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Generalized TMDs (GTMDs) of hadrons are the most general two-parton correlation functions.
Upon certain projections, several GTMDs reduce to generalized parton distributions (GPDs) and
transverse momentum dependent parton distributions (TMDs), respectively. Therefore, GTMDs
can be considered as partonic "mother functions". Moreover, two of the GTMDs play an impor-
tant role in the nucleon spin structure. We show that, by means of the exclusive double Drell-Yan
process, GTMDs for quarks can in principle be measured. This is the first known process which is
sensitive to these objects. Specific GTMDs can be addressed via suitable polarization observables.
We also identify other processes that are directly sensitive to GTMDs.
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1. Introduction

Multi-dimensional imaging of strongly interacting systems is currently a very active research
area. The key quantities of this field are new types of parton distribution functions (PDFs) which
are extensions of the one-dimensional PDFs that became textbook material — generalized parton
distributions (GPDs) and transverse momentum dependent parton distributions (TMDs), which
provide multi-dimensional images of hadrons in position space and momentum space, respectively.
Studying GPDs and TMDs is a core mission at several particle accelerator facilities worldwide and,
in particular, at a potential future electron-ion collider (EIC) in the United States [1, 2].

In this context, GTMDs [3, 4, 5] have attracted enormous interest over the past few years.
Since several GTMDs reduce to GPDs and TMDs in certain kinematical limits, they are often de-
noted as “mother distributions." The Fourier transform of GTMDs are Wigner functions [6, 7],
the quantum-mechanical counterpart of classical phase-space distributions. Partonic Wigner func-
tions contain information on the five-dimensional parton structure — the (average) longitudinal
and transverse momentum as well as transverse position of partons inside a hadron [8]. Two of the
GTMDs — F1,4 and G1,1 in the notation of [4] — play a crucial role in relation to the spin structure
of the nucleon. Both functions describe the strength of spin-orbit interactions that are similar to
spin-orbit interactions in atomic systems like hydrogen [9, 10, 11]. In particular, there is a direct
relation between F1,4 and the orbital angular momentum (OAM) of partons inside a longitudinally
polarized nucleon [9, 12, 13]. It is remarkable that the same relation between F1,4 and the quark
OAM holds for both commonly used OAM definitions — the (canonical) one by Jaffe and Manohar
(LJM) [14], and the one by Ji (LJi) [15]. This representation of OAM also allows for an intuitive
interpretation of the difference between LJM and LJi [16]. Moreover, it gives access to the so far
elusive LJM in quantum chromodynamics (QCD) on the lattice [12, 17, 18].

While a number of model calculations of GTMDs is available by now, for many years it was
unknown how GTMDs can be measured. Only recently it was shown that GTMDs of gluons can, in
principle, be accessed via diffractive di-jet production in deep-inelastic lepton-nucleon and lepton-
nucleus scattering [19, 20, 21], as well as virtual photon-nucleus quasi-elastic scattering [22]. Some
numerical studies of gluon GTMDs at small x, based on a saturation model, were performed in
Refs. [23, 22]. Not long ago, it was also pointed out that gluon GTMDs can be studied in proton-
nucleus collisions [24]. With the exception of [21], the papers on observables for GTMDs deal
with the small-x region of parton saturation.

In a recent paper [25] we identified, for the first time, a physical process which gives access
to quark GTMDs. Specifically, we showed how GTMDs enter the exclusive pion-nucleon double
Drell-Yan process, πN→ (`−1 `

+
1 )(`

−
2 `

+
2 )N

′, where one detects two di-lepton pairs plus a nucleon.
To this end, we performed a leading-order (LO) analysis in perturbative QCD. Our main focus was
on the GTMDs F1,4 and G1,1, which can be measured through suitable polarization observables.
We also argued that other quark GTMDs could be systematically studied in the same process. Here
we report on our work in [25].

2. Generalized TMDs

Let us first recall the definition of quark GTMDs for a nucleon [3, 4]. GTMDs parameterize
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the off-forward transverse momentum dependent quark-quark correlator

W q [Γ]
λ ,λ ′ (P,∆,x,

~k⊥) =
∫ dz− d2~z⊥

2(2π)3 eik·z 〈p′,λ ′| q̄(− z
2)ΓW (− z

2 ,
z
2)q( z

2) |p,λ 〉
∣∣∣
z+=0

, (2.1)

where q indicates the quark flavor and Γ a generic gamma matrix. The 4-momenta and the helicities
of the incoming (outgoing) nucleon are denoted by p(p′) and λ (λ ′), respectively. We also use the
definitions P=(p+ p′)/2 and ∆= p′− p. The two quark fields of the operator in (2.1) are separated
along the light-cone minus direction z− and the transverse direction~z⊥. (We define the light-cone
components of a generic 4-vector a=(a0,a1,a2,a3) through a±=(a0±a3)/

√
2 and~a⊥=(a1,a2).)

The Wilson line W makes the bi-local operator color gauge invariant. The average longitudinal and
transverse quark momenta are given by x and~k⊥, respectively. Strictly speaking, some modification
of the definition in (2.1) is needed in order to avoid the infamous light-cone singularities. One way
of regulating such singularities is to invoke the scheme proposed in Ref. [26], which is widely used
in the TMD case. More information on this point can be found, for instance, in [27].

For pion-nucleon Drell-Yan one needs the parametrization of (2.1) in terms of GTMDs for
Γ = γ+,γ+γ5. In the notation of [4] one has [25]

W q [γ+]
λ ,λ ′ =

1
2M

ū(p′,λ ′)
[

Fq
1,1 +

iσ i+ki
⊥

P+
Fq

1,2 +
iσ i+∆i

⊥
P+

Fq
1,3 +

iσ i jki
⊥∆

j
⊥

M2 Fq
1,4

]
u(p,λ )

=
1

M
√

1−ξ 2

{[
Mδλ ,λ ′−

1
2

(
λ∆

1
⊥+ i∆2

⊥

)
δλ ,−λ ′

]
Fq

1,1 +(1−ξ
2)
(

λk1
⊥+ ik2

⊥

)
δλ ,−λ ′ F

q
1,2

+ (1−ξ
2)
(

λ∆
1
⊥+ i∆2

⊥

)
δλ ,−λ ′ F

q
1,3

+
iε i j
⊥ki
⊥∆

j
⊥

M2

[
λMδλ ,λ ′−

ξ

2

(
∆

1
⊥+ iλ∆

2
⊥

)
δλ ,−λ ′

]
Fq

1,4

}
, (2.2)

where the corresponding equation for W q [γ+γ5]
λ ,λ ′ can be found in [25]. In order to evaluate the first

line of Eq. (2.2) we considered u(p,λ ) and u(p′,λ ′) as light-cone helicity spinors [28, 29]. Note
that M is the nucleon mass, and ξ = (p+− p′+)/(p++ p′+) =−∆+/(2P+) characterizes the lon-
gitudinal momentum transfer to the nucleon. We also use σ µν = i[γµ ,γν ]/2, and ε

i j
⊥ = ε−+i j with

the convention ε0123 = 1. The kinematical arguments on the l.h.s. of (2.2) are suppressed. For a
generic GTMD one has X = X(x,ξ ,~k⊥,~∆⊥), where the dependence on~k⊥ and ~∆⊥ is through the
scalar products which can be formed by these vectors. We also recall that, in general, GTMDs are
complex-valued functions [3, 4]. As discussed above our focus is on the GTMDs F1,4 and G1,1.
The real part of the GTMDs F1,1 and G1,4 has a close connection to the distribution of unpolar-
ized quarks in an unpolarized nucleon and the distribution of longitudinally polarized quarks in a
longitudinally polarized nucleon, respectively [4, 9]. Since these distributions are large we also
consider observables which are sensitive to their interference with F1,4 and G1,1. Below we will
concentrate on the helicity-conserving terms in (2.2) (and the corresponding equation for W q [γ+γ5]

λ ,λ ′ )
that are proportional to δλ ,λ ′ .

The cross section for the double Drell-Yan process is also sensitive to the matrix element

Φ
q(x,~k2

⊥) =
∫ dz+ d2~z⊥

2(2π)3 ei(k−p/2)·z 〈0| q̄(− z
2)γ

−
γ5 W (− z

2 ,
z
2)q( z

2) |π(p)〉
∣∣∣
z−=0

. (2.3)
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Figure 1: LO diagrams for the exclusive double Drell-Yan process π N→ γ∗1 γ∗2 N′.

Modulo pre-factors, Φq(x,~k2
⊥) is the light-cone wave function of the pion [29, 30]. The dou-

ble Drell-Yan process implies in both Eq. (2.1) and Eq. (2.3) a staple-like past-pointing Wilson
line [31], identical to the one that appears in TMD factorization of the ordinary Drell-Yan pro-
cess [32, 33, 34].

3. Double Drell-Yan process and polarization observables

To calculate observables we consider the production of two virtual photons rather than two
di-lepton pairs. Specifically, we study the process

π(pb)+N(pa,λa)→ γ
∗
1 (q1,λ1)+ γ

∗
2 (q2,λ2)+N′(p′a,λ

′
a) . (3.1)

From here on the variables of the incoming and outgoing nucleon carry an index a compared to
above. We concentrate on large s = (pa+ pb)

2 ≈ 2p+a p−b , large photon virtualities q2
1, q2

2, and small
transverse photon momenta, |~q 2

i⊥| � q2
i . In this region one can use TMD-type factorization. The

longitudinal momentum transfer to the nucleon can be written as ξa = (q+1 +q+2 )/(2P+
a ). The LO

diagrams for this process are shown in Fig.1. The scattering amplitude depends on the helicities of
the nucleons and photons,

T λ1,λ2
λa,λ ′a

= T µν

λa,λ ′a
ε
∗
µ(λ1)ε

∗
ν(λ2) , (3.2)

where εµ(λ1) and εµ(λ2) are the photon polarization vectors. One finds [25]

T µν

λa,λ ′a
= i ∑

q,q′
eqe′qe2 1

Nc

∫
d2~ka⊥

∫
d2~kb⊥δ

(2)
(

∆~q⊥
2
−~ka⊥−~kb⊥

)
Φ

q′q
π (xb,~k2

b⊥)[
− iεµν

⊥

(
W qq′ [γ+]

λa,λ ′a
(xa,~ka⊥)−W qq′ [γ+]

λa,λ ′a
(−xa,−~ka⊥)

)
−gµν

⊥

(
W qq′ [γ+γ5]

λa,λ ′a
(xa,~ka⊥)+W qq′ [γ+γ5]

λa,λ ′a
(−xa,−~ka⊥)

)]
, (3.3)

where eq and e′q are the quark charges in units of the elementary charge e, and Nc is the number
of quark colors. The expression in (3.3) describes the double Drell-Yan process for all possible
pion and nucleon charge states. Note that Φ

q′q
π is defined as in (2.3), but with the operator q̄′γ−γ5 q.

Isospin symmetry provides Φdu
π+ = Φud

π− =
√

2Φuu
π0 =−

√
2Φdd

π0 . Likewise, W qq′[Γ] is given by (2.1)

3
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with the operator q̄Γq′. With this notation one can also describe transitions between different nu-
cleons. Like in the case of transition GPDs, for the GTMDs one has Xdu

p→n = Xud
n→p = Xu

p−Xd
p [35].

In Eq. (3.3) we use the vector ∆~q⊥ =~q1⊥−~q2⊥. The transverse momenta of the photons can be ex-
pressed by ∆~q⊥ and the transverse momentum transfer to the nucleon~∆a⊥ =−(~q1⊥+~q2⊥). While
the amplitude contains an integration upon the transverse momenta of the quarks, their longitudi-
nal momenta are fixed according to xa = (q+1 −q+2 )/(2P+

a ), xb = 1−q−1 /p−b = q−2 /p−b . The value
for xa implies the so-called ERBL region [36, 37], characterized by −ξa ≤ xa ≤ ξa, in which the
GTMD matrix element describes the emission of a quark-antiquark pair from the nucleon. The
amplitude, a priori, depends on both the F1,i and the G1,i (i = 1, . . . ,4). From (3.3) one readily sees
that the dominant contribution to the amplitude is for transversely polarized photons. (Note that
gµν

⊥ = gµν −nµ
a nν

b −nν
a nµ

b , with the light-like vectors na = (1,0,0,−1)/
√

2, nb = (1,0,0,1)/
√

2.)
The relation between the scattering amplitude in (3.2) and the cross section in the center-of-

mass frame reads [25]

dσ
λ1,λ2
λa,λ ′a

=
π

2s3/2

1+ξa

1−ξa
|T λ1,λ2

λa,λ ′a
|2δ (p′0a +q0

1 +q0
2−
√

s)
d4q1

(2π)4
d4q2

(2π)4 , (3.4)

where we have already integrated over the phase space of the outgoing nucleon. Below we con-
sider the unpolarized cross section, single-spin asymmetries (SSAs), and double-spin asymmetries
(DSAs). For this purpose it is convenient to introduce

τUU =
1
2 ∑

λ ,λ ′
|Tλ ,λ ′ |2 , (3.5)

τLU =
1
2 ∑

λ ′

(
|T+,λ ′ |2−|T−,λ ′ |2

)
, (3.6)

τLL =
1
2

((
|T+,+|2−|T+,−|2

)
−
(
|T−,+|2−|T−,−|2

))
, (3.7)

where summation over the photon polarizations is implied. Obviously, τLU determines the numera-
tor of the longitudinal target SSA, whereas τLL describes the longitudinal DSA with polarization of
both the target and the recoil nucleon. Spin asymmetries for transverse polarization in the (trans-
verse) x-direction or y-direction are defined accordingly.

In order to get direct access to F1,4, that is, without interference with other GTMDs, one has
to consider a linear combination of (polarization) observables [25],

1
4
(
τUU + τLL− τXX − τYY

)
=

2
M4

(
ε

i j
⊥∆qi

⊥∆
j
a⊥
)2C(+)

[
~β⊥ ·~ka⊥F1,4 Φπ

]
C(+)

[
~β⊥ ·~ka⊥F∗1,4 Φ

∗
π

]
+ 2C(+)

[
G1,4 Φπ

]
C(+)

[
G∗1,4 Φ

∗
π

]
. (3.8)

In Eq. (3.8) we use the shorthand notation

C(±)
[
w(~ka⊥,~kb⊥)X Φπ

]
=

e2√
1−ξ 2

a Nc
∑
q,q′

eqe′q

∫
d2~ka⊥

∫
d2~kb⊥ δ

(2)
(

∆~q⊥
2
−~ka⊥−~kb⊥

)

× w(~ka⊥,~kb⊥)
[
Xqq′(xa,~ka⊥)±Xqq′(−xa,−~ka⊥)

]
Φ

q′q
π (xb,~k2

b⊥) , (3.9)
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with w(~ka⊥,~kb⊥) a generic weight function. The vector ~β⊥ in (3.8) reads

~β⊥ =
~∆2

a⊥∆~q⊥− (~∆a⊥ ·∆~q⊥)~∆a⊥
~∆2

a⊥∆~q 2
⊥− (~∆a⊥ ·∆~q⊥)2

. (3.10)

We repeat that in order to obtain Eq. (3.8) the photon polarizations have been summed over. While
in that case there is no interference between F1,4 and other GTMDs, one still has a second term
which is given by G1,4. As already mentioned, G1,4 is presumably large, and therefore it may
actually be difficult to address F1,4 through this observable, unless one has a reliable estimate of
G1,4. However, one can separate the two contributions in (3.8) by not summing over the photon
polarizations. For instance, if one projects on appropriate linear polarizations of the photons, the
contributions of either F1,4 or G1,4 can be switched off [31]. This result, which holds irrespective
of the polarization states of the nucleons, follows from the expression in (3.3). To address G1,1

one can study 1
4

(
τUU + τLL + τXX + τYY

)
[25]. The result for this linear combination is identical to

(3.8), but with the replacements F1,4→ G1,1 and G1,4→ F1,1. Again, the contributions from G1,1

and F1,1 can be separated by measuring suitable photon polarizations.

Apart from the fact that a considerable number of different polarization measurements is re-
quired, the observable in (3.8), as well as the corresponding observable for G1,1, may have a draw-
back: In these linear combinations one has cancellations of potentially large terms [31]. Specifi-
cally, for instance the individual polarization observables entering (3.8) have terms proportional to
F1,1 F∗1,1, which can be expected to be large (see the discussion in the paragraph after Eq. (2.2)). It
may therefore be beneficial to also explore interference between F1,4 (or G1,1) and other GTMDs.
Such an interference shows up in the following linear combination of longitudinal SSAs [25]:

1
2
(
τLU + τUL

)
=

1
2
(
|T+,+|2−|T−,−|2

)
=

4
M2 ε

i j
⊥∆qi

⊥∆
j
a⊥ Im

{
C(−)

[
F1,1 Φπ

]
C(+)

[
~β⊥ ·~ka⊥F∗1,4 Φ

∗
π

]
−C(+)

[
G1,4 Φπ

]
C(−)

[
~β⊥ ·~ka⊥G∗1,1 Φ

∗
π

]}
. (3.11)

We point out that the expressions for τLU or τUL alone are more complicated as they contain addi-
tional GTMDs [31]. More polarization observables exist which involve interference between F1,4

(or G1,1) and other GTMDs, but the observable in (3.11) gives the simplest expression [31]. Note
that on the r.h.s. of (3.11) the imaginary part of products of GTMDs appears. According to current
knowledge the GTMDs most relevant for the spin structure of the nucleon are ReF1,4 and ReG1,1.
Though these functions contribute to (3.11) they interfere with ImF1,4 and ImG1,1, respectively.
At present, there exists no information on the latter functions, and they may in fact be small. This
issue can be overcome by considering the observable 1

2

(
τXY − τY X

)
, whose result agrees with the

r.h.s. of (3.11) but with Re{. . .} instead of Im{. . .}. Finally, we repeat that F1,1 (and G1,4) are
presumably large. Therefore, a term of the form F1,1 F∗1,4 can be expected to be larger than the
term F1,4 F∗1,4 which appears in Eq. (3.8). Presently available model calculations for GTMDs do not
allow one to quantify this statement in the kinematical (ERBL) region of interest.

5
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4. Summary and Outlook

We have shown that GTMDs for quarks can be studied through the exclusive double Drell-
Yan process [25]. Specifically, to leading order in perturbative QCD, this process in sensitive to
GTMDs in the ERBL region. The main focus was on the GTMDs F1,4 and G1,1 which recently
attracted much attention because of their relation to the spin structure of the nucleon. The double
Drell-Yan process leads to a staple-like Wilson line for the operator definition of the GTMDs [31],
providing the connnection to the canonical OAM (LJM) [12]. We have proposed several polar-
ization observables which can give access to these GTMDs, either directly or through interference
with other GTMDs. In a similar manner, other leading-twist GTMDs could be explored via suitable
polarization observables [31].

Several extensions of our work can be envisioned. An attempt should be made to numeri-
cally estimate both the unpolarized cross section and the various spin asymmetries to find out if
the reaction πN → (`−1 `

+
1 )(`

−
2 `

+
2 )N

′ is measurable at existing facilities. We repeat that the exclu-
sive double Drell-Yan reaction is the first known exclusive process involving the nucleon which
is directly sensitive to transverse quark momenta. It therefore holds promise to give experimen-
tal access to the so far elusive GTMDs for quarks. We also note that one can perform a similar
analysis for nucleon-nucleon collisions [31]. Production of heavy gauge bosons instead of photons
may be considered as well. Moreover, hadronic final states typically give rise to higher count rates.
One such example is the process pp→ ηcηc pp, which can basically be treated along the lines dis-
cussed above, though gluon GTMDs enter the leading-order analysis [31]. One might expect that
arguments similar to the ones used to justify factorization for inclusive double-parton scattering
(see, e.g., Refs. [38, 39, 40]) apply to these proposed processes. We finally point out that the type
of reactions discussed here could also constrain GPDs in the ERBL region, where experimental
information is still sparse — see Refs. [41, 42, 43] for related work on GPDs.
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