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for strongly degenerate plasma. For strongly degenerate electrons we obtain an asymptotically
exact analytical solution for the heat conductivity tensor in presence of a magnetic field. This
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1. Introduction

X-ray observations of thermal emission show periodic variabilities in single neutron stars[23],
indicating to the anisotropic temperature distribution. Such kind of a single neutron star variability
was predicted in [4] in 1976 year. A periodic X-ray variability of a single neutron star is presented
in Fig.1 from [10].

Figure 1: Pulse profile of RBS1223 in the 0.012-0.5 keV (soft) and 0.5-1keV (hard) energy bands, together
with the ratio hard/soft obtained from the EPIC-pn data of the Jan 2003 XMM observations, from [10].

The list of 7 known single neutron star, named in the literature as "magnifucent seven", with some
of their properties, is presented in Fig.2, see [19].

Heat transfer in the envelopes of NS plays crucial role in many aspects of evolution of these
stars. Thermal conductivity is the basic quantity needed for calculating the relationship between
the internal temperature of a neutron star and its effectivesurface temperature. To calculate thermal
conductivity we should know the transport properties of a dense matter where electrons are degen-
erate, and form a nearly ideal Fermi-gas [22]. The ions are usually treated as non-degenerate. They
may be in a gaseous state, may form a Coulomb liquid or a Coulomb crystal [16]. Under such con-
ditions, electrons are the most important heat carriers, and the thermal conductivity is determined
by electron motion. The magnetic field limits the motion of electrons in directions perpendicular to
the field lines and, since they are the main carriers of the heat transport, the thermal conductivity in
these directions is suppressed, while remaining unaffected along the field lines. The conductivity of
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Figure 2: The list of single neutron star X-ray sources (magnificent seven) with their physical characteristics,
from [19]

.

electrons in NS and white dwarfs in presence of a magnetic field was studied in [8, 18]. The ratio
between thermal conductivity along and across magnetic field lines considered in [8] was taken as

λ⊥

λ‖
=

1
1+(ωτ)2 . (1.1)

and was used also in [18]. Hereω is electron cyclotron frequency,τ is the time between collisions.
The influence of the magnetic field on the electron heat conductivity in the form (1.1) was used
in subsequent papers, see [11, 21]. Classical methods of kinetic gas theory were developed by
Maxwell, Boltzmann, Gilbert, Enskog and Chapman. These methods are presented in the mono-
graph of Chapman and Cowling [7]. Here we find an analytic solution for the heat conductivity
tensor of strongly degenerate electrons in a magnetic field,in the Lorentz approximation, which
is asymptotically exact in this case, showing a more complicated dependence on the magnetic
field strength than (1.1). The kinetic coefficients in the non-degenerate plasma, with and without
magnetic field had been calculated in [14, 15, 2, 1], using Chapmen-Enskog expansion method.
Coefficients of the heat conductivity tensor in a degeneratestellar cores were calculated in Lorentz
approximation for a hydrogen plasma in [20]. A non-relativistic calculation, based on the quantum
Lenard-Balescu transport equation for the thermal and electrical conductivities of plasma of highly
degenerate, weakly coupled electrons and nondegenerate, weakly coupled ions was performaed in
[12].

Here we present the solution of the Boltzmann equation for strongly degenerate electrons in
non-quantized magnetic field, described in [3]. For strongly degenerate electrons we obtain an
asymptotically exact analytical solution for the heat conductivity tensor in presence of a magnetic
field. This solution has considerably more complicated dependence on the magnetic field than those
in previous publications, and gives several times smaller relative value of a thermal conductivity
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across the magnetic field.

2. Boltzmann equations and transfer equations

We use a Boltzmann equation for electrons, in a magnetic field, with an allowance of arbitrary
degeneracy, and assuming them as non-relativistic. We consider the electron gas in a crystal lattice
of heavy nuclei, and take into account the interaction of theelectrons with a nondegenerate nuclei
and with one another. The nuclear component of the matter in the crust is in a crystal state, and
therefore the isotropic part of the distribution functionfN0 may differ from the Maxwellian distri-
bution. If the mass of the nucleusmN is much greater, than the electron massme, then to the terms
∼ me/mN the details of the distribution functionfN0 are unimportant, and the calculations can be
made for arbitraryfN0.

Boltzmann equation, which describes the time variation of the electron distribution functionf
in presence of the electric and magnetic fields is written as [2, 1]

∂ f
∂ t

+ ci
∂ f
∂ ri

−
e

me
(Ei +

1
c

εiklckBl)
∂ f
∂ci

+ J = 0. (2.1)

Here(−e),me are the charge (negative) and the mass of the electron,Ei,Bi are the strength of the
electric field, and magnetic induction,εikl is the totally antisymmetric Levi-Civita tensor,c is the
speed of the light,ci is a velocity vector in the laboratory frame,ri is a particle radius-vector in the
laboratory frame. The collision integralJ for arbitrary degenerate electrons, from [7, 17], is written
in the form,

J = Jee + JeN = R
∫

[ f
′
f
′

1(1− f )(1− f1)− f f1(1− f
′
)(1− f

′

1)]×geebdbdεdc1i +

+
∫

[ f
′
f
′

N(1− f )− f fN(1− f
′
)]×geNbdbdεdcNi. (2.2)

Here, the impact parameterb, andε are geometrical parameters of particle collisions with relative
velocities gee,geN ,R = 2m3

e
h3 . The integration in electron part of the collision integral in (2.2) is

performed over the phase space of the incoming particles (dc1i), and the physical space of their
arrival (bdbdε) [7]. The velocity functions after collision are marked with touches.

The Boltzmann equation for electrons with a binary collision integral (2.2) may be applied in
conditions, when the electron gas is considered as ideal, i.e. the kinetic energy of the electrons
is much larger than the energy of electrostatic interactions. In the neutron stars and white dwarfs
we have a plasma at very large density, when it is important totake into account the electrons
degeneracy. It is known from the statistical physics, that agas of strongly degenerate electrons
becomes ideal, because large Fermi energy substitutes herethe thermal energy [13]. Therefore
the calculations in this paper are applied to the high density plasma with degenerate electrons.
Detailed discussion of the applicability of a binary collision integral (2.2), and its modifications for
high density non-degenerate gases may be found in [7]

The collision integral similar toJee from (2.2) for strongly degenerate neutrons in nuclear
matter was written in [17], see also [5]. It was found that that in the presence of non-degenerate
heavy nuclei and strongly degenerate neutron, the input of collisions between them in the heat
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transfer and diffusion coefficients is negligibly small, incomparison with neutron-nuclei collisions.
The same situation we have for the strongly degenerate electrons. Therefore for strongly degenerate
electrons the Lorentz approximation, with account of collisions between light and heavy particles
only, is asymptotically exact. So for our consideration we can neglectJee in comparison withJeN ,
and we can equateJ = JeN in the (2.2).

Lets introduce the thermal velocity of electrons,vi = ci − c0i, wherec0i is the mass-average
velocity. So we can write the Boltzmann equation with respect to the thermal velocity in the form
[1]

d f
dt

+ vi
∂ f
∂ ri

−

[

e
me

(Ei +
1
c

εiklvkBl)+
dc0i

dt

]

∂ f
∂vi

(2.3)

−
e

mec
εiklvkBl

∂ f
∂vi

−
∂ f
∂vi

vk
∂c0i

∂ rk
+ J = 0. (2.4)

The transfer equations for the electron concentration, total momentum, and electron energy, in
the two-component mixture of electrons and nuclei, can be obtained in a usual manner from the
Boltzmann equation in a quasi-neutral plasma [7, 15, 2, 1].

3. Heat conductivity of strongly degenerate electrons in presence of magnetic field:
Lorentz approximation

The Boltzmann equation can be solved by Chapmen-Enskog method of successive approxi-
mation [7]. This method is used here for conditions, when distribution functions are close to their
values in thermodynamic equilibrium, and deviations are considered in a linear approximation.
Equation for second order deviation from the equilibrium distribution function had been derived in
[6] for a simple gas, see also [7]. The complexity of this equation, and rather narrow region where
second order corrections could be important, strongly restricted the application of this approach.

The zeroth approximation to the electron distribution function is a Fermi-Dirac distribution,
which is found by equating to zero of the collision integralJee from (2.2)

f0 = [1+exp

(

mev2−2µ
2kT

)

]−1, R
∫

f0dvi = ne. (3.1)

Here,µ is a chemical potential of electrons,k is Boltzmann’s constant,T is the temperature. The
nuclear distribution function in the zeroth approximationfN0 is assumed to be isotropic with respect
to the velocities and to depend on the local thermodynamic parameters.

In the first approximation, we seek for the functionf in the form: f = f0[1+ χ(1− f0)].

The functionχ admits representation of the solution in the form:

χ =−Ai
∂ lnT

∂ ri
−neDidi

G5/2

G3/2
, (3.2)

di =
ρN

ρ
∂ lnPe

∂ ri
−

ρe

Pe

1
ρ

∂PN

∂ ri
+

e
kT

(Ei +
1
c

εiklc0kBl). (3.3)
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The plasma is supposed to be quasineutral with a zero charge density. The functionsAi andDi

determine the heat transfer and diffusion. Substituting (3.2) in the equation forχ we obtain equa-
tions forAi, Di [7]. It was shown in [2],[1], that in presence of a magnetic field Bi, the polar vector
Ai (and similarlyDi) may be searched for in the form:

Ai = A(1)vi +A(2)εi jkv jBk +A(3)Bi(v jB j), (3.4)

Introducing a function: ξ = A(1)+ iBA(2), and dimensionless velocity:ui =
√ me

2kT vi, we obtain
the system forξ as

f0(1− f0)(u
2−

5G5/2

2G3/2
) =−iB f0(1− f0)

eξ
mec

ui (3.5)

+

∫

f0 fN0(1− f
′

0)(ξ ui −ξ
′
u
′

i)geNbdbdεdcNi.

Using relationsf ′0 = f0, ξ ′ = ξ , u′i = ui cosθ , and making integration overdcNi, the equation for
the functionξ may be written in the form:

f0(1− f0)(u
2−

5G5/2

2G3/2
) =−iB f0(1− f0)

eξ
mec

ui (3.6)

+ f0(1− f0)nNξ
∫

(1−cosθ)geNbdbdε .

The functionξ is defined by expression

ξ =
u2− 5

2
G5/2

G3/2

2πnN
∫ ∞

0 (1−cosθ)gbdb− iω
. (3.7)

We obtain in Lorenz approximation, withg12 = v,

∫ ∞

0
(1−cosθ)gbdb = 2

e4Z2

m2
ev3 Λ, ξ =

u2− 5
2

G5/2

G3/2

4πnN
( me

2kT

)3/2 e4Z2

m2
eu3 Λ− iω

. (3.8)

According to the complex form ofξ we have:

A(1) =
(u2− 5

2
G5/2

G3/2
)4πnN

( me
2kT

)3/2 e4Z2

m2
eu3 Λ

[

4πnN
( me

2kT

)3/2 e4Z2

m2
eu3 Λ

]2
+ω2

,

A(2) =
ω
B

u2− 5
2

G5/2

G3/2
[

4πnN
( me

2kT

)3/2 e4Z2

m2
eu3 Λ

]2
+ω2

. (3.9)

A(3) = A(1)(B = 0)−A(1). (3.10)

The expression for the heat flux is written as:
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qi =−
2π
3

m4
e

h3T

(

2kT
me

)7/2[

δi j

∫ ∞

0
f0(1− f0)A

(1)x5/2dx (3.11)

−εi jkBk

∫ ∞

0
f0(1− f0)A

(2)x5/2dx+BiB j

∫ ∞

0
f0(1− f0)A

(3)x5/2dx

]

∂T
∂x j

(3.12)

=−λ (1) ∂T
∂xi

− εi jkBkλ (2) ∂T
∂x j

−BiB jλ (3) ∂T
∂x j

(3.13)

= q(1)i +q(2)i +q(3)i , x = u2 . (3.14)

For strongly degenerate electrons atx0 ≫ 1 the integrals in (3.11) withA(1), A(2) A(3) from (3.9)-
(3.10) are expressed analytically, using expansion formula [13]

∫ ∞

0

f (x)dx
ex−x0 +1

=
∫ x0

0
f (x)dx+

π2

6
f
′
(x0)+ ... (3.15)

The average frequency of electron-ion collisionsνei is written in [9] in the form

νei =
4
3

√

2π
me

Z2e4nNΛ
(kT )3/2G3/2

1
1+ e−x0

. (3.16)

For strongly degenerate electrons it is expressed as

νei =
32π2

3
me

Z2e4ΛnN

h3ne
. (3.17)

Using (3.9), and writing the formula usingτd as an inverse value ofνei from (3.17), we write the
heat conductivity coefficients in the form

λ (1) =
5π2

6
k2T ne

me
τd











1

1+ω2τ2
d

−
6
5

ω2τ2
d

(1+ω2τ2
d )

2
−

π2

10





1

1+ω2τ2
d

(

x3

x3
0

)





′′

|x=x0











, (3.18)

λ (2) =−
4π2

3
k2T ne

me

τ2
d ω
B











1

1+ω2τ2
d

−
3
4

ω2τ2
d

(1+ω2τ2
d )

2
−

π2

16





1

1+ω2τ2
d

(

x3

x3
0

)





′′

|x=x0











. (3.19)

B2λ (3) = λ (1)(B = 0)−λ (1). (3.20)

In the case of strongly degenerate electrons the equations (3.9)-(3.11),(3.18),(3.19) give an asymp-
totically exact solution for the heat conductivity coefficients, because collisions between electrons
can be neglected in this case. The difference between the exact [λ (1)]/[λ (1)(B = 0)] from (3.18),
and phenomenological account of the magnetic field influenceon the heat conductivity coefficients
(1.1) is presented in Fig. 1. Here the ratios between the values, which are perpendicular and par-
allel to magnetic field, are plotted forkT = 0.09E f . At ωτ = 1.5 the exact value of this ratio is 4
times smaller than the phenomenological one.
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Figure 3: The plots of the ratioλ⊥/λ‖ as a function ofωτ are presented for phenomenologically obtained
heat conductivity (dash-dot line) for comparison with heatconductivity obtained by the solution of Boltz-
mann equation in Lorentz appoximation (solid line) withkT = 0.09E f .

4. Discussion

In this paper a thermal conductivity tensor is found for degenerate non-relativistic electrons
in presence of a non-quantizing magnetic field. The heat conductivity coefficients for strongly
degenerate electrons, in presence of magnetic field, are obtained asymptotically exactly in Lorentz
approximation, when the electron-electron collision may be neglected in comparison with electron-
nuclei collisions at nondegenerate nuclei.

In most works considering the heat conductivity in astrophysical objects, in the neutron stars in
particular, following Flowers and Itoh [8], the influence ofthe magnetic field on the heat flux was
taken into account phenomenologically using the coefficient 1/(1+ω2τ2), which decreases the
heat flux in the direction perpendicular to the direction of amagnetic field. Our results, obtained by
the solution of Boltzmann equation show, that the influence of the magnetic field on the coefficients
of heat conductivity is stronger, and has a more complicatedcharacter Fig. 1.

The new coefficients can be used for calculation of temperature distribution in white dwarfs,
near the surface, and in the crust of magnetized neutron star. The temperature distribution over the
surface of NS is important for understanding of the geometryof magnetic field inside the neutron
star and near its surface.
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