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1. Introduction

X-ray observations of thermal emission show periodic \alitées in single neutron stars[23],
indicating to the anisotropic temperature distributionclskind of a single neutron star variability
was predicted in [4] in 1976 year. A periodic X-ray variatyilof a single neutron star is presented
in Fig.1 from [10].
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Figure 1: Pulse profile of RBS1223 in the 0.012-0.5 keV (soft) and Oke\t (hard) energy bands, together
with the ratio hard/soft obtained from the EPIC-pn data efian 2003 XMM observations, from [10].

The list of 7 known single neutron star, named in the lite&ats "magnifucent seven", with some
of their properties, is presented in Fig.2, see [19].

Heat transfer in the envelopes of NS plays crucial role inyr&spects of evolution of these
stars. Thermal conductivity is the basic quantity neededtédiculating the relationship between
the internal temperature of a neutron star and its effestiviace temperature. To calculate thermal
conductivity we should know the transport properties of asgematter where electrons are degen-
erate, and form a nearly ideal Fermi-gas [22]. The ions auallystreated as non-degenerate. They
may be in a gaseous state, may form a Coulomb liquid or a Cdutoystal [16]. Under such con-
ditions, electrons are the most important heat carrierd tla@ thermal conductivity is determined
by electron motion. The magnetic field limits the motion @attons in directions perpendicular to
the field lines and, since they are the main carriers of thetheasport, the thermal conductivity in
these directions is suppressed, while remaining unafleadteng the field lines. The conductivity of
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Source, RX J Spin Periods, s Amplitude/2 Temperature, eV i Ahsnrpn‘nn
ine energy, eV

1856.5-3754 |7.06 [1.5% 60-62 no

0720.4-3125 |8.39 1% 85-87 1270

1605.3+3249 | ., )

(RBS 1556) | (- 93-96 450

1308.642127 lias ~ )

(RBS 1223) _10.31 18% 102 :300

2143.0+0654 "~ .

(RBS 1774) [9.44 14% 102-104 700

0806.4—4123 |11.37 6% 92 460

0420.0-5022 |3.45 13% 45 330

Figure 2: The list of single neutron star X-ray sources (magnificemtagwith their physical characteristics,
from [19]

electrons in NS and white dwarfs in presence of a magnetit fiak studied in [8, 18]. The ratio
between thermal conductivity along and across magnetit lfirets considered in [8] was taken as

AL 1

A 1t (wn)? &

and was used also in [18]. Hegeis electron cyclotron frequency,is the time between collisions.
The influence of the magnetic field on the electron heat cdiwlycin the form (1.1) was used
in subsequent papers, see [11, 21]. Classical methods efikigas theory were developed by
Maxwell, Boltzmann, Gilbert, Enskog and Chapman. Theséhaut are presented in the mono-
graph of Chapman and Cowling [7]. Here we find an analytictemiufor the heat conductivity
tensor of strongly degenerate electrons in a magnetic fielthe Lorentz approximation, which
is asymptotically exact in this case, showing a more corafdid dependence on the magnetic
field strength than (1.1). The kinetic coefficients in the q@generate plasma, with and without
magnetic field had been calculated in [14, 15, 2, 1], usingp@tem-Enskog expansion method.
Coefficients of the heat conductivity tensor in a degenesteitar cores were calculated in Lorentz
approximation for a hydrogen plasma in [20]. A non-relativi calculation, based on the quantum
Lenard-Balescu transport equation for the thermal andredatconductivities of plasma of highly
degenerate, weakly coupled electrons and nondegener@adywcoupled ions was performaed in
[12].

Here we present the solution of the Boltzmann equation fongty degenerate electrons in
non-quantized magnetic field, described in [3]. For strpridggenerate electrons we obtain an
asymptotically exact analytical solution for the heat astdiity tensor in presence of a magnetic
field. This solution has considerably more complicated ddpace on the magnetic field than those
in previous publications, and gives several times smaditive value of a thermal conductivity
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across the magnetic field.

2. Boltzmann equations and transfer equations

We use a Boltzmann equation for electrons, in a magnetic figtt an allowance of arbitrary
degeneracy, and assuming them as non-relativistic. Wedsmrihe electron gas in a crystal lattice
of heavy nuclei, and take into account the interaction ofdleetrons with a nondegenerate nuclei
and with one another. The nuclear component of the mattdrarctust is in a crystal state, and
therefore the isotropic part of the distribution functifg may differ from the Maxwellian distri-
bution. If the mass of the nuclensy is much greater, than the electron magsthen to the terms
~ me/my the details of the distribution functiofy are unimportant, and the calculations can be
made for arbitraryfyo.

Boltzmann equation, which describes the time variatiorhefelectron distribution functioh
in presence of the electric and magnetic fields is writter2a&]

%—’_Cig_rfi rre]e(E|+18|k|CkB|)g—]:+J 0. (2.1)
Here (—e),me are the charge (negative) and the mass of the eledgoB, are the strength of the
electric field, and magnetic inductiogy is the totally antisymmetric Levi-Civita tensar,is the
speed of the light; is a velocity vector in the laboratory framg,is a particle radius-vector in the
laboratory frame. The collision integraffor arbitrary degenerate electrons, from [7, 17], is writte

in the form,

J=Joe+Jn = R/[f'fi(l— f)(1— f) — ff(1— f)(1— f;)] x geebdbdedcy; +
/ffN 1—f)— ffy(1— f)] x gewbdbdedeni.  (2.2)

Here, the impact parametbyande are geometrical parameters of particle collisions withtre¢
velocities gee, gen, R = ”ﬁ . The integration in electron part of the collision integral (R.2) is
performed over the phase space of the incoming particleg)( and the physical space of their
arrival (bdbde) [7]. The velocity functions after collision are marked witbuches.

The Boltzmann equation for electrons with a binary collisiotegral (2.2) may be applied in
conditions, when the electron gas is considered as ideal the kinetic energy of the electrons
is much larger than the energy of electrostatic interastidn the neutron stars and white dwarfs
we have a plasma at very large density, when it is importanéke into account the electrons
degeneracy. It is known from the statistical physics, thgaa of strongly degenerate electrons
becomes ideal, because large Fermi energy substitutegheetbermal energy [13]. Therefore
the calculations in this paper are applied to the high dgndasma with degenerate electrons.
Detailed discussion of the applicability of a binary cadisintegral (2.2), and its modifications for
high density non-degenerate gases may be found in [7]

The collision integral similar tQe from (2.2) for strongly degenerate neutrons in nuclear
matter was written in [17], see also [5]. It was found that fhahe presence of non-degenerate
heavy nuclei and strongly degenerate neutron, the inpublisSions between them in the heat
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transfer and diffusion coefficients is negligibly smallciomparison with neutron-nuclei collisions.
The same situation we have for the strongly degenerate@hsctTherefore for strongly degenerate
electrons the Lorentz approximation, with account of salis between light and heavy particles
only, is asymptotically exact. So for our consideration \&a oeglectle in comparison withlgy,
and we can equatk= Jg in the (2.2).

Lets introduce the thermal velocity of electrons= ¢, — coi, Wherecg; is the mass-average
velocity. So we can write the Boltzmann equation with respethe thermal velocity in the form

[1]

df _0f e . 1. dcgi | df
E+V|a—ri— I‘T_le(EI—I_EEIkIVkBI)—i—T 0_V| (2.3)
e of Jdf oJdcg
———&yUB=— — —w—+J=0. 2.4
meCE|k|Vk v v Vic o + (2.4)

The transfer equations for the electron concentratioral tmomentum, and electron energy, in
the two-component mixture of electrons and nuclei, can heiodd in a usual manner from the
Boltzmann equation in a quasi-neutral plasma [7, 15, 2, 1].

3. Heat conductivity of strongly degenerate electrons in pgsence of magnetic field:
Lorentz approximation

The Boltzmann equation can be solved by Chapmen-Enskogoohethsuccessive approxi-
mation [7]. This method is used here for conditions, whetrithigtion functions are close to their
values in thermodynamic equilibrium, and deviations aras@mbered in a linear approximation.
Equation for second order deviation from the equilibriurstidbution function had been derived in
[6] for a simple gas, see also [7]. The complexity of this dium and rather narrow region where
second order corrections could be important, stronglyiotstl the application of this approach.

The zeroth approximation to the electron distribution tiortis a Fermi-Dirac distribution,
which is found by equating to zero of the collision integialfrom (2.2)

fo=[1+ exp(%)]‘l, R/ fodvi = Ne. (3.1)
Here, u is a chemical potential of electrorisjs Boltzmann's constant is the temperature. The
nuclear distribution function in the zeroth approximatig is assumed to be isotropic with respect
to the velocities and to depend on the local thermodynantarpeters.

In the first approximation, we seek for the functiéin the form: f = fo[1+ x(1— fo)].

The functiony admits representation of the solution in the form:

G
ainT — neDid 5/2 (32)
0ri

- _A| 9
X Ga/2

_poR p1oR e 1
dl B p ari Pep ari +kT (E|+C£Ik|COkBI). (33)
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The plasma is supposed to be quasineutral with a zero chargetyl The functiong\y and D;
determine the heat transfer and diffusion. Substituting)(i& the equation fox we obtain equa-
tions forA;, D; [7]. It was shown in [2],[1], that in presence of a magnetitdfig;, the polar vector
A (and similarlyD;) may be searched for in the form:

A= A(1>Vi —|—A(2>Eijij Bk—|—A(3>Bi (Vij), (3.4)

Introducing a function: & = AY +iBA®, and dimensionless velocity; = /7=, we obtain
the system fo€ as

5G e
_ 2 D952y &
fO(l fo)(u 263/2) Bfo( fo) m Cul (35)

+ / fofo(1— o) (Eui — & U )genbdbdedcyi.

Using relationsf) = fo, £’ = &, uf = u;cosf, and making integration ovelfcy;, the equation for
the functioné may be written in the form:

ed

5G
5/2) = —IBfo(l— fo)@Ui (36)

~ 2G3,
o1 fo)né / (1— cos0)geybdbde.

fo(l— fo)(u2

The functioné is defined by expression

3/2
_ 3.7
¢ 2my j’c‘,”(l cos6)gbdb — 3.7)
We obtain in Lorenz approximation, with, = v,
5Gs)2
e422 u— 2Gs)y
(1—cosf)gbdb = 2——A, &= / . (3.8)
/ e’ ammy (§%)¥? EEN—iw
According to the complex form of we have:
3/2 72
o 3D (35)7 B
3/2 efz2 ’
{ N (7 m%%ﬁ/\} + o
W2 5%
A2 9 %2 (3.9)
B 3/2 72
(a7 (3%)°7 €ZA] "+ 02
A® = AL B=0)—-AD, (3.10)

The expression for the heat flux is written as:
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7/2 .00
O _ mme <2kT> [dj/o fo(1— fo)ADx%2dx (3.11)

3T\ me
—s.,kBk/ fo(1— fo)AD5/2 dx+B.B,/ fo(1— fo)A®)x8/2dx } - (3.12)
J
o1 aT aT
=2 BA@ 2 —BBjA® 3.13
% — &ijkbBk Ix; ox; ( )
=qV+q?+q¥, x=u . (3.14)

For strongly degenerate electronscgts> 1 the integrals in (3.11) with®, A A®) from (3.9)-
(3.10) are expressed analytically, using expansion faafiL8]

® fdxs T f 3.15
The average frequency of electron-lon collisiagsis written in [9] in the form
2
v — 4 [2m Z2e*nyA 1 (3.16)
3 rr]e(kT)3/ZG3/2 14eX’

For strongly degenerate electrons it is expressed as

32 7% Any

Va =3 e hene

Using (3.9), and writing the formula using as an inverse value of; from (3.17), we write the
heat conductivity coefficients in the form

(3.17)

"

572 K2Tn 1 6 o1z L
WD s Sl e mirric i ] ey e ISR SRS
Me +w?1g 5 (1+w?g) l+w21§<%)
L@ AP KT T 1 3 g w1 e (3.19)
3 me B |1+w?1? 4(1+w?T3)? 16|91, w2r§(§) o |
B2AG = AO(B=0)-2", (3.20)

In the case of strongly degenerate electrons the equaBd®s(@.11),(3.18),(3.19) give an asymp-
totically exact solution for the heat conductivity coefficts, because coIIisions between electrons
can be neglected in this case. The difference between trat [@x&]/[A Y (B = 0)] from (3.18),
and phenomenological account of the magnetic field influendbe heat conductivity coefficients
(1.1) is presented in Fig. 1. Here the ratios between theesalhich are perpendicular and par-
allel to magnetic field, are plotted f&T = 0.09E;. At wt = 1.5 the exact value of this ratio is 4
times smaller than the phenomenological one.
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Figure 3: The plots of the ratia\, /A as a function otot are presented for phenomenologically obtained
heat conductivity (dash-dot line) for comparison with heatductivity obtained by the solution of Boltz-
mann equation in Lorentz appoximation (solid line) with = 0.09E;.

4. Discussion

In this paper a thermal conductivity tensor is found for degate non-relativistic electrons
in presence of a non-quantizing magnetic field. The heat wdty coefficients for strongly
degenerate electrons, in presence of magnetic field, aatmeldtasymptotically exactly in Lorentz
approximation, when the electron-electron collision maybglected in comparison with electron-
nuclei collisions at nondegenerate nuclei.

In most works considering the heat conductivity in astragitsd objects, in the neutron stars in
particular, following Flowers and Itoh [8], the influencetbe magnetic field on the heat flux was
taken into account phenomenologically using the coefficighil + w?1?), which decreases the
heat flux in the direction perpendicular to the direction afagnetic field. Our results, obtained by
the solution of Boltzmann equation show, that the influerfdbemagnetic field on the coefficients
of heat conductivity is stronger, and has a more compliceltedacter Fig. 1.

The new coefficients can be used for calculation of temperatistribution in white dwarfs,
near the surface, and in the crust of magnetized neutranTdiartemperature distribution over the
surface of NS is important for understanding of the geometttjagnetic field inside the neutron
star and near its surface.
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