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1. Introduction

Over the past two decades, F-theory [1, 2, 3] has established itself as a powerful framework
to study non-perturbative string compactifications. A major part of its success is footed on the
mathematical formulation of F-theory in terms of elliptic fibrations. Utilizing tools from alge-
braic geometry, we have since learned about many intriguing connections between physics and
mathematics. A particularly active topic of research has been the understanding and systematic
construction of abelian gauge symmetries in F-theory. The original motivation arose from phe-
nomenological considerations, where abelian symmetries were needed as selection rules in GUT
model building [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. In the absence of any direct detection
of supersymmetry, it has further become more attractive to engineer the Standard Model gauge
group directly, which of course relies on a realization of the hypercharge U(1). In addition, abelian
symmetries provide novel links between physics and aspects of arithmetic geometry.

Unlike non-abelian symmetries, abelian ones are associated to inherently global data of the
geometry. In the case of continuous abelian symmetries, i.e., U(1)s, this geometric origin has
been known since the early days of F-theory [3]. However, the first concrete global model with
abelian symmetry, the so-called U(1)-restricted Tate model, was constructed much later [10]. This
model explicitly realizes an elliptic fibration p : Y ! B with a so-called rational section, which is
essentially a copy of the base B inside the total space Y of the fibration. Rational sections of elliptic
fibrations form an abelian group—the famous Mordell–Weil group—which has been and still is the
focus of many mathematicians. It was not surprising that F-theory benefited immensely from their
efforts. Indeed, the introduction of the so-called Shioda-map to the F-theory community in [17, 18]
sparked the explicit construction of many abelian F-theory models [19, 20, 21, 22, 23, 24, 25, 16,
26, 27, 28, 29, 30]. The more formal approach to U(1)s via the Mordell–Weil group not only
led to new insights about physical phenomena such as gauge symmetry breaking/enhancement or
the global structure of the gauge group. It also significantly improved the capabilities of F-theory
model building (in addition to the previous references, see also [31, 32, 33]), which most recently
culminated in globally consistent realizations of the chiral Standard Model spectrum [34, 35, 36].

The study of abelian symmetries also led to a drastic paradigm shift in the geometric descrip-
tion of F-theory. Namely, it turned out that a consistent compactification space Y need not to be
elliptically fibered (i.e., having at least one rational section), but could more generally be a torus-,
or genus-one fibration with a so-called multi-section [37]. Physically, this reflects the presence of
a gauged discrete abelian, i.e., Zn symmetry, which can be viewed as the result of Higgsing a U(1)
with charge n singlets [38, 39, 40, 41, 28]. Through duality to M-theory, Zn symmetries are shown
to be related to the so-called Tate–Shafarevich group X [37, 42], which plays a role in arithmetic
geometry of elliptic fibrations. Though the full extend of the interplay between X and Zn is not
yet understood, the connection could possibly open up a physics-motivated method to construct
examples of X, which unlike the Mordell–Weil group is still quite mysterious in the mathematical
literature.

Given the rich mathematical structures related to abelian symmetries in F-theory, these notes
will provide a more formal approach to the topic. After a brief introduction (section 2) to F-theory,
we will introduce in section 3 the Mordell–Weil group, the Shioda-map, and their connection to
U(1) symmetries in F-theory. There, we will also explain how these geometric objects encode the
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global gauge group structure of F-theory. In section 4, we then turn to discrete abelian symme-
tries and their dual descriptions in terms of multi-sections and torsional cohomology. Finally, we
reconnect these formal aspects to the original phenomenological motivations by presenting in sec-
tion 5 three F-theory constructions that realize the gauge symmetry and the chiral spectrum of the
Standard Model. With the clear emphasis on abelian symmetries, many other detailed aspects of
F-theory compactifications will be omitted or only highlighted briefly in section 6. For a more com-
prehensive review of F-theory, we refer to another set of TASI-lectures [43]. While these notes also
include a detailed introduction to abelian symmetries, our presentation offers some complementary
perspectives and puts the focus on some different aspects.

2. Basics of F-theory Compactifications

We will start with a brief recollection of F-theory compactification on elliptic fibrations, in
order to make these notes self-contained. For more details, we again refer to [43], and also to other
reviews [44, 11].

To set the stage, we should first explain the central geometric object of F-theory, namely an
an elliptically fibered Calabi–Yau manifold. Such a space Yn ⌘ Y is Kähler manifold of complex
dimension n with trivial first Chern class, together with a surjective holomorphic map p : Yn !Bn�1

onto a Kähler manifold Bn�1 ⌘ B of complex dimension n�1. The preimage p�1(p) of a generic
point p 2 Bn�1 is an elliptic curve with a marked point O, that is, a complex manifold of dimension
1 which is isomorphic to a torus T 2 with a distinguished origin. As one varies the point p along
the base, the marked point O varies holomorphically through Yn, which defines the so-called zero
section s0 : Bn�1 ! Yn of the elliptic fibration. Being a holomorphic map from the base B into the
total space Y , its image defines a copy of the base, sitting as a divisor (a complex codimension one
variety) of Y .

Any elliptic fibration can be described by a so-called Weierstrass model. This description
embeds the fiber as a curve inside a weighted projective surface P231 with projective coordinates
[x : y : z]⇠= [l 2x : l 3y : l z], cut out by the Weierstrass equation

y2 = x3 + f x z4 +gz6 . (2.1)

By promoting f ,g to functions over a base B, (2.1) then describes how the fiber varies over B, i.e.,
models the fibration Y . The zero section s0 is described by the intersection with z = 0, marking the
point O = [1 : 1 : 0] on each fiber. One consistency condition of F-theory is that the elliptic fibration
Y is a Calabi–Yau space. This is guaranteed, if the functions f and g are holomorphic sections of
the line bundles O(K�4

B ) and O(K�6
B ), respectively, where KB is the canonical class of the base B.

Physically, the complex structure t of every fiber p�1(p) specifies the value of the type IIB
axio-dilaton t =C0 +

i
gs

at p. At codimension one subspace of the base, defined by the vanishing
of the discriminant

D := 4 f 3 +27g2 , (2.2)

the elliptic fiber degenerates, signaling the presence of spacetime filling 7-branes which backre-
act onto t . The resulting singularities encode the gauge dynamics of the 7-branes’ world volume
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theory. An enhancement of the singularity in codimension 2 signals the presence of matter states,
while codimension 3 enhancements correspond to Yukawa couplings that are realized perturba-
tively in the effective field theory. This set-up is summarized graphically in figure 1. Note that in
the type IIB picture, the torus fiber is merely a bookkeeping device for the axio-dilaton. However,
through duality to M-theory, the torus actually becomes part of the physical compactification space.

 

t
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Figure 1: Elliptic fibration over a base B. While the fiber over the generic point (black dot) is smooth, it
degenerates over codimension one (blue dot) loci, which corresponds to locations of 7-branes with a gauge
symmetry. Intersections of 7-branes (green dot) form matter curves, where the fiber singularity enhances,
indicating charged matter. Over codimension three points (red star), where matter curves intersect, further
singularity enhancement signals Yukawa couplings.

Concretely, the duality relates F-theory theory in d = 12�2n dimension via a circle reduction
to M-theory in d �1 [1, 45]:

F-theory on Yn ⇥S1 ⇠= M-theory on Yn . (2.3)

A large part of the geometry/physics dictionary of F-theory can be best understood through this
duality. However, the interesting F-theory physics is encoded in the singularities of Yn, which does
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not allow for a direct analysis in M-theory. Instead, one first has to blow up the singularities of Yn

to obtain a smooth space on which we can dimensionally reduce M-theory. The blow up procedure
introduces finite sized P1s at the singularities in the fiber over the discriminant locus {D}. Over
an irreducible component S of {D}, the intersection pattern of these resolution P1s form the affine
Dynkin diagram of an Lie algebra gS, see figure 2.

1

1 1 1 1

(a) su(n�1) fiber

1 111

(b) sp(n) fiber

1

1

2 2

1

1

(c) so(2n) fiber

1

1

2 2 1

(d) so(2n�1) fiber

1 2 3 2 1

2

1

(e) e6 fiber

2 3 4 3 2

2

1 1

(f) e7 fiber

4 5 6 4 2

3

321

(g) e8 fiber

2 2 131

(h) f4 fiber

2 11

(i) g2 fiber

Figure 2: Blow-up resolution of singular fibers take the form of the affine Dynkin diagrams of simple
Lie algebras. Geometrically, each node represents a P1 component, with the multiplicity indicated by the
number. Each line is a intersection point between the attached P1s; multiple lines correspond to higher
intersection numbers. The node in red marks the so-called affine node and is intersected by the zero section.
This component of the fiber a pinched torus in the singular limit. Note that for the diagrams (a) – (d), the
number n corresponds to the number of non-affine nodes. This is also the rank of the gauge group.

Wrapping M2-branes on these P1s give rise to the W-bosons of the gauge symmetry, which
after circle reduction are accompanied by a tower of massive Kaluza–Klein (KK) states. These
correspond to M2-branes which wrap, in addition to the P1s, the full torus fiber multiple times.
In codimension two, further singularities require small resolutions introducing additional P1s, on
which wrapped M2-branes give rise to matter states in representations R. In the smooth phase of
the geometry, these states as well as the W-bosons are massive.

Only in the singular limit, where the P1s all shrink to zero size, all W-bosons and matter states
become massless. While the fibral P1-curves introduced by the resolution account for (charged)
W-bosons and matter states, the Cartan u(1) gauge fields of gS have a different origin. By sweeping
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out each resolution P1 over the discriminant component S, we obtain rank(gS) linearly independent
divisors (complex codimension one subvarities) E(S)

i of Yn. Poincaré-duality implies that these
divisors are in one-to-one correspondence to harmonic (1,1)-forms w(S)

i . Dimensionally reducing
the M-theory 3-form, C3 = ÂS,i w(S)

i ^A(S)
i + ..., along these harmonic forms give rise to vector

fields A(S)
i that uplift in the M-/F-duality to the Cartan gauge fields of gS in the effective field

theory of the F-theory compactification.
The geometry matches the representation theory in the following way. For any holomorphic

curve G, M2-branes wrapping these give rise to (in general massive) particle states carrying charges
ci under the Cartan u(1)s given by

ci = G ·E(S)
i . (2.4)

If G is one of the fibral P1s in codimension one, then ci form the weight vectors of the simple
roots of g, i.e., the “charges vector” of W-bosons under the Cartan u(1)s. Fibral P1s localized in
codimension two can have intersection numbers with E(S)

i which form weight vectors w of other
representations R.

3. U(1) Symmetries in F-theory

As we have just seen, vector fields—the physical degrees of freedom of a gauge field—arise
from dimensional reducing the M-theory C3-form along harmonic (1,1)-forms w dual to divisors
D. However, not all vector fields obtained this way remain massless when uplifting from M- to
F-theory. In fact, the masslessness condition require w to have “one leg along the base and one leg
along the fiber” [10] of Yn, which eliminates divisors D = p�1(DB) pulled back from the base Bn�1

as sources of u(1) symmetries. Since the vectors associated with exceptional divisors are actually
part of the full non-abelian gauge fields, the degrees of freedom of a genuine u(1) symmetry has to
come from somewhere else.

Indeed, there is a particular set of divisors that play a prominent role in the study of elliptic
fibrations, namely so-called sections. A section is a rational map s : Bn�1 ! Yn from the base into
the total space of the fibration, which marks one point in each fiber: p �s = idB. This defines a copy
of the base Bn�1 inside of Yn, and hence a divisor. In fact, the Shioda–Tate–Wazir theorem [46]
states that in an elliptic fibration, up to linear equivalence the only divisors other than pull-backs
and exceptionals are sections. Explicitly, the rank of the Néron–Severi group NS(Yn) — the group
of divisors modulo linear equivalence — is given by

rk(NS(Y )) = rk(NS(B))| {z }
pull-back

+Â
S

rank(gS)

| {z }
exceptional

+1+ rk(MW(Y ))| {z }
sections

, (3.1)

where we have used F-theory language to count the number of independent exceptional divisors by
the rank of the non-abelian gauge algebra. Note that the notation already indicates that the sections
form an abelian group “MW” which has finite rank. The structure of this so-called Mordell–Weil
group plays a central role in the discussion of u(1) symmetries in F-theory.
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3.1 The Mordell–Weil group of rational sections

The most intuitive way to see that sections form an abelian group is to map the elliptic fiber
ft to a torus T 2

t
⇠= C/Lt , where Lt is a two (real) dimensional lattice.1 Under this map, sections

map fiberwise to points on the fundamental domain of the torus T 2
t , which is just a patch of C. For

points in C, there is a natural abelian group law given by simple addition. By mapping the result of
the addition back to the elliptic fiber, one obtains another section.

In this picture, we have implicitly agreed on a common zero element on each fiber ft , which
maps onto the origin of the quotient C/Lt for any t 2 B.2 This common zero element is itself a
section, usually referred to as the zero section. One is in principle free to choose the zero sec-
tion, which does not change the arithmetic structure of the Mordell–Weil group. However, as we
will discuss later, there is non-trivial physical information associated with this freedom to choose
the zero section. In any case, with the choice of a zero section, one can find the corresponding
Weierstrass model (2.1), with the chosen zero section mapped to s0 : [x : y : z] = [1 : 1 : 0].

In the Weierstrass form, there is another geometric way of defining the group law of sections.
To do so, we again look at each fiber individually. In the z = 1 patch of P231, the point marked
by the zero section is the point O at infinity. The group law � is defined by declaring that three
points A,B,C 2 E, which also lie on a straight line in the x-y-plane, satisfy A�B�C = O. To add
up two points, one has to take into account that a vertical line will meet E at infinity, i.e., O. This
geometric realization of the group law is depicted in figure 3. It is straightforward to check that
� defined this way satisfies all properties (associativity, commutativity, unique inverse element)
necessary for an abelian group.

The above fiberwise construction can be extended across the whole base B of the elliptic fibra-
tion Y . However, not every point on a fiber ft can be the image s(t) of a section s : B !Y . Because
s has to be a rational map, the Weierstrass coordinates [x : y : z] of s(t) must be meromorphic func-
tions on B. The arithmetic description of elliptic fibrations explains the attribute “rational” more
clearly. Namely, an elliptic fibration over B can be also viewed as an elliptic curve over the function
field K(B) of the base. Elements q 2 K(B) are called rational functions, because on any open patch
of B they can be written as quotients q = p1

p2
of global sections of some line bundles; in a local chart,

the pis can be written as polynomials in the local coordinates. A section of the elliptic fibration is
then a rational solution of the Weierstrass equation (2.1), meaning there are xQ,yQ,zQ 2 K(B) such
that y2

Q = x3
Q + f xQ z4

Q +gz6
Q.

The abelian group constructed this way is called the Mordell–Weil group MW(Y ) of the elliptic
fibration Y . By the famous Mordell–Weil theorem, this group is finitely generated:

MW(Y ) = Z�r �Zk1 ...�Zkt . (3.2)

The rank of the Mordell–Weil group is the number r of independent free generators. By the Shioda–
Tate–Wazir theorem (3.1) these are the only independent divisors in addition to the exceptional and
pull-back divisors. They are to be distinguished from torsional generators tki , for which there is a
(minimal) positive integer ki such that s0 = tki � ...� tki (ki times), where s0 is the zero section.

1These and other well-known properties of elliptic curves and fibrations can be found in standard text books, e.g.,
[47, 48].

2More precisely, for any t up to codimension two loci of B.
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A

B

C

�C

C� (�C)�O = O

A�B� (�C) = O

Figure 3: Geometric construction of the Mordell–Weil group law. Each dashed line marks three points on
the elliptic curve (solid curve) that add up to zero under the group law. The rational points A,B,C satisfy
A�B =C.

The divisor classes of these sections are linearly dependent with other divisors, and we will come
back to the physical implication of this fact in a moment. Note that in (3.1), the contribution of
sections to the Néron–Severi rank was 1+ r. This is due to the nature of the zero section, which is
an independent section, but—as it is the neutral group element—does not contribute to the rank of
the Mordell–Weil group.

3.1.1 Example: The U(1)-restricted Tate model

Before we move on, let us look at a simple example from the F-theory literature of an elliptic
fibration with non-trivial Mordell–Weil group. This so-called U(1)-restricted Tate model was first
introduced in [10] and given by the equation

y2 +a1 xyz+a3 yz3 = x3 +a2 x2 z2 +a4 xz4 , (3.3)

where [x : y : z] are homogenous coordinates of P231, and ai are sections of the line bundles K⌦(�i)
B .

In addition to the zero section [x : y : z] = [1 : 1 : 0], there is now also an additional rational section
at [x : y : z] = [0 : 0 : 1]. Note that the equation (3.3) is not in Weierstrass form! For that, one has
to perform a birational transformation, which also shifts the coordinates of the fiber ambient space.
The resulting Weierstrass functions are

f =
a1 a3

2
+a4 �

1
48

(a2
1 +4a2)

2 ,

g =
1

864
�
(a2

1 +4a2)
3 +216a2

3 �36(a2
1 +4a2)(a1 a3 +2a4)

�
.

(3.4)

The corresponding Weierstrass equation (2.1) then has the rational solution

[xQ : yQ : zQ] =


a2

1 +4a2

12
:

a3

2
: 1
�

. (3.5)

8



P
o
S
(
T
A
S
I
2
0
1
7
)
0
2
0

Abelian and Discrete Symmetries in F-theory Mirjam Cvetič

For generic choices of coefficients ai, this rational section generates the Mordell–Weil group
Z. However, we can tune the model such that the sections becomes 2-torsional, i.e., the Mordell–
Weil group is Z2. This is achieved by setting a3 ⌘ 0 globally. How do we see that this turns the
section into an element of order two? To answer that, first observe that with this tuning, the y-
coordinate of the section (3.5) becomes 0 everywhere. This means that in every fiber (up to higher
codimension), the rational point has a vertical tangent in the x-y-plane, because the (smooth) cubic
y2 = x3 + f x+ g has infinite slope at y = 0.3 However, a vertical tangent at the point Q precisely
means Q�Q�O = O , Q�Q = O under the group law, cf. figure 4, implying that the section
an element of order two in the Mordell–Weil group. Likewise, one could also imagine tuning
the rational section to sit at a point of inflection on the generic fiber, which under the group law
constitutes an element of order three. Thus, the Mordell–Weil group in this case would be Z3.

Q
�R

RQ3

�Q3

Q2

Q�Q = R

Q3 �Q3 =�Q3

Q2 �Q2 = O

Figure 4: A 2-torsional point Q2 on an elliptic curve has to have a vertical tangent. A 3-torsional point Q3
is a point of inflection.

In physical terms, this kind of complex structure deformation correspond to a gauge enhance-
ment (sometimes also called unHiggsing) of the u(1) into a non-abelian algebra. To understand
this statement, we first have to discuss how exactly the information contained by the Mordell–Weil
group is mapped into physical data about gauge symmetries.

3.2 The Shioda map

Recall that by the Shioda–Tate–Wazir theorem (3.1), the number of independent divisors that
do not arise from exceptional or pull-back divisors is 1+ rk(MW). The divisor class Z of the zero
section is dual to the Kaluza–Klein u(1) that arises in the circle compactification of the F-/M-
theory duality. Heuristically, one can then identify a (free) MW-generator s as the dual divisors

3Taking the total derivative in the x-y-plane for the Weierstrass equation yields 2ydy = (3x2 + f )dx. Because the
elliptic curve is smooth by assumption (it is the generic fiber), y and 3x2 + f cannot vanish simultaneously. This means
however, that dy/dx = (3x2 + f )/2y diverges at y = 0.

9



P
o
S
(
T
A
S
I
2
0
1
7
)
0
2
0

Abelian and Discrete Symmetries in F-theory Mirjam Cvetič

of u(1) gauge symmetries in F-theory. However, to properly specify the massless vector field
which furnishes these u(1)s, the dual divisor class j(s) has to satisfy the following consistency
conditions:

(1) j(s) · f= 0 ,

(2) j(s) ·CB = 0 ,

(3) j(s) ·P1
i = 0 .

(3.6)

The first condition, imposing vanishing intersection number of j(s) with the generic fiber f, en-
sures that all Kaluza–Klein tower states in M-theory that originate from the same states in F-theory
have the same u(1) charge under j(s). The second condition, imposing vanishing intersection
number with any curve CB in the base, ensures that there are no axionic gaugings of the u(1) which
would lead to a mass term. The first two conditions are the mathematical description of j(s) hav-
ing “one leg along the fiber and one along the base” [10]. Finally, the third condition, imposing
vanishing intersection with the fibers of exceptional divisors, ensures that no W-boson of the non-
abelian gauge symmetries is charged under the u(1). These conditions are a consequence of the
general formula for u(1) charges of matter states coming from M2-branes wrapping a holomorphic
curve G, which similar to the case of Cartan u(1)s (2.4) now reads

q = G ·j(s) . (3.7)

Given a section s , these three conditions determine j(s) up to an overall normalization. Re-
markably, the same conditions have been considered in the mathematics literature [49, 50], which
leads to the so-called Shioda map. This map associates a unique divisor class j(s) to a section
s compatible with the Mordell–Weil group law (i.e., it is a group homomorphism MW(Y )

j�!
NS(Y )):

j(s1 �s2) = j(s1)+j(s2) . (3.8)

One can fix the normalization by requiring j(s) = S+ ..., where S = [s ] is the divisor class of the
section. Then the map takes the form

j(s) = S�Z �p((S�Z) ·Z)+Â
k

lk Ek . (3.9)

Here, the term p((S�Z) ·Z) is the projection of the 4-cycle class [(S�Z)\Z] to a divisor on the
base B, and guarantees condition (2) in (3.6). Its explicit form depends on the geometry, but for the
purpose of these notes, it suffices to say that this term is a divisor pulled-back from the base, which
does not intersect any fibral curves, hence does not contribute to the charges of states.4

In the following, we will focus on the term lk Ek, which has some interesting physical im-
plications. Recall that the exceptional divisors Ek are P1 fibrations over a codimension one locus
W ⇢ B. Wrapping the fiber component P1

k of Ek with M2-branes gives rise to the gauge bosons
of the non-abelian gauge algebra g over W . As they carry weights of the simple roots �ak of g,

4However, the volume of the divisor in the base encodes information about the gauge coupling of the u(1), and is
important in the recent geometric proof that u(1) symmetries cannot be strongly coupled in 6D [51].
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their intersection matrix Ei ·P1
j = �Ci j is the negative Cartan matrix of g.5 In order to ensure that

the gauge bosons of g are not charged under the U(1), i.e., to satisfy condition (3) in (3.6), the
coefficients lk can be explicitly determined to be

lk = Â
l
((S�Z) ·Pl) (C�1)lk . (3.10)

These coefficients depend on the different intersection structure between the sections S and Z with
the fiber components of the exceptional divisors. In general, they will be fractional numbers, since
it involves the inverse Cartan matrix C�1. As a consequence, lk 2 1

N Z for all k, where N depends
on g and the “fiber split type” [23] given by the numbers (S�Z) ·P1

l .6 But importantly, it is always
finite and can be chosen to be minimal, i.e., the numerators of all lk have greatest common divisor
1.

3.2.1 The Shioda map as a lattice embedding

In this short section, we briefly review the original mathematical work [49, 50] that motivated
the Shioda map. As the details are not immediately relevant for the rest of the notes, it can be safely
skipped.

The original motivation of Shioda to introduce the map (3.9) was to identify the Mordell–Weil
group as a “sublattice” of the Néron–Severi group. More precisely, in the arithmetic description
of elliptic curves, there is a so-called height pairing (see, e.g., [47]) defined on the Mordell–Weil
group,

h·, ·i : MW⇥MW �! R , (3.11)

which induces a lattice structure on MW/Tors(MW), where Tors(MW) denotes the torsion part of
Mordell–Weil.

On the other hand, for an elliptic surface, there is also a natural “algebraic” pairing of sections
given by the intersection product, which defines the lattice structure on the Néron–Severi group.
Shioda showed that the two different pairings can be identified, by embedding the Mordell–Weil
group into the Néron–Severi lattice. However, the embedding cannot be injective, because the
Mordell–Weil group has torsion whereas the Néron–Severi group does not. This is remedied by
considering the quotient NS/T , where T is generated by the zero section Z, all pull-back divisors
DB and all exceptional divisors Ei. Note that these are precisely the divisors dual to the curves
which must have intersection number 0 with the Shioda map (3.6)!

With this sublattice T , Shioda proved the isomorphism

MW(Y )⇠= NS(Y )/T , (3.12)

For the proof, he introduced the map j to “split” this isomorphism:

NS(Y ) = Im(j)�? T , (3.13)

5If g=
L

l gl is a sum of simple algebras, then the Cartan matrix is the block-diagonal matrix formed by the Cartan
matrices of gl .

6It is called “fiber split”, because these numbers encodes how the section s intersects the codimension one fiber
P1s differently than the zero section.
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where �? indicates that the two summands are orthogonal with respect to the intersection pair-
ing. Because j(Tors(MW)) = 0, it identifies, as promised, a sublattice of NS(Y ) with Im(j) =
MW/Tors(MW).

Crucially, the map (3.9)—with the normalization set to 1—satisfies the identity

hs1,s2i=�j(s1) ·j(s2) . (3.14)

In other words, the arithmetic pairing h·, ·i defines the same lattice on the Mordell–Weil group as
the algebraic (intersection) pairing on Im(j). Clearly, this identification would be spoiled by a
rescaling of the Shioda map (3.9).

The same identification can be generalized to higher dimensions. However, the height pairing
must now be modified to map onto the divisor group of the base B of the fibration [46]. Likewise,
the intersection product j(s1) ·j(s2) is now a 4-cycle, which can also be pushed-down onto the
base to give rise to a divisor. Then, one can again identify the two resulting pairings via the Shioda
map with normalization 1.

As we will see now, this lattice structure of the Mordell–Weil group manifest itself in the
physics of F-theory compactifications in terms of the global gauge group structure.

3.3 The global gauge group of F-theory

So far, we have only mentioned the gauge algebra of the F-theory compactification. The reason
is that in general, the gauge group need not to be the naive simply connected Lie group associated
with the algebra. Rather, it takes the form

U(1)r ⇥G
’r

i=1 Zmi ⇥’t
j=1 Zk j

. (3.15)

This notation means that each discrete Zn factor is a subgroup of U(1)r ⇥G which acts trivially
on any matter representation. In F-theory, the information about the global structure of the gauge
group is encoded in the Shioda-map (3.9), or more precisely, in the coefficients li (3.10) [52,
53]. In anticipation of the result, we have already separated in (3.15) the contributions Zmi of
the free Mordell–Weil generators from those of torsional generators Zk j . Because each factor is
independent of the others, we will restrict our discussion below to cases with a single generating
section, and refer to [53] for examples with multiple Mordell–Weil generators.

First, recall that matter states in F-theory arise from M2-branes wrapping curve components
G of reducible fibers in codimension two. Since these curves are integral in homology (they are ir-
reducible holomorphic subvarieties of the total space), their intersection numbers with any integral
divisor, in particular the exceptional “Cartan” divisors and the sections, must be integral as well.
This implies that the intersection number of G with the Shioda divisor (3.9) must satisfy

j(s) ·G�Â
k

lk Ek ·G = (S�Z) ·G 2 Z . (3.16)

Recall that G corresponds to a weight w of a representation R of the non-abelian gauge algebra
g, which in the Dynkin basis is a vector with entries wk = Ek ·G, k = 1, ...rank(g). Therefore, the
condition (3.16) relates the non-abelian representation of G with the intersection number j(s) ·G.

12
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To see the physical relevance of this condition, we differentiate between the cases where the
section s is generator of the torsional or the free part of the Mordell–Weil group. In case s is
n-torsional, the homomorphism property (3.8) implies

nj(s) = j(s � ...�s| {z }
⇥n

) = j(0) = 0 . (3.17)

But because the divisor group is torsion free, we must have j(s) = 0. In this case, the integrality
condition (3.16) simply becomes:

s torsional : Â
k

lk wk 2 Z . (3.18)

If s is a generator of the free part of Mordell–Weil, then the divisor j(s) is dual to the massless
u(1) gauge field, and j(s) ·G is the charge of the state on G. Thus, the condition now becomes

s free : qs �Â
k

lk wk 2 Z . (3.19)

The significance of these two conditions, which have also been noted in [54] in a different context,
are hidden in the coefficients lk. As we will see now, these coefficients are related to the center
of the non-abelian gauge symmetry. More precisely, they define an element in the center Z (G),
where G is the simply connected Lie group with algebra g.

3.3.1 Center of the non-abelian gauge symmetry

The crucial property of the lk for constructing the center is the non-integral part of the sum
Âk lk wk, which is the same for any state in the same representation R of g. In other words, we can
define a fractional number between 0 and 1 via

L(R) = Â
k

lk wk mod Z , w 2 R , (3.20)

which is independent of the choice w and only depends on the representation R of g. To see this,
we use the basic fact that two weights w,v 2 R differ by an integer linear combination µi ai of the
simple roots ai of g. Geometrically, this means that the two fibral curves Gw, Gv differ by a linear
combination of the codimension one fibral P1s:

v = w+Â
i

µi ai , Gv = Gw +Â
i

µi P1
i , µi 2 Z . (3.21)

Plugging in the explicit formula (3.10) for lk as well as the relationship Ek ·Pi =�Cki, we obtain

Â
k

lk vk = Â
k

 

Â
l
((S�Z) ·Pl| {z }

=:tl2Z

)(C�1)lk

!
Ek ·Gv

= Â
k

Â
l

tl (C�1)lk

 
Ek ·Gw �Â

i
µiCki

!

= Â
k

lk wk +Â
l

tl µl

| {z }
2Z

,

(3.22)
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which shows that (3.20) is well-defined.
One essential feature of the fractional number L(R) is that N⇥L(R)2Z for any representation

R. The integer N arises from taking the inverse Cartan matrix for defining lk, and depends on the
fiber split type. For example, if g= su(m), then N is divisor of m; for g= e6/7/8, N is 1 or 3/2/1,
respectively

Having established that, we can now construct an element of the center of G, the unique simply
connected Lie group with algebra g. To do so, we define its action in each representation R of g via

w 7!C w := [exp(2p iL(R))⇥1R]w , (3.23)

where w is any weight of R, i.e., any basis vector of the representation space of R. It can be
shown that this action really is the exponentiation of a linear action of a Lie algebra element in
the representation R. Furthermore, it is evident that C, being proportional to the unit element,
commutes with all elements of G, thus it lies in the center Z (G). Finally, because N clears the
denominator of L(R) for all representations, we have CN = 1. Since by assumption, N is chosen to
be the smallest integer such that N ⇥L 2 Z, it means that C generates an order N subgroup, i.e., a
ZN ⇢ Z (G).

3.3.2 Action of the center on F-theory representations

So far, we have used the explicit form (3.10) of the coefficients lk to construct the a ZN sub-
group of the center Z (G) associated with a Mordell–Weil generator (free or torsional) s . However,
the coefficients lk also satisfy the integrality condition (3.16) [52].

For a torsional section s , the resulting constraint (3.18) implies immediately the integrality of
L(R) (3.20). As a result, we see that the action (3.23) of the center generated by C must be trivial
on any representation R that is realized in the F-theory geometry! This means that the gauge group
is not G, but G/hCi ⇠= G/ZN .

In case the section s is a free Mordell–Weil generator, we have to slightly modify the central
element C (3.23). First, because s gives rise to a u(1), we need to consider representations of
the group U(1)⇥G. These are specified, in addition to the non-abelian representation Rg, by
the charge q. However, because U(1) only has one-dimensional (irreducible) representations, the
representation space of (q,Rg)—being the tensor product of the two representations q and Rg—is
isomorphic to the representation space of Rg. The action of an element (exp(2p ia),g)2U(1)⇥G
is then given by

(q,Rg)⇠= Rg 3 w 7!
⇥
e2p iqa ⌦r(g)

⇤
w = e2p iqa ⇥ (r(g)w) , (3.24)

where r(g) is the Rg-representation of g.
With this short interlude, we now define a central element C̃ of U(1)⇥G via its action on

representation spaces (q,Rg):

w 7! C̃ w :=
⇥
e2p iq ⌦ exp(�2p iL(Rg))⇥1Rg

⇤
w

= exp(2p i [q�L(Rg)]) w .
(3.25)

Again, C̃ is obviously in the center, because it commutes with any element of U(1)⇥G. Further-
more, we recall that the U(1) charge q is also at most N-fractional, because the only non-integer

14
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contributions it can receive come again from the coefficients lk in the Shioda map (3.9). This
means that C̃N = 1, and hence hCi ⇠= ZN ⇢ U(1)⇥G. Finally, we see the result of the integrality
condition (3.19), which implies q�L(Rg) 2 Z. Therefore, similar to the torsional case, we arrive
at the conclusion that C̃ must act trivially on all representations that are realized geometrically in
F-theory. In other words, the global structure of the gauge group is

U(1)⇥G
hC̃i

⇠=
U(1)⇥G

ZN
. (3.26)

It should be noted that recently a “magnetically” dual derivation of the gauge group structure
has been presented by identifying the so-called cocharacter lattice with a sublattice of the fourth
homology group. An explanation of this intricate result is beyond the scope of these lectures, and
we refer the interested reader to the original publication [55].

3.3.3 Example: Standard Model gauge group in F-theory

The above rather formal discussion has direct relevance for F-theory model building, because
it is believed that the Standard Model gauge group has a non-trivial global gauge group structure:

GSM =
SU(3)⇥SU(2)⇥U(1)

Z6
. (3.27)

It turns out that this structure is naturally realized in toric F-theory constructions of the Standard
Model [28, 34]. The simplest of these constructions is a given by a hypersurface, whose elliptic
fiber is embedded into a toric surface, which described by one of the 16 reflexive 2D polygons.
Explicitly, the hypersurface polynomial reads

p = s1e2
1e2

2e3e4
4u3 + s2e1e2

2e2
3e2

4u2v+ s3e2
2e3

3uv2 + s5e2
1e2e3

4u2w+ s6e1e2e3e4uvw+ s9e1vw2 ,

(3.28)

where the si are sections of various line bundles over the base. The toric divisors, i.e., the vanishing
loci of the coordinates (u,v,w) and ei, restrict to various exceptional divisors and rational sections,
which give rise to the Standard Model gauge symmetries when compactifying F-theory on Y =

{p = 0}. Specifically, the Cartan divisor of the su(2) is (the restriction of) the divisor Esu(2)
1 := [e1],

whereas the su(3) Cartans are the divisors Esu(3)
1 := [e2] and Esu(3)

2 := [u]. Meanwhile, it is easy to
check that the toric divisors [v] and [e4] restrict to rational sections on the hypersurface,

s0 = {p = 0}\{v = 0} : [u : v : w : e1 : e2 : e3 : e4] = [1 : 0 : s1 : 1 : 1 : �s5 : 1] ,

s1 = {p = 0}\{e4 = 0} : [u : v : w : e1 : e2 : e3 : e4] = [s9 : 1 : 1 : �s3 : 1 : 1 : 0] ,
(3.29)

of which we chose to identify the zero section with s0. Note that we have used some of the
projective scalings to set certain coordinates to 1.

One immediately sees that the zero section s0 does not intersect either of the Cartan divisors,
since their coordinates are set to 1 in (3.29). On the other hand, the section s1 intersects the P1-
fibers of the su(3) divisor [u] and the su(2) divisor [e1]. This means that the coefficients lk (3.10)
in the Shioda map of s1 give rise to the following divisor dual to the u(1):

j(s1) = [s1]� [s0]+
1
2
[e1]+

1
3
([e2]+2[u])+DB , (3.30)
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where the pull-back part DB is the projection term in (3.9) that is irrelevant for our discussion. Note
that the smallest common denominator of the Shioda map is 6, hence the corresponding central
element is of order 6. In fact, this is the full center of the non-abelian part of the gauge group:
Z (SU(3)⇥SU(2)) =Z (SU(3))⇥Z (SU(2)) = Z3⇥Z2 = Z6. Following the above discussions,
this discrete group is identified with a subgroup of the U(1), such that the global gauge group of the
F-theory compactification on the hypersurface (3.28) is precisely the Standard Model gauge group

SU(3)⇥SU(2)⇥U(1)
Z6

. (3.31)

3.3.4 The global gauge group as charge constraint and swampland criterion

In the derivation of the global gauge group of F-theory, the key feature is the integrality condi-
tion (3.19), which on its own is a condition on the u(1) charges of non-abelian representations. In
fact, the global gauge group structure is nothing else than such a set of conditions. For example, the
Standard Model gauge group structure (3.27) simply means that states in the (3,1) representation
have U(1) charge 1

3 mod Z, while (1,2) states have charge 1
2 mod Z. Meanwhile, bifundamentals

have charge 1
6 mod Z, and SU(3)⇥SU(2) singlets have integral charges.

Field theoretically, statements about u(1) charges like these are of course only sensible if one
specifies the normalization of the u(1). From that point of view, the only relevant fact is that
u(1) charges are quantized, and the exact unit of charge quanta is unphysical. However, in F-
theory there is a natural charge quantization, which is inherited from the lattice structure of the
Mordell–Weil group, see the discussion of section 3.2.1. Because in F-theory, matter states arise
from holomorphic curves whose intersection numbers with the Shioda divisor gives the charge, the
charge quantization of F-theory is naturally given by the fact that also holomorphic curves form a
lattice.7 Note that in the normalization j(s) = 1⇥ [s ] + ... of the Shioda map (3.9), the charge
quantization is not necessarily in terms of integers. In fact, we have argued above that the fractional
charges of matter in non-trivial non-abelian representations have important physical consequences.
However, the analysis also shows that in this normalization, the u(1)s charges associated with a
free Mordell–Weil generator s of any matter representation (qs ,R) under u(1)⇥g satisfy (3.19):8

q(R) = L(R) mod Z . (3.32)

From this, one immediately arrives at the conclusion that for two matte representations (qs ,R1),
(q̃s ,R2) one has

R1 = R2 =) qs � q̃s 2 Z . (3.33)

We claim that this statement is non-trivial in the sense that not all consistent quantum field
theories satisfy it. Phrased differently, it is a criterion that can be used to distinguish low energy

7Concretely, the lattice is the second homology H2(Y,Z) with integer coefficients. A representative in there is an
integer linear combination of irreducible curves which can be wrapped by M2-branes (possibly multiple times). The
coefficients have to be integral because an M2-brane cannot wrap a fraction of an irreducible curve.

8The connection between the coefficients li of the Shioda map and the distribution of u(1) charges has been noticed
and classified for specific examples in [23, 27, 56, 54], although without relating it to the global gauge group structure
or exploring its consequences as a possible swampland criterion.
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limits of string theory from the “swampland” [57, 58], i.e., consistent QFTs without a consistent
UV completion including gravity. However, the statement can only be made with a reference to a
chosen normalization of the u(1), which for our argument is determined by the Shioda map (3.9).
Since the normalization is unphysical, a valid question is if there is any way to test this condition
from a purely field theoretic perspective. After all, as long as the charges are quantized, one can
always rescale the u(1) such that the charge differences between any matter representations are
integral. Therefore, we first some kind of “measure stick” to establish the geometrically preferred
normalization in terms of the Shioda map from just field theory data.

We proposed in [53] that non-abelian singlet states provide such measure sticks. The reason is
that, first of all, the charges of such states in F-theory are always integral in the geometrically pre-
ferred normalization, cf. (3.32). Furthermore, it was conjectured in [18] and subsequently observed
in all explicitly constructed models, that charges of massless singlets—again measured in with the
Shioda map (3.9)—span the full integer lattice Zr, where r is the rank of the Mordell–Weil group,
i.e., the number of independent u(1)s. Any change of the normalization (i.e., a non-unimodular
transformation on the r u(1)s) would not preserve this property. Therefore, one can determine
from a purely field theoretic perspective the correct charge normalization by inspecting the charge
lattice of spanned by the singlets.

Assuming the validity of the conjecture, we can demonstrate that the condition (3.33) is
stronger than the pure field theory consistency conditions of anomaly cancellation, which are par-
ticularly strong for 6D supergravity theories [59, 60]. However, we can come up with an anomaly
free 6D theory with no tensor multiplets, which nevertheless violates the charge condition (3.33):

gauge algebra : su(2)⇥u(1) ,

massless spectrum : (10⇥30) � (64⇥2 1
2
) � (8⇥21) � (24⇥11) � (79⇥10) .

(3.34)

If one rescaled the u(1) normalization by 2, then the charges of su(2) doublets would satisfy (3.33),
but this would violate the conjecture that the charges of singlets span Z.

3.4 Gauge enhancement and higher index representations

From the physics perspective, one can imagine unHiggsing, i.e., enhancing one or several
u(1) symmetries into a non-abelian gauge algebra. The geometric description of that phenomenon
corresponds to placing the rational sections on special positions on the generic fiber [18, 38, 52,
30, 61, 62].

We have already seen one such example in section 3.1.1 in form of the U(1)-restricted Tate
model:

f =
a1 a3

2
+a4 �

1
48

(a2
1 +4a2)

2 ,

g =
1

864
�
(a2

1 +4a2)
3 +216a2

3 �36(a2
1 +4a2)(a1 a3 +2a4)

�
.

(3.35)

The elliptic fibration has a section with coordinates (3.5) generating a rank 1 Mordell–Weil group.
This changes when we set a3 = 0 globally which, as argued in section 3.1.1, turns the section to be
2-torsional. As a consequence, the discriminant of the Weierstrass model (3.35) factorizes:

D = 4 f 3 +27g2 a3=0�! 1
16

a2
4

✓
4a4 �

✓
a2 +

a2
1

4

◆◆
. (3.36)
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This indicates the presence of an su(2) gauge algebra over {a4 = 0}, to which the u(1) has been
enhanced. Physically, one can also understand this as reversing a Higgs mechanism, in which the
non-abelian algebra is broken to its Cartan subalgebra by giving vev to a hypermultiplet in the
adjoint representation. Furthermore, we also know from the previous discussion that the Mordell–
Weil group being Z2 implies that the full non-abelian gauge group is SO(3) = SU(2)/Z2. This is
also reflected by looking at the codimension singular fibers of the tuned geometry, which does not
give rise to any fundamental representations of the su(2). This example of unHiggsing has already
been studied in [52]. More intricate examples of gauge enhancement by tuning sections to become
torsional have been analyzed in [62].

Another way of geometrically altering the Mordell–Weil group is to collide two independent
sections, i.e., to tune them such that they sit on top of each other. For the restricted Tate model
(3.35), such a deformation is not possible, because the only independent sections are the zero
section at [x : y : z] = [1 : 1 : 0] and the generating section (3.5), and the z-coordinate of the latter
cannot be tuned to zero. However, the so-called Morrison–Park model [18], which in some sense
is the prototype of F-theory models with u(1)s, can be geometrically unhiggsed this way. The
Weierstrass functions of this model are given by

f = c1 c3 �
1
3

c2
2 �b2 c0 ,

g =�c0 c2
3 +

1
3

c1 c2 c3 �
2

27
c3

2 +
2
3

b2 c0 c2 �
1
4

b2 c2
1 ,

(3.37)

with the generating rational section at

[x : y : z] =


c2
3 �

2
3

b2 c2 : �c3
3 +b2 c2 c3 �

1
2

b4 c1 : b
�

. (3.38)

One sees immediately that tuning the coefficient b to 0 identifies this section with the zero section.
Physically, this enhances the u(1) again to an su(2) algebra. Unlike the previous unHiggsing
example via Mordell–Weil torsion, this enhanced model has gauge group SU(2). Consistently, the
spectrum now also contains doublet states.

In this example, the u(1) model to begin with had singlets with charge 1 and 2. By enhancing
the abelian symmetry into an su(2), the charge 1 and 2 states become 2 resp. 3 representations. i.e.,
the u(1) charges are mapped directly onto the Cartan charges of the non-abelian representations.
Repeating the same tuning process for a u(1) model with charge 3 singlets, it was able to construct
an F-theory model with the three-index symmetric representation, i.e., the 4 of su(2) [61, 63].
Going beyond rank 1, one can also enhance a model with u(1)2 model and charge (2,2) singlets into
an SU(3) theory with the two-index symmetric representation 6 by colliding all three independent
sections [30]. However, these two examples are so far the only two explicit F-theory realizations of
higher index symmetric matter representations. Recently, a u(1) model with charge 4 singlets has
been constructed [64], but a similar attempt of gauge enhancement led to a larger gauge group with
higher charge adjoints instead of the 5 representation of su(2). It seems there is some arguments
in terms of the fiber structure of F-theory that forbids this and other higher index representations
in F-theory, at least in terms of Kodaira fibers [63]. On the other hand, given that F-theory is
dual to heterotic string theory, where it has been known for a long time how to engineer higher
representations on orbifolds, there must be some dual description also in terms of elliptic fibrations.
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Recently, it has been argued that such constructions, at least in 6D, are likely to always involve non-
minimal singularities [65, 66], and hence not excluded by the other arguments. However, it remains
an open question how to systematically construct F-theory models where one can explicitly show
the presence of higher index representations.

4. Discrete Abelian Symmetries in F-theory

At the end of the previous section, we have discussed gauge enhancing u(1) symmetries into
non-abelian ones, and presented the geometric description in terms of colliding multiple rational
sections. The resulting elliptic fibration has a smaller Mordell–Weil group (concretely, the rank is
lower), but has additional exceptional divisors in codimension one. The other direction, namely
Higgsing the u(1) to a discrete subgroup, is an equally interesting question. It turns out that to fully
understand the process in F-theory, one has to go beyond elliptically fibered geometries and allow
fibrations without rational sections.

4.1 Discrete symmetries in field theory

In order to know what physical features of discrete symmetries we need to find in a geometric
description, we shall first briefly review the field theoretic description of discrete abelian symme-
tries and their origin in terms of a broken u(1). More details of this discussion can found in any
standard textbook (e.g., [67]), and here we will focus only on the relevant parts.

Let us begin with a comples scalar field f with charge n 2 N under a u(1) gauge field A. The
kinetic term of this scalar field in the Lagrangian is

L � Dµf Dµf = (∂µf + inAµ f)(∂ µ f̄ � inAµ f̄) . (4.1)

By giving a vacuum expectation value (vev) v = hfi to f , i.e., f = 1p
2
(v+h)eic, the kinetic term

gives rise to the so-called Stückelberg Lagrangian:

(Df)2 hfi�! v2

2
(∂c+nA)2 + ... . (4.2)

The real part h of the perturbations of f around the vev would corresponds to the Higgs boson,
which is not part of the massless spectrum and will be hence ignored in the subsequent discussion.
The scalar c on the other hand is the massless Goldstone boson, and furthermore enjoys a shift sym-
metry c ⇠= c+2p , simply because it is a phase which is only defined up to a periodic identification.
Scalar fields with shift symmetry are usually called axions. In the case of the Stückelberg axion, its
shift symmetry is gauged by the u(1) symmetry. Namely, the Lagrangian (4.2) is invariant under

A ! A+∂a , c ! c�na . (4.3)

In representation theory, c furnishes a so-called affine, or non-linear representation of u(1).
Abstractly, whenever there are degrees of freedom transforming non-linearly under a symmetry
transformation, this symmetry is said to be spontaneously broken. In the case of the u(1) gauge
symmetry, a more physical way to see the breaking is to exploit the transformation (4.3) to com-
pletely gauge away the axion in (4.2) (a = c/n), yielding a mass term for the vector field with

19



P
o
S
(
T
A
S
I
2
0
1
7
)
0
2
0

Abelian and Discrete Symmetries in F-theory Mirjam Cvetič

mass m2 = n2v2/2. In the context of the Higgs mechanism, this effect is often referred to as the
Goldstones being “eaten” by the massive gauge bosons.

While the mass term makes the spontaneous symmetry breaking mechanism physically very
intuitive, the abstract classification via linearly vs. non-linearly realized transformations explains
very easily why there is still a discrete part of the u(1) symmetry left intact. Namely, whenever
N 3 n > 1, a subset of transformations (4.3) with a = 2p k

n , where k 2 Z, act trivially (and, hence,
linearly) on c because of the shift symmetry c ⇠= c+2p! The corresponding subgroup of the U(1)
is exp(ia), i.e., Zn. Other matter fields that were originally charged under the u(1) now transform
non-trivially under this discrete subgroup. One can assign a representation to them, which is just
the u(1) charge mod n. An important physical implication of such discrete symmetries is that they
can forbid Yukawa couplings in 4D. Thus, they provide a very attractive way to construct selection
rules without having to introduce exotic gauge bosons, since the gauge bosons responsible for this
symmetry are rendered massive.

4.2 Geometric description of discrete symmetries in M-theory

To describe non-abelian symmetries geometrically, we have to remind ourselves that the geo-
metric phase of F-theory is described via duality to M-theory. Thus, it seems to be natural to first
understand discrete symmetries in M-theory.

There, it is known [10, 68] that massive u(1) gauge fields A, correspond to expansions of
the M-theory three-form C3 along non-harmonic two-forms of the compactification space Y . Con-
cretely, we have:

dw2 = nh3 . (4.4)

To consistently incorporate this relation in the low energy physics, we must include h3 in the
Kaluza–Klein expansion,

C3 = A^w2 + ch3 + ... . (4.5)

Then, the dimensional reduction of the kinetic term dC3 ^⇤dC3 in 11D precisely yields the Stück-
elberg mass term (4.2). For n 6= 0,1, the non-harmonic forms (4.4) give rise to a non-trivial torsion
class in integer cohomology

h3 2 Tors
�
H3(Y,Z)

�
. (4.6)

The corresponding discrete symmetry uplifts directly to F-theory via the M-/F-theory duality [37,
38, 69].

One practical problem with torsional cohomology is that it is notoriously hard to detect in a
given geometry. However, there is another geometric consequence of discrete symmetries which
is more tractable. This arises from having massless matter states which are only charged under the
discrete symmetry, i.e., the massive u(1) field A. These arise in M-theory from M2-branes wrap-
ping collapsed 2-cycles G inside the Calabi–Yau Y , which cannot be blown-up while keeping the
manifold Y a Kähler space [37, 70]. Field theoretically, this means that one cannot give a mass to
these states in M-theory on Y by going onto the Coulomb branch without breaking supersymmetry.
Hence, if we restrict ourselves to supersymmetric compactifications, i.e., internal spaces Y which
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are Calabi–Yau manifolds, we necessarily have to have “terminal singularities” (such that cannot
be blown-up in a Kähler manifold) on Y . Terminal singularities can oftentimes be detected straight-
forwardly on a given manifold, and have been recently studied carefully on Calabi–Yau threefolds,
together with their enumeration in terms of 6D anomalies in F-theory [71]. There is however still a
drawback of using terminal singularities to detect Zn symmetries, since they only signal the pres-
ence of matter charged under a massive vector field, but neither its charge nor the remnant discrete
symmetry of the field theory can be determined.

It turns out that the most convenient description of an F-theory model with discrete symmetry
is a manifold Y that neither has torsion nor terminal singularities. In fact, it is not even elliptically
fibered. Rather, the manifold Y is a genus-one fibration with so-called multi-sections. We will
explain in the following how these spaces differ from elliptic fibrations, and how these differences
can circumvent terminal singularities, allowing an easy way to determine the matter charges under
the discrete abelian symmetry. The crucial insight here will be that discrete symmetries in F-theory
does not necessary imply discrete symmetries in the dual M-theory.

4.3 F-theory on genus-one fibrations

As has been extensively discussed in recent works [37, 38, 39, 41, 28, 40, 69, 42, 72, 73, 74],
F-theory can be defined on a Calabi–Yau space Y that is torus fibered over a Kähler base B, but
has no rational section, that is, it is not elliptically fibered. We will follow the nomenclature that
has been established in the literature and call these genus-one fibrations. In genus-one fibrations,
there always exists a minimal n 2 N such that there is a divisor s(n) of Y which is an n-fold cover
over B. Because such a divisor intersects the generic torus fiber n times, it is oftentimes called a
n- or multi-section. In this setting, a rational section would be a 1-section. The difference between
the two is that a section marks a single point on the generic fiber, hence can be thought as a map
from the base into the total space of the fibration. An n-section on the other hand associates a
collection {pl}ln of n points on the fiber over a single point. If one singles out one of these points
p1 and traces its movement along the fibers as one continuously moves the point in the base, then
one observes that for certain closed paths in the base, i.e., where one ends up in the same fiber,
the marked point becomes one of the other n points, say p2. For a rational section in an elliptic
fibration, this can never happen. For genus-one fibrations however, only a collection of n points can
be invariant under such monodromy actions. In figure 5, we have illustrated a bisection and put it
in contrast to an ordinary 1-section. As we will explain now, these geometries provide a different,
but physically equivalent description of discrete abelian symmetries in F-theory.

Like the case of elliptic fibrations, the geometry itself only has a direct interpretation in M-
theory. For our purposes, we need to identify the M-theory compactification as a circle reduction of
a theory, which by definition is the F-theory on Y. As a circle reduction, M-theory on Y necessarily
needs to have a massless u(1) which accounts for the Kaluza–Klein u(1). In this case, it is provided
by the divisor class of the multi-section s(n). However, as already mentioned before, the genus-one
fibration Y is in general smooth and has no torsional cohomology. This begs the question how
the discrete symmetries, which are clearly absent in the M-theory compactification on Y, manifest
themselves in F-theory on Y.

The subtleties lie in the process of circle compactification. Concretely, when compactifying a
field theory with a vector field A in F = M + 1 dimensions on an S1, one can turn on a flux along
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p
p p

B

Figure 5: A rational or 1-section (red) intersects each fiber of a genus-one fibration p : Y ! B exactly once.
A bi- or 2-section (blue) intersects each fiber in two points. Globally there is a monodromy exchanging these
two points.

the circle,

x =
Z

S1
A . (4.7)

If the vector field is associated with an unbroken gauge symmetry in F dimensions, x is referred
to as a holonomy, and parametrizes a gauge transformation when encircling the S1 once. For
a continuous symmetry with algebra g, x is a continuous parameter taking value in the Cartan
subalgebra of g, which, if non-zero, breaks the gauge symmetry to a rank(g) = r subalgebra of g.
Generically, this is simply the Cartan subalgebra u(1)r. Geometrically, changing the values of x
continuously changes the sizes of the fibral P1 components of codimension one and two reducible
fibers.9 In that sense, different x ’s define different manifolds, which however are connected by
continuous deformations.

However, for a discrete Zn symmetry with a massive gauge field A in F dimensions, the al-
lowed holonomies are discrete. Hence, we do not expect that the compactified theories in M dimen-
sions with different values of x are connected continuously. Indeed, the picture that has emerged
over the last few years is that both multi-section geometries Y and elliptic fibrations Y with torsional
cohomology and terminal singularities can describe the same F-theory in F dimensions. Their ap-
parent difference is reflecting different choices of the discrete holonomy x when we compactify on
a circle to go down to M-theory.

If the holonomy is trivial, then the discrete symmetry descends straightforwardly to M dimen-
sions. This is the situation when we compactify M-theory on an elliptic fibration with torsional

9More precisely, the parameter x are coordinates on the Coulomb branch of the theory in M dimensions. Geomet-
rically, it corresponds to the extended Kähler cone of the Calabi–Yau.
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cohomology. The zero section of the fibration gives rise to the KK-u(1), and the torsional coho-
mology encodes the Zn symmetry. On the other hand, if the holonomy is non-trivial, it turns out
that the Kaluza–Klein reduction along the fluxes S1 gives rise to a kinetic mixing term between the
KK-u(1) and the massive u(1)m in the Lagrangian for the M-dimensional theory [39, 41, 42]. As
a result, the true massless u(1) in M-dimensions is a linear combination of the KK-u(1) and the
massive vector field. This massless linear combination is the u(1) which is dual to the divisor class
of the multi-section, when we compactify M-theory on a genus-one fibration Y.

In fact, there is some deep mathematics associated with this physics description. As noted in
[37], we can associate to any genus-one fibration Y an elliptic fibration Y with the same base, which
has the same discriminant locus, i.e., they encode the same 7-brane configuration in the base B. Y is
the so-called Jacobian fibration associated with Y, sometimes denoted as Y = J(Y). It turns out that
the existence of genus-one fibrations of the same dimension and with the same discriminant locus as
an elliptic fibration Y is closely related to the torsional cohomology of Y , i.e., discrete symmetries
in M- and F-theory. It has been proven for threefolds Y with no reducible fibers in codimension
one that the torsional cohomology is encoded in the so-called Tate–Shafarevich group [75],

Tors
�
H3(Y,Z)

�⇠=X(Y ) . (4.8)

This group, whose precise definition is beyond the scope of these notes, appears in the arithmetic
geometry of elliptic and genus-one fibrations. The key property of X(Y ) is however, that its
element are genus-one fibrations Y whose Jacobian are Y . In other words, the Tate–Shafarevich
group is the collection of different M-theory vacua, whose F-theory uplift are equivalent, namely a
field theory with X(Y ) = Zn gauge symmetry. Moreover, the order n of the discrete symmetry is
the minimal integer for which there exists a multi-section of that degree.

In practice, explicit construction of the Tate–Shafarevich group in the F-theory literature have
only gone as high as n = 3. For n = 2, it is obvious that the geometries Y and Y, where Y has
a 2- or bisection, are different elements of X(Y ). However, the important observation of [42]
is that elements of X(Y ) are in general specified by more than just a geometry. This becomes
crucial in the case of n = 3, where the two non-trivial elements of X(Y ) = Z3 both share the same
underlying geometry Y, which has a tri-section, but differ by these additional, more subtle data.10

An interesting question would be to analyze if for higher n, also the underlying geometry can
differ between different non-trivial elements of X(Y ). The natural candidate would be a model
with n = 4, for which there exists an explicit construction of a genus-one fibration with a four-
section [76, 77]. It is unclear at this point however, if there might be one or more geometrically
non-isomorphic genus-one fibration that form the full X(Y ) = Z4 group.

4.3.1 Discretely charged matter in genus-one fibrations

We have claimed earlier that it is easier to read off the discrete gauge symmetry as well as
matter charges under it in a genus-one fibration Y, than in its Jacobian Y . The order n of the
discrete symmetry, as already seen earlier, corresponds to the minimal degrees of multi-sections
in Y. Concerning the matter states, we analyze the fiber of Y over the codimension two loci of

10These data, among others, include the specification of a map f : Y ! Y = J(Y), which can be defined in two
different ways in case X(Y ) = Z3.
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B, where the Jacobian fibration Y had terminal singularities. The justification is that, since both
encode the same 7-brane configuration, the charged matter have to be localized at the same points
of the type IIB compactification space B.

It turns out that in Y, there are no terminal singularities in these fibers. Instead, the fibers are of
Kodaira-type I2, meaning it consists of two P1s intersecting each other transversely in two points.
The important observation is that the n-section will now intersect each component non-trivially:

s(n) ·P1
a = k ,

s(n) ·P1
b = n� k .

(4.9)

To interpret this physically, recall that the u(1) dual to the n-section is a linear combination of the
KK and the massive u(1)m. Concretely, it is [39, 41, 42]

u(1)(n) = nu(1)KK �u(1)m . (4.10)

For states uncharged under the discrete symmetry, i.e., under the massive u(1)m, the intersection
number with the n-section is just n-times the KK-charge. For u(1)m-charged states, the KK-charge
is shifted, and now deviates from being a multiple of n. These are now precisely the case for the
states on the P1s satisfying (4.9). Moreover, note that by just measuring the u(1)(n) charge, we can
only determine the u(1)m charge up to multiples of n. This is of course consistent with the fact that
the actual gauge symmetry is Zn, i.e., the charges are only defined mod n. The upshot is that we
now have an easy way of determining the Zn charge: it is simply the intersection number of the
fibral curve with the n-section, taken modulo n. In (4.9), the states would thus have chargers k and
�k, which consistently form a charge conjugate pair.

When we include non-abelian gauge algebras via reducible fibers in codimension one, then one
obtains additional, independent divisors corresponding to the Cartan divisors Ei. Because a multi-
section has several “prongs” that can intersect several P1 fibers of different exceptional divisors Ei,
the non-abelian W-bosons would be charged under the discrete symmetry. To remedy this, one can,
similar to the case of massless u(1)s, define a Shioda-like divisor,

j(s(n)) = [s(n)]+Â
i, j

s(n) ·P1
i (C

�1)i jE j , (4.11)

where C�1 is again the inverse Cartan matrix of the non-abelian gauge algebra g. Because of the
appearance of the inverse Cartan matrix, the charges obtained by computing intersection numbers
with j(s(n)) are in general fractional. The interpretation in terms of a discrete charge actually
means, that the discrete symmetry is enhanced by an order m subgroup of the center of g to Zn·m
[40]. However, a similar analysis to the case of u(1)s show that in this situation, there is also a
non-trivial charge constraint which induces a non-trivial global gauge group structure of the form
[36]

G⇥Zn·m
Zm

. (4.12)

Now, if n and m are coprime, then the “Chinese remainder theorem” (Zn·m ⇠= Zn ⇥Zm) leads to
a cancellation of the enhancing Zm factor, effectively leading to the “naive” global gauge group

24



P
o
S
(
T
A
S
I
2
0
1
7
)
0
2
0

Abelian and Discrete Symmetries in F-theory Mirjam Cvetič

G⇥Zn. This “accidental” cancellation allowed for a somewhat careless treatment of the discrete
charges in early phenomenologically motivated F-theory constructions of SU(5)⇥Z2 models [41,
72]. However, later examples with su(2) algebras [28, 36] precisely show such an enhancement of
the discrete symmetry to a Z4, even though the genus-one fibration had a 2-section.

4.4 Geometric description of Higgsing

Even though we have motivated the study of discrete symmetries via the Higgs mechanism at
the begin of this section, we have not yet discussed how this process manifest itself in F-theory.
In particular, can we understand the different M-theory vacua, whose geometry differ so signifi-
cantly, as coming from a single F-theory model with u(1), for which there does not seem to be
any ambiguities in terms of geometric characterization? The subtlety is that already in the F-theory
model with u(1), there were strictly speaking several geometries which differed in M-theory only
in their massive spectrum, but not the gauge symmetry. For simplicity, let us look at an example
with n = 2. The subtleties that arise for n = 3 are explained in [42].

4.4.1 Higgsing in the Weierstrass model

The u(1) phase of this story is the Morrison–Park model, whose Weierstrass model we have
already written down above (see (3.37)). This theory has a charge 2 singlet, which is geometrically
realized as an I2 fiber at b = c3 = 0. Furthermore, there are also charge 1 singlets, again realized as
I2 fibers at a different codimension two locus (described by a non-complete intersection V (I) of a
complicated ideal I).

Now, the Higgs mechanism is described geometrically via a generalized conifold transition
[78, 79, 80]. In order to obtain a Z2 from the u(1), we therefore first blow-down the P1 component
not intersected by the zero section over the locus b= c3 = 0, and subsequently deform the geometry
to smooth out the singularity. The smoothing process is described via a complex structure defor-
mation b2 ! 4c4 in the Weierstrass equations (3.37). As explained in detail in [69], the blow-down
process inevitably also shrinks a P1 component over the other locus V (I) which hosts the charge 1
singlets. But the singularity created in this way is not deformed away through the complex structure
deformation. This way, the resulting geometry Y , even though it is still elliptically fibered, now
has terminal singularities, sitting precisely at the locus where charge 1 matter states are localized,
which now turn into the charged singlets of the Z2. A more careful analysis [69] then also reveals
the presence of Z2 torsional cohomology, confirming the discrete symmetry in M-theory on Y .

4.4.2 Higgsing in the toric hypersurface

As shown in [18], the same u(1) theory can be described by a toric hypersurface XT ,

w2 +bwv2 = c0 u4 + c1 u3 v+ c2 u2 v2 + c3 uv3 , (4.13)

where the coordinates [u : v : w] are those of a weighted projective space P112, and the coefficients b
and ci are functions over the base B of the fibration, which is the same as the base of the Weierstrass
model XW , given by (3.37). This hypersurface has two rational sections, given by the intersection
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points with u = 0:

s0 : [u : v : w] = [0 : 1 : 0] ,

s1 : [u : v : w] = [0 : 1 : �b .]
(4.14)

Note that this fibration also has I2 fibers over b = c3 = 0 and V (I), giving rise to matter charged
under the u(1) in F-theory. When we pass over to the Weierstrass model XW , we identify the section
s0 with the zero section. However this map is only a birational equivalence, meaning that XW and
XT can differ in codimension two and higher. In this case, the difference is in the Kähler and Mori
cone structures, i.e., the possibilities how one can shrink and blow-up curves without violating the
Calabi–Yau condition of the space.

For the toric hypersurface, the conifold transition that gives a vev to the charge 2 singlets
again requires to blow-down a fiber component over b = c3 = 0 and subsequently deforming away
the resulting singularities via b2 ! 4c4. However, because of the different Kähler and Mori cone
structures, the blow-down now does not affect the fibers over V (I) [69]. Consequently, there are no
terminal singularities in these fibers after the deformation, which produces a genus-one fibration Y.

To see the genus-one nature explicitly, we have to make a coordinate redefinition w = w̃�
1
2 bv2, which modifies the left-hand side of (4.13) to w̃2 � 1

4 bv4. Then, the complex structure
deformation b2 ! 4c4, with c4 a generic non-square polynomial, yields a new hypersurface,

w̃2 = c0 u4 + c1 u3 v+ c2 u2 v2 + c3 uv3 + c4 v4 , (4.15)

which does not exhibit any rational section. However, it does have a bisection, given by the inter-
section of u = 0, which marks in any fiber the two points which are roots of the quadratic equation
w̃ = c4 v2.11

Finally, let us remark that the two different geometries XW and XT for the u(1) theory are
connected to each other via a continuous Kähler deformation. However, this connection involves
a so-called “flop” transition: at some point of the continuous deformation, a curve shrinks to zero
size, thus creating a singularity. This singularity is then resolved by blowing up a different curve.
Physically, the deformation parameter is related to the flux, or holonomy, of the u(1) gauge field
along the circle in the reduction from F- to M-theory, which before the Higgsing is a continuous
parameter. The two configurations corresponding to either the blown-down phase of XW or XT can
be thought of as two special values for the u(1) holonomy. Only at these two special values is the
complex structure deformation b2 ! 4c4 accessible. However, once we turn on this deformation,
then the curves whose volumes changed with the flux parameter are gone from the geometry. As
a consequence, the flux is “frozen” to these particular values. Physically, these two situations are
of course precisely the two distinct possibilities of the Z2 holonomy, which are now no longer
connected continuously in the M-theory moduli space. In geometry, we observe these now as the
two elements Y and Y of the Tate–Shafarevich group X(Y ) = Z2.

11Note that v = 0 equally defines a bisection that is in the same class as u = 0. In fact, it is not hard to show using
the Riemann–Roch theorem that there are in general n different n-sections with the same divisor class.
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5. Application: Global Particle Physics Models

One of the major physical motivation for studying abelian symmetries in F-theory is their im-
portance for particle phenomenology. While u(1) symmetries feature prominently in the Standard
Model as the hypercharge, discrete symmetries provide a minimally invasive extension that can
serve as a selection rule. In the following, we will present three examples, each realizing the Stan-
dard Model gauge algebra, but with a different extension. The significance of these models is that
they are all globally defined models, i.e., the full compact Calabi–Yau space can be specified. This
is to be distinguished from the early day F-theory model building attempts, which were more re-
stricted to local constructions of GUT models. One significant advantage over the local treatment is
that it is possible to determine consistent G4-flux configurations that generate a chiral spectrum.12

Indeed, for all three examples, explicit configurations with low numbers or no chiral exotics have
been found.

5.1 The minimalistic example

The most natural example is of course to realize just the Standard Model gauge group [34].
The elliptic fibration for that has already been presented in section 3.3.3. There, we have focused on
the rational sections and the codimension one singular fibers, which gave rise to the exact Standard
Model gauge group

GSM =
SU(3)⇥SU(2)⇥U(1)

Z6
. (5.1)

By inspecting the codimension two enhancement, we find that this F-theory model contains the
same representations as the Standard Model, which we collect together with their geometric loci in
table 1.

Representation Locus SM-matter

(3,2)1/6 {s3 = s9 = 0} left-handed quarks Q

(1,2)�1/2 {s3 = s2s2
5 + s1(s1s9 � s5s6) = 0} lepton L and Higgs H doublets

(3,1)�2/3 {s5 = s9 = 0} right-handed up-quark ū

(3,1)1/3 {s9 = s3s2
5 + s6(s1s6 � s2s5) = 0} right-handed down-quark d̄

(1,1)1 {s1 = s5 = 0} right-handed electron e

Table 1: Charged matter representations under su(3)⇥ su(2)⇥u(1) and corresponding codimension two
loci of the minimalistic example.

To specify a concrete model, one has to specify the base B as well as the divisor classes of
the coefficients si. As demonstrated in [34], for the simplest choice of base, namely B = P3, one
can find configurations that have consistent G4-flux vacua that leads to the precise chiral Standard

12We have collected some basic facts about G4-fluxes in F-theory in appendix A. For a more comprehensive discus-
sion, see [43].
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Model spectrum, namely three chiral families for each of the matter representations listed in table
1.

A drawback of this model is the lack of selection rules which forbid certain R-parity violating
Yukawa couplings, which can generate problematic interactions which are constrained by today’s
experiments. For example, because the Higgs and the lepton doublet have the same quantum
numbers under the Standard Model, they have to be localized on the same locus in this F-theory
model. As a consequence, it is hard to come up with a mechanism that generates an order one top
Yukawa coupling QHū, but suppresses the coupling QLū which contributes to proton decay.

To remedy this problem, phenomenologist have come up with various approaches. One of
them is to introduce an additional gauged u(1) symmetry, such as U(1)B�L or Peccei–Quinn sym-
metry. Therefore, it is also interesting to look at potential F-theory realizations of such extensions
to the Standard Model.

5.2 F-theory models with su(3)⇥ su(2)⇥u(1)2 symmetry

In order to geometrically engineer a model with two u(1)s, the elliptic fibration needs to have
three independent rational sections. Such an example is provided by a toric hypersurface where the
fiber is embedded inside the surface Bl2P2, that is P2 (with coordinates [u : v : w]) blown-up at two
points (by s0 and s1) [21, 22, 24]. The hypersurface polynomial is

vw(c1 ws1 + c2 vs0)+u(b0 v2s2
0 +b1 vws0s1 +b2 w2s2

1)+u2(d0 vs2
0s1 +d1 ws0s2

1 +d2 us2
0s2

1) , (5.2)

where the coefficients bi,c j,dk are again some holomorphic functions over the base. The three
rational sections are given by the intersection of the hypersurface (5.2) with the three toric divisors
of the fiber ambient space:

s0 = {s0} : [u : v : w : s0 : s1] = [�c1 : b2 : 1 : 0 : 1] ,

s1 = {s1} : [u : v : w : s0 : s1] = [�c2 : 1 : b0 : 1 : 0] ,

s2 = {u} : [u : v : w : s0 : s1] = [0 : 1 : 1 : �c1 : c2] .

(5.3)

The non-abelian part of the Standard Model gauge algebra is engineered via toric methods
(so-called “tops” [81, 82]). In this case, we obtain five inequivalent tops that realize su(3)⇥ su(2)
in codimension one of the elliptic fibration (5.2) [83]. Furthermore, in each such top, we have the
freedom of identifying the hypercharge u(1) with a linear combination of the two geometrically
realized u(1)s; the orthogonal combination then serves as the selection rule. All such identifica-
tions compatible with the geometric spectrum have been listed in [83], together with the possible
dimension four and five operators of the Standard Model, which are and are not forbidden by the
selection rule.

Again, one can attempt to find flux configurations that realize the chiral spectrum of the Stan-
dard Model. For this fibration however, there is additional complexity arising from the fact that
there are now additional matter curves which have the same representation under the Standard
Model group, but differ by the charge under the selection rule u(1). Thus, there can be some am-
biguity as to how to identify the geometrically realized states with those of the Standard Model.
Due to these ambiguities, it is tricky to find flux solutions that do not produce any chiral exotics.
With the techniques presented in [35], the realization closest to the Standard Model spectrum is for
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a fibration over B = Bl1P3 and contains one chiral exotic pair of triplets and four singlets charged
only under the selection rule u(1). In this realization, the u(1) is of Peccei–Quinn type, i.e, the
Higgs-up and -down doublet are charged differently.

While the selection rule does forbid certain dimension four operators, there are still some
problematic ones left. For example, the charge assignments are such that the Higgs-down and
the lepton doublets have the same charges under the selection rule. Therefore, any Higgs Yukawa
coupling of down-type quarks also lead to lepton- and baryon-number violating operators involving
two quarks and a lepton. Furthermore, the selection rule u(1) remains massless even in the presence
of flux, and would need a different mechanism to lift the photons from the massless spectrum or to
decouple them from the visible sector.

To circumvent these issues, one can instead use a discrete symmetry as selection rule. As we
will show now, such F-theory models can be constructed together with flux solutions that produce
no chiral exotics, and with no problematic dimension four operators.

5.3 An F-theory realization of matter parity

As a final example of F-theory model building, we present a construction of the Standard
Model with matter parity extension [36]. The technology for that only became available with the
understanding of multi-section geometries.

In the previous section, we have discussed how a single abelian discrete gauge factor can be
described in F-theory by a genus-one fibration. However, for the Standard Model, we also need
a u(1), which naively requires the existence of rational sections. One possible way to reconcile
the two is to consider elliptic fibrations that have non-trivial Mordell–Weil groups and torsional
cohomology. However, the presence of terminal singularities there would then make the description
of G4-fluxes, at least in our current understanding, impossible. Fortunately, it was realized in
[28, 54] that one can also use genus-one fibrations that have multiple independent n-section classes.
In that case, they give rise in the dual M-theory compactification to multiple massless u(1)s, only
one of which has to be identified with the linear combination of KK- and the massive u(1). The
remaining u(1)s then can be uplifted to genuinely massless u(1)s in F-theory.

With realistic particle physics in mind, the simplest such fibration is again a toric hypersur-
face with fiber in a P1 ⇥P1 ambient space whose coordinates are [x : t]⇥ [y : s]. In the defining
polynomial,

(b1 y2 +b2 sy+b3 s2)x2 +(b5 y2 +b6 sy+b7 s2)xt +(b8 y2 +b9 sy+b10 s2) t2 , (5.4)

the two independent bisection classes are defined by the intersections with {x = 0} and {y= 0}. By
choice, one identifies the KK/massive u(1) with the divisor class [x]. Then, the linear combination
[y]� [x]+p(([y]� [x]) · [x]), where the last term—the projection of the 4-cycle ([y]� [x]) · [x] to the
base—ensures the proper uplift to F-theory (compare to the Shioda map (3.9) in the case of rational
sections). Note that because the gauge symmetry is now u(1)⇥Z2, there is no ambiguity in the
identification of the hypercharge. However, by identifying the Z2 symmetry as matter parity, there
are two conventions of charge assignments which are physically equivalent (see [36] and references
therein). Essentially, they differ by whether the left-handed quarks are charged odd or even under
the Z2.
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When we introduce the non-abelian gauge part with toric methods, we obtain the following
geometrically realized spectrum:

(3,2)( 1
6 ,�) , 3(� 2

3 ,+) , 3(� 2
3 ,�) , 3( 1

3 ,+) , 3( 1
3 ,�) ,

2(� 1
2 ,+) , 2(� 1

2 ,�) , 1(1,+) , 1(1,�) , 1(0,�) .
(5.5)

Because there is only one bifundamental state, its Z2 charge fixes the convention for the matter
parity charges: all Standard Model fermions, i.e., the left-handed leptons and right-handed quarks
and electrons must have odd Z2 charge. The most phenomenologically appealing G4 configuration
therefore should induce chirality c = 3 for these states, whereas those states with even parity
should have vanishing c . Indeed, as demonstrated in [36], one can find, already on the simplest
base B = P3, multiple such configurations. These examples are the first F-theory constructions
that reproduce the Standard Model spectrum at the chiral level, and has no problematic dimension
four operators due to the presence of the matter parity selection rule. As a final remark, note that
this model also includes a singlet uncharged under the Standard Model gauge group, but is odd
under parity. Because it is a real representation, there cannot be any chirality associated with it
(which is also ensured geometrically, see [41, 72, 36]). Phenomenologically, it can be identified
with right-handed neutrinos.

While the above models have the correct chiral spectrum, we cannot make a statement about
the spectrum of vector-like pairs. Since the Higgs doublets in the MSSM are vector-like, it would
be interesting to apply the methods of [84, 85] to these models to obtain more realistic F-theory
models of particle physics.

6. Other Aspects of Abelian Symmetries in F-theory

In these notes, we have primarily focused on the particle physics applications of abelian gauge
symmetries in F-theory. But of course, this does not do justice to the significant efforts that address
other formal questions and applications. In this last section, we will summarize and highlight some
of the recent developments orthogonal to the model building aspect of abelian symmetries.

Anomalies and the Swampland

One active subject can be motivated by the question about the upper bound of u(1) charges
in F-theory. At the moment, explicit constructions have realized qmax = 4 [64], and it has been
recently conjecture [86]—based on matrix factorization techniques and duality to type II [87]—
that the upper bound is 6. As shown in [88], there is no pure field theoretic arguments that would
forbid higher charge states. Hence, this conjecture can be interpreted as a swampland criterion,
similar to the charge constraint (3.32) related to the global gauge group structure.

The field theory arguments are based anomaly considerations, which are very stringent in 6D
supergravity theories. When we compactify F-theory to 4D, the anomaly conditions also depend on
the G4-flux, which have a geometric description, but are not “geometrized” by the elliptic fibration,
i.e., the configuration needs to be specified in addition to the fibration (see appendix A). However,
one can reverse the logic and use anomaly cancellation to constrain the geometry of fourfolds.
Indeed, following the initial work [89], it has been subsequently realized that a geometric refor-
mulation of 4D gauge anomaly cancellation leads to certain geometric properties, which appear to
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be satisfied for all explicit model constructed so far in the literature [90, 91, 85, 92]. Moreover, it
has also been observed that discrete anomalies—in particular chiral anomalies associated with Zn

symmetries—of the 4D effective field theory are intimately related to the quantization condition of
G4 [72, 35, 36]. So far though, there is no proof of these observations.

Heterotic duality and mirror symmetry

While we have extensively used the duality to M-theory to explain the physics of F-theory
compactifications, we have not touched upon the duality to the heterotic string [1, 2, 3]. Under this
duality, the fate of abelian symmetries on the heterotic side has been recently studied in [93] and
[94] (for continuous and discrete symmetries, respectively). At a technical level, the analysis relied
on a toric description of the so-called stable degeneration limit, which identifies the dual heterotic
geometry and the gauge bundle data.

In the toric set-up, one stumbles across a surprising connection between abelian symmetries
and mirror symmetry. Concretely, consider a genus-one fibration Y whose torus fibers f are embed-
ded into a toric ambient space A . One can then consider a fibration Y 0 whose fibration is fibers f0

are mirror dual to f, and hence embedded into a toric ambient space A
0 that is the dual to A . It was

first observed in [28] that if Y has torsional Mordell–Weil group Zn, then the “fiber-mirror-dual”
model Y 0 is a genus-one fibration with an n-section. For F-theory purposes, one might therefore say
that “fiber-mirror-symmetry” exchanges Mordell–Weil torsion with Tate–Shafarevich group. This
observation has been since further strengthened [77, 94]. However, there are a few mirror dual
pairs which do not seem to fit into this pattern. To understand these examples, as well as a clearer
physical picture of the phenomenon, additional efforts would be required.

Abelian symmetries in 6D SCFTs

One of the recent achievements of F-theory is the classification of 6D N = (1,0) supercon-
formal field theories (SCFTs) [95, 96] using the geometry of elliptic fibrations (see [97] for a recent
review). Within this classification, only non-abelian gauge symmetries appear. While this is con-
sistent with field theory considerations, it was not until recently [51] that it was understood how
gauged u(1)s in compact F-theory geometries become global symmetries upon decoupling gravity.
Geometrically, the decoupling limit is where one takes the base B to infinite volume. In [51], it was
shown that in this limit, the gauge coupling associated with the u(1) always approaches zero, thus
explaining the global nature of the symmetry.

In this context, discrete symmetries are much less understood. For one, the geometric incarna-
tion of the gauge coupling for such a symmetry has not been explored yet. However, there are some
evidence that discrete symmetries are important to distinguish certain strongly coupled sectors [98].
In these examples, the geometry are genus-one fibrations over compact bases which have so-called
“multiple fibers” over singular points of the base. Resolving these singularities reveal that the
strongly coupled sector have additional singlets compared to models without multiple fibers (but
singular points in base) [99]. In the genus-one fibration, one can readily see that these singlets are
charged only under the discrete symmetry related to the multi-section. It would be interesting to
analyze the decompactification limit of these models and explore if genus-one fibrations could add
something new to the classification of 6D SCFTs.
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A. Gauge Fluxes and Chiral Spectra in F-theory

While gauge fluxes are not directly related to abelian symmetries in F-theory, both of them are
of global nature. It is therefore not surprising that most of the work concerning global descriptions
of gauge fluxes arose as an effort parallel to the understanding of u(1)s [14, 100, 79, 101, 78, 102,
89, 16, 24, 84, 103, 41, 72, 35, 91, 85, 92, 36]. Because fluxes are an essential part of the examples
presented in section 5, it seems appropriate to include a brief introduction to the topic of fluxes,
although we will have to refer to the review [43] for more details and also appropriate references.

A.1 Geometric description of gauge fluxes via duality to M-theory

Our understanding of gauge fluxes arise from the M-/F-theory duality. In M-theory compacti-
fied on a fourfold Y , on can turn on a background profile of the 3-form potential C3 on the internal
space. Its field strength G4 = dC3 is then a closed 4-form, i.e., can be described by a cohomology
form in H4(Y ). To preserve spacetime supersymmetry, the 4-form has to lie in H2,2(Y ) ⇢ H4(Y ).
Under the assumption of the Hodge conjecture, such forms are always Poincaré-dual to algebraic
4-cycles.

A subset of algebraic 4-cycles are linear combinations of intersection products of divisors.
These span a subspace of H2,2, called the primary vertical (2,2)-forms, or just vertical fluxes. While
there are other types of fluxes (the “horizontal” and the “remainder” pieces of H2,2), the vertical
ones are usually the only part relevant for the computation of the chiral spectrum in F-theory. Now
we have seen in section 3 that the set of divisors of an elliptic fibration is completely captured by
the Shioda–Tate–Wazir theorem (3.1). Likewise, it is conjectured that the same holds on genus-one
fibrations by replacing the sections with independent multi-sections [37]. Hence, given an explicit
global model for which we know the full gauge symmetry, we can also systematically determine
all vertical fluxes. It is worth noting that the geometric description of fluxes in terms of 4-cycles is
only possible on a smooth fourfold. This means in particular that for F-theory models with discrete
symmetries, a flux and chirality analysis with known methods is only possible on the associated
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multi-section geometry, whereas for the Jacobian fibration with its terminal singularities, new set
of computational tools would be required.

So far, we have described fluxes in the M-theory set-up. In order for them to uplift to F-
theory, they have to satisfy some additional constraints. The first set are the so-called transversality
conditions, which in terms of the 4-cycle class [G4] of the flux can be phrased via intersection
numbers:

[G4] ·D(1)
B ·D(2)

B = [G4] ·D(3)
B ·Z . (A.1)

Here, D(i)
B are any divisors pulled-back from the base B. Meanwhile, Z denotes the divisor class of

the embedding of the base into the full fibration; for an elliptic fibration this is simply the class of
the zero section. For a genus-one fibration, this is the class of the multi-section which is chosen
as the divisor giving rise to the Kaluza–Klein u(1), see section 4. Furthermore, in the presence of
non-abelian gauge symmetries, a flux will generically break it unless it satisfies

[G4] ·Ei ·DB = 0 , (A.2)

for any pull-back divisor DB and any exceptional divisor Ei.
Finally, the flux has to satisfy the so-called quantization condition

G4 +
1
2

c2(Y ) 2 H2,2(Y,Z) = H2,2(Y )\H4(Y,Z) , (A.3)

where c2(Y ) is the second Chern class of the tangent bundle of Y . This condition is notoriously
difficult to check explicitly. However, it has interesting consequences regarding certain topological
quantities. For example, a properly quantized flux must lead to an integer M2-/D3-tadpole

nD3 =
ce(Y )

24
� 1

2

Z

Y
G4 ^G4 , (A.4)

with ce the Euler number. Furthermore, it has been observed recently that discrete anomalies such
as Witten’s SU(2) anomaly or chiral anomalies of discrete symmetries are canceled if and only if
the flux are properly quantized.

A.2 Matter surfaces and chiral spectra

To compute the chiral spectrum, we also need a geometric object associated with each mat-
ter representation in F-theory. These are the so-called matter surfaces gR, which are obtained by
fibering codimension two fiber components GR carrying weights of a representation R over the
corresponding curve CR on the base (recall that the base B in this case is a threefold):

G gR

CR

. (A.5)

As the name suggest, gR is complex surface, which is an algebraic 4-cycle that in almost all explicit
examples turn out to be vertical. Given a G4-flux and its dual 4-cycle class [G4], the chiral index of
matter in representation R is computed as

c(R) =
Z

gR
G4 = [G4] · [gR] , (A.6)
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where · denotes the intersection product on the fourfold.
With suitable computational methods, the intersection number (A.6) can be reduced to inter-

section numbers of divisors in the base. For the examples presented in section 5, these led to a
general formula for the chiral indices of all matter representations which capture the full depen-
dence on flux parameters and the fibration data over any base. By varying these data and the choice
of base B of the fibration, one can then systematically scan for flux configurations that lead to
desirable spectra.

Going beyond the chiral spectrum, it is also possible to determine the spectrum of vector-
like pairs. To determine these, however, requires more sophisticated methods and mathematical
background, which have only been developed recently [84, 91]. We again refer to [43] for more
details.
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