p-cycles Z(t) with
t ∈ P1 such that Z1 = Z(t1) and Z2 = Z(t2). The equivalence class of algebraic cycles of complex
dimension p (or of complex codimension p) modulo rational equivalence is called the Chow group
CHp(Ŷ4) (or, respectively, CHp(Ŷ4)). In particular, for algebraic cycles of complex codimension
p = 1, i.e. for Weil divisors, rational equivalence coincides with the perhaps more familiar notion
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of linear equivalence, and CH1(Ŷ4) is the group of Weil divisors modulo linear equivalence. These
facts have been collected for the reader’s convenience in Appendix A.

To every such Weil divisor class D one can associate a sheaf O(D). If the space is smooth
(or more generally has only ’factorial’ singularities), every Weil divisor is in fact Cartier (meaning
that it can be locally expressed as the zeroes or poles of a single meromorphic function), and the
associated sheaf is a line bundle. In any event, the sheaf or line bundle can be interpreted as a gauge
bundle encoding the gauge background data of a 1-form gauge theory.

In our context, we are not dealing with a 1-form gauge theory, but with a 3-form gauge theory
(whose gauge potential is C3). Nonetheless, it is still true that a suitable Chow group paramet-
rizes the gauge background data of this theory, in the following sense: There exists a so-called
refined cycle map γ̂2 which maps equivalence classes of complex 2-cycles on Ŷ4 to elements of
H4

D(Ŷ4,Z(2)), i.e.

γ̂2 : CH2(Ŷ4)→ H4
D(Ŷ4,Z(2)) . (9.27)

Most importantly, the map is well-defined on CH2(Ŷ4), i.e. if we encode a gauge background given
by an element in the image of γ̂2 in H4

D(Ŷ4,Z(2)) by a Chow-class with representative Z, then
changing Z modulo rational equivalence (hence leaving its class in CH2(Ŷ4) unchanged) does not
alter the gauge background. The refined cycle map γ̂2 is surjective if the Hodge conjecture holds,
meaning that in this case every gauge background can be encoded by a Chow class. It is in general
not injective, i.e. there might in general be some redundancy in our geometric description of gauge
backgrounds via Chow groups. The relation between the cycle classes and the gauge backgrounds
is summarized in more detail in the following diagram:

0 CH2
hom(Ŷ4)

geometry︷ ︸︸ ︷
CH2(Ŷ4) H2,2

alg(Ŷ4) 0

0 J2(Ŷ4)︸ ︷︷ ︸∮
C3 ′Wilsonlines′

H4
D(Ŷ4,Z(2))︸ ︷︷ ︸
fullgaugedata

H2,2
Z (Ŷ4)︸ ︷︷ ︸

fieldstrengthG4

0

AJ

γ2

γ̂2

ĉ2

(9.28)

Here γ2 is the cycle map which assigns to a Chow class its associated cohomology class. Its kernel
CH2

hom(Ŷ4) maps to the flat gauge backgrounds, i.e. the elements in the Jacobian J2(Ŷ4), via the
Abel-Jacobi map. Note that given a Chow class A ∈ CH2(Ŷ4) the composition

ĉ2 ◦ γ̂2(A) = [A] ∈ H2,2
Z (Ŷ4) (9.29)

is the gauge flux associated with A.
The advantage of this parametrization of the gauge background is that we can proceed by

explicitly constructing complex 2-cycles and considering operations modulo rational equivalence.
In fact, to each of the fluxes constructed in section 9.3 we can associate its underlying Chow class
in the sense of (9.29). For instance, the cycle Γ defined in (9.15) can be viewed as a representative
of a certain Chow class, and we will denote this element of CH2(Ŷ4) by the same symbol. Its image
under the composition of the refined cycle map γ̂2 and ĉ2 is the horizontal flux [Γ]. The same logic
can be applied to all other types of fluxes of 9.3, which are under good computational control.
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9.5 Cohomology formulae counting zero-modes

We are finally in a position to approach the zero-mode counting in global F-theory compacti-
fications to 4d in more detail, following the formalism of [127, 278].

9.5.1 Localised charged matter

It has already been described in section 5.4 that the massless matter in representation R loc-
alised along an irreducible (self-)intersection curve CR of the discriminant is counted by certain
cohomology groups. In absence of any gauge background along the 7-branes, these groups are
given in (5.27), and they have been derived in the framework of the topologically twisted local
field theory describing the dynamics of the modes along a 7-brane [6, 7]. More generally, a gauge
background along the 7-branes induces a corresponding gauge background also along the matter
curves CR, and the charged zero-modes will couple to it in a manner dictated by the representation
R.

As before, our notation is that to each weight β a(R) we associate the matter surface Sa
R ob-

tained by fibering a rational curve over CR. Let us furthermore denote by L(a) the gauge background
to which the charged matter associated with weight β a(R) couples. In the simplest situation this
can be a line bundle on CR, but more generally we can consider coherent sheaves L(a). The question
is now how to extract the object L(a) on CR from the gauge background on a globally defined fibra-
tion. The massless states are the fluctuations of M2-branes wrapped the fiber of the matter surface,
which couple to the 3-form background according to the standard coupling (setting `11 ≡ 1)

SM2 ⊃ 2π

∫
M2

C3 . (9.30)

The gauge potential on CR along which the states propagate is hence obtained by integrating the
3-form background over the fiber of Sa(R) along which the M2-brane is wrapped.

Integration along the fiber translates into the following operation on the complex 2-cycle class
A ∈ CH2(Ŷ4) representing the gauge background: First we consider the pullback of A onto Sa(R).
If we denote by ιa : Sa(R)→ Ŷ4 the inclusion of the matter surface into the total space, then the
pullback is given by the intersection A ·ιa Sa

R, where we are now interpreting Sa(R) as the repres-
entative of the eponymous Chow class, i.e. as an elelemt of CH2(Ŷ4). Indeed this intersection
product is well-defined within the Chow ring.41 This means in particular that we are allowed to
use manipulations modulo rational equivalence without changing the result within the Chow ring.
This is particularly important when we are to perform non-transverse intersections: These can be
rewritten as a sum of transverse intersections by exploiting linear relations within the Chow ring.

We interpret A ·ιa Sa(R) as an element within CH0(Sa
R), the class of points on Sa

R modulo
rational equivalence. The actual integration along the fiber then consists in projecting this point
class onto the base, i.e. onto the curve CR. This operation amounts to considering the pushforward
with respect to the projection π : Ŷ4 → B3, restricted to the fibration over CR. Let us denote this
map as

πa : Sa
R→CR . (9.31)

41Sometimes we will omit the subscript in ·ιa if the context is clear. In this sense our notation does not distinguish
between the intersection product in (co)homology and in the Chow ring. When we refer to cohomological objects and
their intersection, we will denote this by a square bracket of the form e.g. [Sa

R] ∈ H4(Ŷ4).
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In all, we obtain the object

pa := πa∗(A ·ιa Sa
R) ∈ CH0(CR) . (9.32)

Note that CH0(CR) ' CH1(CR) because the complex curve CR is of complex dimension one. As
pointed out before, this is the group of divisors on CR modulo rational equivalence. It is well-
known that to each element in the divisor group we associate a sheaf on CR. This sheaf is the gauge
background we are after,

L(a) = OCR(pa) , (9.33)

and we find the following cohomology groups counting massless matter:

chiral multiplets : H0(CR,L(a)⊗
√

KCR)

anti− chiral multiplets : H1(CR,L(a)⊗
√

KCR) .
(9.34)

Recall furthermore from above that in general CH1(CR) is the group of Weil divisors and that
if CR is smooth (or more generally has only singularities which leave it factorial as a variety), then
this equals the group Pic(CR) of Cartier divisors. In this case, L(a) is a line bundle on CR as opposed
to merely a coherent sheaf on CR.

In any given application, the representative of the Chow class pa (which we again denote by
the same symbol) is constructed very explicitly in terms of the vanishing locus of certain functions
along CR. Suppose first that pa is effective, i.e. it consists of points with positive multiplicity,
and that these points are the vanishing locus of the functions f1, . . . , fn on CR. These need not
be complete intersections, and in general generate an ideal within the ring of functions in the
coordinates on CR. There is a standard procedure in algebraic geometry to associate to the ideal
〈 f1, . . . , fn〉 a sheaf I , the so-called ideal sheaf.42 This sheaf is precisely I = OCR(−pa), and the
sought-after sheaf (9.33) is obtained by a dualisation procedure as OCR(pa) = Hom(OCR ,I ). If
pa is anti-effective, then there exists an ideal 〈g1, . . . ,gn〉 describing the effective object −pa and
OCR(pa) is the ideal sheaf associated with 〈g1, . . . ,gn〉. More generally, if pa contains both effective
and anti-effective cycles, i.e. pa = ra− sa with ra and sa effective, one obtains (9.33) as the tensor
product of the ideal sheaves associated with ra and sa according to the above logic. More details
on this standard procedure can be found e.g. in section 6 of [278].

Having determined the cohomology groups (9.34) counting chiral and anti-chiral multiplets,
we can immediately compute the associated chiral index. According to the Riemann-Roch-Hirzebruch
index theorem,

χ(β a(R)) = deg(L(a)) = deg(πa∗(A ·ιa Sa
R)) = deg(A ·ιa Sa

R) = [A] · [Sa
R] =

∫
Sa(R)

[A] . (9.35)

This exactly reproduces, and in fact derives, the expression (9.12).
It is high time to illustrate this general procedure. As our first example let us consider a non-

Cartan U(1) gauge background. If we denote by F ∈ CH1(B3) and σ(sA) ∈ CH1(Ŷ4) the divisor

42The sheaf is defined such that its restriction to any open neighborhood U has as its stalk the restriction of the ideal
to U , i.e. I (U ) = 〈 f1|U , . . . , fn|U 〉.
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classes whose associated homology classes define the U(1) gauge flux (9.17), then at the level of
Chow groups A = π∗F ·σ(sA). Here · refers to the intersection product within the Chow ring of Ŷ4.
The operation A ·ιa Sa

R splits into a base and a fiber part, as explained in more detail in [127], and
after projection onto the base one arrives at

pa = πa∗(A ·ιa Sa
R) = qA(R)(F ·ιCR

CR) . (9.36)

Here qA(R) is the U(1)A charge of representation R which is reproduced by the intersection in the
fiber, and ιCR : CR→ B3 is the inclusion for the matter curve CR. The intersection F ·ιCR

CR defines
a class of points on CR, obtained by intersecting the curve CR with the divisor F on B3 modulo
rational equivalence. The degree of this point class is the topological intersection number

∫
CR
[F ],

but it contains more information beyond this cohomological intersection number. The point class
(9.36) then defines a sheaf OCR(pa) on CR. If CR is smooth, this sheaf is a line bundle on CR,
given by L⊗qA(R) with L = O(F)|CR the line bundle obtained by pulling back the line bundle on B3

associated with the divisor class F . This is a special situation valid for abelian gauge backgrounds,
though.

For matter surface fluxes, the intersection A ·ιa Sa
R can again be performed separately in the fiber

and the base. This is explained in detail in [278], to which we refer the interested reader. Since
the complex 2-cycle underlying such gauge background is itself a matter surface, the structure of
intersections is in fact governed by the Yukawa points. In general, the resulting sheaf on CR is not
the pullback of a line bundle to the matter curve.

Finally, what remains to be understood is how to evaluate the cohomology groups (9.34) ex-
plicitly. Our input is a point class pa on CR which defines the sheaf OCR(pa). If this sheaf is the
pullback of a line bundle from B3, as is the case e.g. for the U(1)A gauge background above, then
the cohomology groups can be computed by restricting cohomology groups of the line bundle on B3

to CR via the Koszul sequence. If B3 is itself a toric space, or embedded into a toric ambient space as
a hypersurface or complete intersection, the cohomology groups on B3 in turn are obtained via the
Koszul sequence from the cohomology groups on the ambient space. The CohomCalg algorithm
developed in [128] and implemented in [288, 289] performs precisely this task. Unfortuntately, in
most situations the sheaf on the matter curve is not a pullback line bundle, but the object L(a) on
CR (or rather its pushorward onto B3) really defines a coherent sheaf on B3. The computation of
sheaf cohomology groups on toric spaces has been implemented in computational algebraic geo-
metry in [290–292]. In [278, 293] it is explained in detail and illustrated how this machinery can
be applied to compute the sheaf cohomology groups (9.34). In particular, it is applicable also in
situations where CR as a curve is singular.

Instead of repeating this discussion in detail here, let us stress an interesting property of the
resulting matter spectrum: The dimensions of the sheaf cohomology groups (9.34) explicitly de-
pend on the choice of complex structure moduli defining the matter curves CR [278, 293]. These
enter via the explicit functions whose poles or zeroes cut out the point class (9.32) on CR. This is
a notable difference from the chiral index, which is a topological invariant. Changing the complex
structure moduli in general leads to jumps in the number of massless vectorlike pairs. The smallest
number of such massless vectorlike pairs is found at the most generic point in moduli space, and
along loci in higher codimension in moduli space extra massless zero modes can appear.
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9.5.2 Charged bulk matter

Let us now address the bulk modes propagating along the surface ΣI wrapped by a stack of
7-branes. In the expression (4.73) for the cohomology groups counting the massless bulk modes in
absence of gauge flux, the trivial bundle OI must be replaced accordingly.

To this end consider a state in the adjoint representation associated with the weight

β =−
rk(gI)

∑
iI=1

biI αiI . (9.37)

Here αiI denotes the positive simple roots of the algebra giI . We focus for simplicity on a simply-
laced algebra. From the discussion in section 4 we know that the zero-modes carrying this weight
vector are the massless fluctuations of M2-branes wrapping the linear combination ∑iI biIP1

iI in the
fiber over ΣI . Each P1

iI is the fiber of a resolution divisor EiI .
For each of the resolution divisors EiI fibered over ΣI with inclusion map iI : EiI → Ŷ4, we

can form the intersection product A ·iI EiI ∈ CH2(EiI ). On the complex 3-dimensional divisor EiI ,
CH2(EiI )' CH1(EiI ), and projecting the above intersection to the base of EiI gives an element

πiI∗(A ·iI EiI ) ∈ CH1(ΣI) . (9.38)

Since CH1(ΣI) ' CH1(ΣI) this again produces an object in the divisor class of ΣI , which defines
a sheaf (or line bundle in the smooth context) LiI on ΣI . The sheaf to which the state associated
carrying the weight (9.37) couples is then

L(β ) =⊗iI L
biI
iI . (9.39)

Generalising (4.73), the massless matter carrying weight β organizes into N = 1 chiral and anti-
chiral multiplets counted by the following cohomology groups:

chiral : H1(ΣI,L(β ))⊕H0(ΣI,L(β )⊗KΣI )

anti− chiral : H2(ΣI,L(β ))⊕H1(ΣI,L(β )⊗KΣI ) .
(9.40)

The chiral index associated to this matter can be computed by noting that if supersymmetry is
unbroken, H0(ΣI,L(β )) = 0 and likewise H2(ΣI,L(β )⊗KΣI ) = 0.43 The chiral index then follows
as

χ(β ) =
2

∑
i=0

hi(ΣI,L(β ))−
2

∑
i=0

hi(ΣI,L(β )⊗KΣI ) (9.41)

= −
∫

ΣI

c1(ΣI)c1(L(β )) , (9.42)

where we have used to the Atiyah-Singer index theorem (see e.g. [6,7,125] for details). The index
can in fact be written directly in terms of the gauge flux G4 = [A] in a manner which makes contact

43The precise assumption is that the line bundle L(β ) allows for a solution to the D-term equation inside the Kähler
cone without the need to turn on charged matter field VEVs. This is equivalent to H0(ΣI ,L(β )) = 0 and H2(ΣI ,L(β )⊗
KΣI ) = 0 [125]. A non-zero matter VEV would break the gauge algebra and hence modify also the zero-mode counting.
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with the expression (9.12) for localised matter: The role of the matter surface for bulk matter is
now taken by

S(β ) = ∑biI EiI |K̄ΣI
. (9.43)

Indeed, (9.41) is identical to

χ(β ) =
∫

S(β )
G4 . (9.44)

Whenever (9.38) is non-trivial, the gauge background in fact breaks the gauge algebra gI in
the F-theory limit. The condition for gauge invariance is therefore

πiI∗(A ·iI EiI ) = 0 ∀ iI . (9.45)

This condition certainly implies (9.13), but is stronger. For instance, fluxes in the remainder piece
H2,2

rem(Ŷ4) always satisfy (9.13), but they may well break the non-abelian gauge algebra, the prime
example being the hypercharge flux in F-theory GUTs. The correct condition (9.45) is sensitive to
this effect.

10. Applications

One of virtues of F-theory, and the guideline of these lectures so far, is the fruitful combination
of physical and geometric reasoning. We have seen how this establishes a clear physics interpret-
ation of many advanced concepts in algebraic geometry. We would like to conclude these lectures
by giving an admittedly rather brief outlook on some of the applications of this dictionary between
geometry and physics in F-theory. We will focus on three different aspects, which oftentimes go
hand in hand and inspire each other: Applications to string model building and questions of the
string landscape, applications to formal questions in Quantum Field Theory, and applications to
mathematics.

10.1 F-theory model building and landscape reasoning

Beginning with [6–9], F-theory has been established as a fruitful framework for particle phys-
ics oriented model building, in particular in the context of Grand Unified Model Building (GUTs).
Many of the early developments in this very active field have already been surveyed in the re-
views [27, 294–296], to which we refer for a more detailed account of the key ideas and a more
exhaustive list of references. Here we would like to stress some of the more recent results in the
context of the technical framework laid out in these lectures.

What makes F-theory so attractive with respect to model building is the combination, men-
tioned already in the introduction, of localisation of gauge degrees of freedom, matter, and Yukawa
interactions with the appearance of symmetry groups of exceptional type, which are otherwise
realized only in the heterotic string (at a perturbative level). The localisation of gauge degrees of
freedom implies that many physics questions decouple - at least to leading order - from global
considerations. This has been the main viewpoint taken in GUT model building. A key idea is
that the UV completeness of a 4d GUT theory reflects in the fact that gravity can be decoupled
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by placing the GUT 7-brane on a divisor which can shrink within the base of the fibration. Such
reasoning has inspired the detailed development of local or semi-local techniques for the ana-
lysis of the gauge theory on the 7-brane in the context of a spectral cover or Higgs bundles
[6, 8, 93, 138–141, 143, 149, 176–180]. A local approach is certainly justified for those aspects
which only involve the non-abelian degrees of the freedom and their interactions. Among them
are the Yukawa couplings between matter fields in different non-abelian representations, which, as
described in section 6.1, are localised at isolated points along the 7-branes. For a rather incomplete
list of further phenomenological studies using a local technique see e.g. [159, 168, 297, 298] and
references therein.

This is not to say, though, that global effects are irrelevant. On the contrary, we have seen
that essentially all physics associated with abelian or discrete gauge symmetries is global in nature.
Clearly abelian gauge symmetries lie at the heart of model building applications when it comes to
realising the gauge group of the Standard Model. Indeed, in SU(5) GUTs the quest for the hy-
percharge abelian U(1)Y factor is a global question: As one of the hallmarks of F-theory GUTs,
the very attractive scenario of breaking the gauge group SU(5) via a nontrivial U(1)Y gauge back-
ground [8, 9] is sensitive to information about the embedding of the GUT 7-brane cycle into the
base B3 [287]. This is realized for instance in the global models [93, 125, 176]. Another key idea
in the context of F-theory GUTs is the elegant solution to the doublet-triplet splitting problem and
suppression of proton decay operators via suitable Peccei-Quinn type symmetries [8, 178, 180].
Implementing this and other effects into a globally defined compactification has been one of the
motivations for and driving forces behind the systematic exploration of abelian gauge symmetries
in F-theory. As of this writing it is indeed possible to obtain a charge assignment of the form
envisaged in [8, 178, 180] in global SU(5) models, including e.g. a split of the 10 representa-
tion [211, 224–226]. However, the mechanism of hypercharge flux breaking requires that both
Higgs curves (on which 5Hu and 5Hd localize) are not by themselves realized as the pullback of
a divisor to the GUT surface. In the language of section 9.3, the classes of the associated matter
surfaces must have contributions in H2,2

rem(Ŷ4). While models of this type are guaranteed to exist
because they can be constructed in principle at the perturbative level [286], this property has not
yet been combined with the requirement that the matter curves in question carry different abelian
charges (see, however, [285] for the split of a matter surface into two matter surfaces with compon-
ents in H2,2

rem(Ŷ4), where the two associated matter fields carry the same U(1) charge).
More generally, it would be highly desirable for model building applications to classify the

possible abelian or discrete charges which non-abelian matter can attain in a consistent F-theory
compactification. This would allow us to single out which phenomenologically attractive bottom-
up scenarios for selection rules can be realized after taking quantum gravity (or stringy) constraints
into account. Such a classification of possible charges in SU(5) GUT models has been given
in [228], subject to the assumption that the rational section underlying the abelian gauge group
factor and the GUT divisor are both smooth. It would be extremely important for model building
to push this classification further without this technical assumption.

Overall, two different approaches to flavour have been taken in the F-theory literature, again
each with certain global implications. As already described at the end of section 6.1, at a single
Yukawa point the coupling matrix between the different families of matter localised on the in-
tersecting matter curves has rank one [139, 152, 153]. Higher order effects [156] can produce
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subleading corrections with excellent phenomenological properties, see in particular the detailed
computations [162–166] within a local framework. Implementing these into global models requires
knowledge of global data such as the spectrum of instantons available in the model. Alternatively,
Froggat-Nielson type models invoke global symmetries to act as flavour symmetries distinguishing
between different families, which necessarily localize on different matter curves [167–170, 299].
This line of reasoning is again directly tied to the formal developments in the context of abelian
or discrete symmetries discussed in sections 7 and 8. In order for an abelian symmetry to act as a
global symmetry a flux-induced Stückelberg mechanism must render the gauge boson massive.

The idea of Grand Unification hinges, to considerable extent, on low-scale supersymmetry. It
is therefore important to assess the status of model building if supersymmetry were not to be found
at low energies. First, gauge threshold corrections might come to rescue even if supersymmetry
is broken at an intermediate scale. The hypercharge flux breaking mechanism comes with its own
type of such threshold corrections [9,300]. Possible scenarios for F-theory GUTs with intermediate
scale supersymmetry have been discussed from various viewpoints in [301, 302].

A different approach to engineering the Standard Model is to bypass any intermediate level
grand unified gauge group [222]. This is certainly the philosophy underlying perturbative Type II
model building (see e.g. [303, 304] and references therein); the motivation to take this route in the
context of F-theory is its generality; F-theory models with gauge group SU(3)× SU(2)×U(1)Y
might therefore include possibilities that cannot be obtained perturbatively. Clearly, compared to
e.g. toroidal orientifolds, this comes at the expensive of a lack of an explicit worldsheet theory
which would allow for the evaluation of stringy effects. Non-perturbative genericity, on the other
hand, pays off in particular in the context of strongly coupled models, where the SU(2) and SU(3)
factors are engineered as Kodaira type III and IV enhancements [109, 305]. Global Standard-like
models with three chiral generations have been constructed in [223, 283].

Landscape versus swampland

A question of fundamental importance for theoretical high energy physics is how to constrain
the vast set of possible low energy theories which appear to comply with all known consistency con-
ditions. Given its genericity, F-theory is an ideal framework for a systematic study of the low energy
effective theories at least in a large subclass of string compactifications, including non-perturbative
effects in the string coupling. In eight dimensions, F-theory exhausts the list of consistent gauge
theories [84] (modulo the potential caveat in footnote 14). The analogue of this question in six
dimensions has received considerable attention [18]: In chiral N = (1,0) supergravities constraints
from gauge and gravitational anomaly cancellation are particularly strong and already allow one
to considerably constrain the possible supergravity theories [113, 306–309]. These are then to be
compared with known string theory realizations [306, 310]. As a recent surprise an infinite set of
abelian charges seems to be compatible with 6d anomaly cancellation in supergravity models [311],
and it remains, as of today, an interesting question if such supergravities violate as yet unknown
low-energy consistency conditions of if they can, on the contrary, be realized as consistent string
or F-theory compactifications. Before conclusive statements can be made it is important to develop
an (even) better understanding of the classifications of charges and representations which can oc-
cur in F-theory. The developments outlined in sections 7.5 and 7.6 are particularly relevant in this
context.
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10.2 Non-perturbative Quantum Field Theories from F-theory

F-theory epitomizes the idea of geometrisation of Quantum Field Theory: Fundamental con-
cepts of gauge theories are translated into geometric properties of an elliptic fibration, and we can
thus use geometry to define a quantum field theory via F-theory. This becomes even more attract-
ive in strongly coupled situations and more generally in the context of field theories which do not
admit a Lagrangian description. In many cases, a geometric definition via string or F-theory is the
best indication for the very existence of such theories in the first place.

We have already stressed in this context the recent classification of 6d N = (1,0) supercon-
formal field theories in F-theory [15, 16], and since this vast topic has been reviewed in detail
in [17], we can afford being rather brief. The key insight is to identify the tensor branch of a 6d
N = (1,0) supersymmetric gauge theory with the Kähler moduli space controlling the volumes
of holomorphic curves in the two-dimensional base B2 of an elliptic fibration (while leaving the
base at finite volume). Given a curve ΣI , its Kähler volume Vol(ΣI) =

∫
ΣI

J is identified with a
real scalar field. It sits in the same N = (1,0) multiplet as the anti-self-dual 2-form originating
from reduction of the Type IIB 4-form C4 along the same curve ΣI . The volume of ΣI controls
two important physical quantities: First, the gauge coupling of a 7-brane wrapping ΣI is given by
1/g2

I = Vol(ΣI). Second, wrapping a D3-brane along ΣI leads to a string in 6d which couples to
the anti-self-dual tensor in the same multiplet as the volume of ΣI . The tension of this string is
likewise set by Vol(ΣI). At the origin of the tensor branch, i.e. in the limit where Vol(ΣI)→ 0,
the 7-brane theory along ΣI becomes strongly coupled and the string from the D3-brane along ΣI

acquires zero tension. Due to the amount of supersymmetry in 6d, there are no quantum correc-
tions to both statements. The zero-tension limit results in a strongly coupled theory with infinitely
many massless degrees of freedom. Such a theory is believed to represent a non-trivial supercon-
formal field theory (SCFT). The classification of the SCFTs which can be obtained in this way
via F-theory amounts to the classification of the possible configurations of shrinkable curves on an
F-theory base B2, along with all possible enhancements of the gauge algebra beyond the minimal
type. In general, holomorphic curves on a Kähler surface which can shrink to zero volume (while
keeping the volume of the embedding surface fixed) must have negative self-intersection if they are
irreducible; configurations of several such curves must have a negative semi-definite intersection
matrix AIJ = ΣI ·ΣJ to be simultaneously shrinkable. Extra constraints arise on a base B2 suitable
for F-theory from the requirement that the functions f and g defining a Weierstrass model over B2

do not vanish beyond order (4,6) in codimension one. This implies that a shrinkable curve in the
above sense must in addition be rational and its self-intersection is constrained as [14]

ΣI ·ΣI =−n n = 1, . . . ,12 . (10.1)

For n≥ 3, ΣI must necessarily be a component of the discriminant divisor, i.e. it must be wrapped
by a 7-brane whose minimal gauge algebra cannot be higgsed further. For n = 1 and n = 2, the
gauge algebra along ΣI can be trivial, but nonetheless strings wrapping the curve become tension-
less in the limit of vanishing volume and furnish 6d SCFTs (of E-string type for n = 1 and with
enhanced (2,0) symmetry for n = 2). The key result is that shrinking the curves to zero volume
leads to a canonical singularity (as defined in section 5.6) on B2 of the local form C2/G with
G⊂U(2) [15, 16].
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A conclusion to be drawn from the above is that not only 7-branes, but also D3-branes are key
players in the engineering of interesting non-perturbative field theories in F-theory. A D3-brane
which is pointlike on the base Bn probes the singularities of the F-theory elliptic fibration and can
give rise, under suitable conditions, to four-dimensional strongly coupled field theories. Wrapping
the D3-brane on a curve or surface on Bn, on the other hand, engineers a supersymmetric gauge
theory with varying gauge coupling. The key to both types of constructions is to identify the axio-
dilaton τ of Type IIB string theory in R1,9 with the complexified gauge coupling of the 4d N = 4
supersymmetric gauge theory in the worldvolume of a D3-brane,(

θ

2π
+

4πi
g2

)
D3

= τ . (10.2)

Suppose first that the D3-brane is pointlike on the F-theory base Bn. In the vicinity of a 7-brane,
(p,q) strings between the 3-brane and the 7-brane give rise to light matter charged under the D3-
brane gauge group. The gauge group on the 7-brane hence appears as the flavor symmetry group of
the 3-brane theory. These identifications open up a number of beautiful connections to supersym-
metric field theories. For instance, according to a celebrated result D3-branes probing an I∗0 singu-
larity in F-theory compactified on K3 engineer 4d N = 2 Seiberg-Witten theory with gauge group
SU(2) and N f = 4 fundamental hypermultiplets [32, 312]. The gauge group along the 3-brane can
be derived by analyzing the 3-3 strings including possibly monodromies along paths encircling the
singularities. If the D3-brane is on top of the I∗0 singularity, 3-3 strings encircling the latter become
massless and enhance the gauge group U(1) of a single D3 to SU(2). The position of the D3-brane
in the one complex direction w normal to the singularity on the base of the K3 therefore translates
into the Coulomb branch parameter of the D3-brane gauge theory. The fact that the axio-dilaton
in the vicinity of an I∗0 singularity on K3 is constant (see the discussion around (2.19)) reflects the
conformality of the N = 2 SU(2) theory on the probe D3-brane with N f = 4. Deforming the I∗0
singularity breaks the SO(8) flavour symmetry; the resulting holomorphic variation of τ(w) in the
directions normal to the D3-brane quantitatively matches the behaviour of the complexified gauge
coupling on the Coulomb branch of Seiberg-Witten theory, and the Seiberg-Witten geometry is the
elliptic fibration. The gauge instantons correcting the classical gauge coupling on the D3-brane are
identified by D(−1) instantons in Type IIB theory, whose effect is automatically included in the
profile of τ(w) as determined by the elliptic fibration in F-theory on K3 [41].

There are various generalizations of this construction, including the possibility of engineering
4d N = 1 SCFTs along D3-branes probing codimension-three enhancement loci in F-theory on
elliptic fourfolds [313,314]. An important part of the technical analysis is to determine the spectrum
of 3-7 strings from string junctions. The analysis differs from that of 7-7 strings in that the D3-
brane is an SL(2,Z) singlet because it couples to the invariant 4-form C4. Recent advances, and a
list of earlier references on this topic, can be found in [74, 111].

A novel and unexpected result is that D3-branes probing, in a similar way, Q-factorial terminal
singularities in codimension three on the base of an F-theory Calabi-Yau 4-fold lead to strongly
coupled field theories with N = 3 supersymmetry [171]. See section 6.3 for more information.

Next, consider a D3-brane along a curve C or even a surface S on the base Bn of an elliptic
fibration. The restriction of the fibration to C or S is itself an elliptic fibration, which is non-trivial if
and only if C or S intersect the discriminant locus. The identification (10.2) implies that the gauge
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coupling varies along the worldvolume of the D3-brane. Examples of such configurations are the
(1,0) SCFT strings from D3-branes wrapping shrinkable curves, as described at the beginning of
this section, but more generally C need not be of negative self-intersection. Such non-perturbative
theories can be described by combining the usual topological twist (which is comparable with
the one along the 7-branes in F-theory, see section 4.6), with an additional twist which was called
topological duality twist in [315]. The duality twist is described in [315] for D3-branes on a surface
on a base B3 and in [316] for D3-branes wrapping a curve C on Bn for n = 1,2,3,4 (see also
[317]). The duality twist is best understood for abelian gauge theories, but extensions to non-
abelian settings are possible by duality with M-theory, mapping the D3-brane stack to a stack of
M5-branes [318]. In the case of a surface, the resulting topologically duality twisted field theory
is the effective action along a D3-brane instanton. For a curve C, we get again effective string
theories along R1,1. The amount of supersymmetry depends on the dimension of the embedding
base. Holographic duals with varying axio-dilaton have been constructed in [319, 320].

D3-branes wrapping curves are also an important ingredient in the recently studied class of
compactifications of F-theory to two dimensions with N = (0,2) supersymmetry [87, 88, 102, 103,
316, 321].

10.3 From physics back to mathematics

The gauge theory - geometry correspondence in F-theory is of obvious practical use for phys-
ics. It enables us to employ mathematical insights into the structure of elliptic fibrations to deduce
properties of the associated effective action. Reading the dictionary backwards opens up the pos-
sibility of obtaining new and perhaps unexpected insights into the geometry of elliptic fibrations by
relying on intuition on the physics side of the correspondence. This is, of course, a common theme
in string theory more generally. Some of the most spectacular examples are the prediction of mirror
symmetry from the behaviour of conformal field theories describing string propagation on Calabi-
Yau spaces, or highly non-trivial results in enumerative geometry by counting BPS invariants in
topological string theory. F-theory adds many more chapters to this success story.

The very idea of assigning a gauge algebra to the codimension-one strata of the discriminant
and a weight lattice of representations to the fibers in codimension two is highly non-trivial from
the perspective of geometry alone. F-theory provides a welcome source of intuition and, in fact,
deeper explanation for this beautiful result. Another source of physics intuition comes from the
fact, stressed in section 4.4, that resolving the fibral singularities corresponds to moving along the
Coulomb branch of the gauge theory in M-theory. This identifies different, birationally equivalent
resolutions of the same singular Weierstrass model as the various Coulomb phases of one and
the same gauge theory. In particular, it is clear that in all these birational geometries we should
assign the same representation to the degenerate fibers in codimension two, as can be checked in
all concrete examples. This fact is a priori non-trivial from a purely mathematical point of view,
and indeed not even proven in full generality.

Similar physical reasoning can be invoked in many more cases to either explain ex post or to
predict the behaviour of the geometry. An example of the second type appears in the context of
quantum anomalies: The absence of net local anomalies in 10-dimensional string theory implies
that all consistent compactifications of F-theory must automatically lead to an anomaly free theory.
The field theoretic anomalies have in general two contributions: A 1-loop induced anomaly from
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chiral states running in the loop, and a Green-Schwarz counterterm [322–324], first computed in
F-theory in [112], which contributes a classical variance of the action. Both types of sources for the
anomalies can be computed in purely geometric terms on the elliptic fibration, and must exactly
cancel each other. This leads to a number of topological identities for any elliptically fibered
Calabi-Yau. Anomaly cancellation was first used in [20, 21] to establish a non-trivial relation
between the Euler characteristic of a smooth elliptic Calabi-Yau 3-fold and the data associated with
the codimension-one and two degenerate fibers, and further extended in compactifications to six
dimensions in [23, 56]. A number of identities can be deduced from the cancellation of anomalies
which must hold as identities in the cohomology ring H2,2(Ŷn+1) (or possibly even at the level of
the Chow ring) and which exhibit a universal structure across dimensions [22, 85, 103]. A subset
these have been collected in the previous section, eqns (9.20) - (9.22). A first principle derivation
of the cancellation of anomalies in F-theory via M-theory [86] turns, via this connection, into a
physics proof of a number of highly non-trivial such topological identities whose general proof
based solely on geometric reasoning is yet to be achieved.
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jam Cvetič and Igor Klebanov, for inviting me to lecture in such an inspiring atmosphere, and the
participants of the TASI school for their excellent questions, remarks, comments and their impress-
ively lively interaction even in the final week of an intense programme. I am deeply indebted to my
collaborators on F-theory and related matters of the past years, P. Arras, M. Bies, R. Blumenhagen,
J. Borchmann, A. Grassi, T. Grimm, A. Hebecker, B. Jurke, M. Kerstan, S. Krause, C. Lawrie, S.-J.
Lee, W. Lerche, L. Lin, D. Lüst, L. Martucci, C. Mayrhofer, D. Morrison, E. Palti, C. Pehle, D.
Regalado, C. Reichelt, O. Till, S. Schäfer-Nameki and F. Xu. This work was supported in part by
DFG TR33 ’The Dark Universe’ and by DFG GK ’Particle Physics Beyond the Standard Model’.

A. Divisors, cycles, and equivalence relations

For the reader’s convenience, this appendix reviews a few completely standard definitions and
facts concerning various equivalence relations between complex cycles on a complex projective
variety X of complex dimension n.

Definition 1. A Weil divisor is a formal linear combination of irreducible hypersurfaces, i.e. of
complex codimension-one cycles, of X. The group of Weil divisors is called Div(X).

Definition 2. A principal divisor can be written as the zeroes and poles of a globally defined mero-
morphic function on X.

Definition 3. Weil divisors Z1 and Z2 are linearly equivalent, Z1 ∼ Z2, if they differ by a principal
divisor. The group of Weil divisors modulo linear equivalence is the divisor class group Cl(X) =

Div(X)/∼ .

Linear equivalence for divisors is the same as rational equivalence for complex codimension-
one cycles. Two complex p-cycles are rationally equivalent if they belong to a family of cycles
parametrized by a rational curve P1:
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Definition 4. Two complex p-cycles Z1 and Z2 are rationally equivalent if there exists a cycle V on
X×P1 such that V ∩ (X×{t1})−V ∩ (X×{t2}) = Z1−Z2 for t1, t2 ∈ P1. The group of complex p
cycles modulo rational equivalence is the Chow group CHp(X). In particular, Cl(X) = CHn−1(X).
The group of complex codimension p cycles modulo rational equivalence is denoted by CHp(X).

A second notion of divisor is that of a Cartier divisor:

Definition 5. A Weil divisor which can be locally expressed as the zeroes or poles of a single
meromorphic function on X is called a Cartier divisor. The group of Cartier divisors modulo
linear equivalence is the Picard group Pic(X).

The first Chern class map c1 associates to each Cartier divisor class a cohomology class in
H2(X ,Z),

c1 : Pic(X)→ H2(X ,Z) , (A.1)

and its kernel is the component Pic0(X) connected to the zero element in Pic(X):

Pic0(X) = ker(c1) . (A.2)

If X is smooth every Weil divisor is also Cartier, and in this case Cl(X) = Pic(X). More
generally, this remains true if X is a complex projective variety with only factorial singularities.

A stronger equivalence relation than rational equivalence is given by algebraic equivalence.
The intuition is again that two cycles are algebraically equivalent if they are members of the same
family parametrized by an algebraic curve:

Definition 6. Two complex p-cycles Z1 and Z2 are algebraically equivalent if there exists a cycle
V on X ×C with C an algebraic curve such that V ∩ (X ×{t1})−V ∩ (X ×{t2}) = Z1− Z2 for
t1, t2 ∈C.

Definition 7. The group of Weil divisors modulo algebraic equivalence is called Néron-Severi
group NS(X).

Note that for complex codimension-one cycles, i.e. for divisors, on a complex projective
variety X , the notion of homological equivalence and of algebraic equivalence are the same. This
fails to be correct for higher codimension cycles.

If X is smooth, the Néron-Severi group is related to the Picard group as follows: Since accord-
ing to the above homological and algebraic equivalence are the same for divisors, and furthermore
Pic(X) = Cl(X) if X is smooth, the Néron-Severi group is

NS(X) = Pic(X)/Pic0(X) . (A.3)

This equals

NS(X) = Pic(X)/Pic0(X) = Pic(X)/ker(c1) = im(c1) . (A.4)

Note furthermore that if H1(X ,O) = 0, as is the case for all simply connected varieties, Pic0(X) =

0. In this case NS(X) = Pic(X). In particular, if X is smooth and H1(X ,O) = 0, as is the case for
a smooth Calabi-Yau variety, then NS(X) = Pic(X) = Cl(X) = CH1(X).
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B. Notation and Conventions

Given a complex variety, in our case mostly the resolved elliptic fibration Ŷn+1, we denote the
vanishing locus of a set of meromorphic functions f1, . . . , fn as

V ( f1, . . . , fn) := { f1 = 0}∩{ f2 = 0}∩ . . .∩{ fn = 0} . (B.1)

Mathematically, we are dealing with the variety associated with the ideal 〈 f1, . . . , fn〉 generated by
the functions f1, . . . , fn.

We typically use capital letters to denote this vanishing locus. The same letter is used to refer
to the complex p-cycle class (modulo rational equivalence) on Ŷn+1. Depending on the context it
will be clear if we are having the cycle class or a specific representative (i.e. the specific vanishing
locus) in mind. For example, given a (local) holomorphic coordinate z, we denote by Z as in

Z :=V (z) = {z = 0} (B.2)

both the vanishing locus in z and the associated divisor class in Cl(Ŷn+1).
The homology class of a complex p-cycle C will usually be denoted by [C] ∈ H2p(Ŷn+1). We

use the same notation for its Poincaré dual cohomology class in H2n−2p(Ŷn+1). In particular, we
therefore denote by [Z] both the class in H2n(Ŷn+1) and its dual in H2(Ŷn+1). For divisors on a
smooth Calabi-Yau the distinction between the element in Cl(Ŷn+1) and its cohomology class in
H2(Ŷn+1) would strictly speaking not be necessary according to the remark at the end of Appendix
A. The reader may forgive us for sticking to this redundant notation also in the case of divisors.

The projection π : Ŷn+1→ Bn induces a pushforward map on the space of (complex) p-cycles
modulo rational equivalence,

π∗ : CHp(Ŷn+1)→ CHp(Bn) (B.3)

and a pullback map on the space of complex codimension p-cycles modulo rational equivalence

π
∗ : CHp(Bn)→ CHp(Ŷn+1) . (B.4)

By abuse of notation we used the same symbol π∗ to denote the induced push-forward map in
homology,

π∗ : H2p(Ŷn+1)→ H2p(Bn) (B.5)

and π∗ for the pullback map in cohomology

π
∗ : H2p(Bn)→ H2p(Ŷn+1) . (B.6)

The intersection product between (co)homology classes is denoted by the same symbol ” ·”. If
necessary, we indicate with a subscript on which space the intersection product is to be evaluated.

The intersection product yielding a top-form is interpreted in the sense of integrating the latter
over the full space to give a number. This is sometimes also written in form of an integral, and by
abuse of notation with ” · ” replaced by ”∧ ”. E.g. we sometimes write

[S0] · [S0] ·π∗(wb
2n−2)≡

∫
Ŷn+1

[S0]∧ [S0]∧π
∗(wb

2n−2) =−
∫

Bn

c1(Bn)∧wb
2n−2 ≡−c1(Bn) ·Bn wb

2n−2 .
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