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In these proceedings we present results for the renormalization of fermion bilinear operators
which contain a Wilson line, to one-loop level in lattice perturbation theory. These operators
are needed for the calculation of the so-called quasi-PDFs, recently proposed by X. Ji. Our calcu-
lations have been performed for a variety of formulations, including Wilson/clover fermions and
a wide class of Symanzik improved gluon actions.

We focus on aspects related to the renormalization of the quasi-PDFs, which is a highly nontrivial
component of their calculation. The extended nature of the Wilson-line operators results in addi-
tional divergences as compared to ultra-local currents. More precisely, there is a linear, as well as
logarithmic divergence with the lattice spacing.

We demonstrate how certain operators mix in lattice regularization and we compute the finite mix-
ing coefficients. These are necessary to disentangle individual matrix elements for each operator
from lattice simulation data. Furthermore, based on our findings in the perturbative calculation,
we develop a non-perturbative prescription to extract the multiplicative renormalization and mix-
ing coefficients.
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Renormalization of quasi-PDFs

1. Introduction

Parton distribution functions (PDFs) are important tools to study the the quark and gluon
structure of hadrons. PDFs are light-cone correlation functions and, thus, they cannot be computed
directly on a Euclidean lattice. Recently, a direct approach was proposed by X. Ji [1], according
to which one may compute purely spatial matrix elements, the so called quasi-distribution func-
tions (quasi-PDFs), which are accessible in Lattice QCD. For sufficiently large momenta, one can
establish a connection with the physical PDFs through a matching procedure.

The extraction of the quasi-PDFs in lattice simulations involves computing matrix elements
of gauge-invariant nonlocal operators, which are made up of a product of an anti-quark field at
position x, a Dirac gamma structure, a path-ordered exponential of the gauge field (Wilson line)
along a path joining points x and y, and a quark field at position y. The renormalization of Wilson
loops was studied perturbatively, in dimensional regularization (DR) for smooth contours [2] and
for contours containing singular points [3]. It was shown that smooth Wilson loops in DR are finite
functions of the renormalized coupling, while the presence of cusps and self-intersections intro-
duces logarithmically divergent multiplicative renormalization factors. It was also demonstrated
that other regularization schemes are expected to lead to further renormalization factors which are
linearly divergent with the dimensionful ultraviolet cutoff a.

The quasi-PDFs approach has been explored for the unpolarized, helicity and transversity
cases using ensembles with pion masses at 310-375 MeV [4, 5, 6, 7]. Although these studies
revealed promising results, the renormalization -a necessary ingredient- was missing, which was
one of the major reasons that prohibited quantitative comparison with phenomenological data. Re-
cently, we have completed a perturbative calculation on the renormalization of bilinear operators
with a Wilson line that are related to the quasi-PDFs [8]. Among other things, this calculation
revealed a finite mixing for certain operators, which appears in lattice regularization and in formu-
lations that break chiral symmetry. These findings led to the development of a non-perturbative
renormalization prescription, first proposed in Ref. [9] and refined in Ref. [10]. The prescription
has recently been used for a computation of quasi-PDFs directly at the physical point [11].

The paper is organized as follows: In Section 2 we provide the theoretical setup with defini-
tions for the lattice action, the fermion operators and the renormalization prescription. Section 3
contains our perturbative calculations in dimensional and lattice regularizations, as well as, the con-
version to the MS scheme. Section 4 describes the non-perturbative renormalization scheme and
presents some representative results for the helicity operator. Finally, in Section 4 we summarize
our results.

2. Theoretical Setup

In the perturbative calculation we consider the clover fermion action [12]

SF =−a3

2 ∑
x, f ,µ

[
ψ̄ f (x)

(
r− γµ

)
Ux,x+a µψ f (x+a µ)+ ψ̄ f (x+a µ)

(
r+ γµ

)
Ux+a µ,xψ f (x)

]
+a4

∑
x, f

(
4r
a
+m f

0)ψ̄ f (x)ψ f (x)−
a5

4 ∑
x, f ,µ,ν

cSW ψ̄ f (x)σµνFµν(x)ψ f (x) , (2.1)
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where r is the Wilson parameter (henceforth set to 1), f is a flavor index, σµν = [γµ , γν ]/2 and
Fµν is the standard clover discretization of the gluon field tensor. The Lagrangian masses , m f

0 , are
set to zero, which is their critical value for a one-loop calculation. This choice may be used for
mass-independent renormalization schemes and simplifies significantly the algebraic expressions.
However, a special treatment of potential IR singularities is required.

For gluons we use a family of Symanzik improved actions [13]:

SG =
2
g2

0

[
c0∑

plaq.
ReTr{1−Uplaq.} + c1 ∑

rect.
ReTr{1−Urect.}

+c2∑
chair

ReTr{1−Uchair} + c3 ∑
paral.

ReTr{1−Uparal.}
]
. (2.2)

with several values of the Symanzik coefficients ci. Here we only present results for the Wilson,
tree-level Symanzik-improved and Iwasaki actions.

In this work we study a complete set of bilinear operators:

OΓ ≡ ψ(x)ΓP eig
∫ z

0 Aµ (x+ζ µ̂)dζ
ψ(x+ zµ̂) , (2.3)

in which a Wilson line of length z inserted between the fermion fields to ensure gauge invariance.
Although in the limit z→ 0, Eq. (2.3) gives the ultra-local fermion operators, our calculation of the
Green’s functions is for strictly z 6= 0 . This is due to the fact that the appearance of contact terms
beyond tree level renders the limit z→ 0 nonanalytic.

We consider only a straight Wilson line along any one of the four perpendicular directions,
which we conventionally choose to be µ=1, (identified with the z direction). We perform our
calculation for all independent combinations of Dirac matrices, Γ, that is:

Γ = 1̂, γ
5, γ

ν , γ
5

γ
ν , γ

5
σ

νρ , σ
νρ . (2.4)

In the above, ρ 6= µ and we distinguish between the cases in which the index ν is in the same
direction as the Wilson line (ν = µ), or perpendicular to the Wilson line (ν 6= µ). For convenience,
the 16 possible choices of Γ are separated into 8 subgroups, defined in Ref. [8].

3. Perturbative Renormalization

The one-loop calculation involves the Feynman diagrams shown in Fig. 1, where the filled
rectangle represents a nonlocal operator with a Wilson line of length z. These diagrams will appear
in our calculations in both in Lattice (LR) and in Dimensional (DR) regularizations.

3.1 Dimensional Regularization

We perform a computation in D Euclidean dimensions, where D = 4− 2ε and ε is the regu-
larizing parameter. The latter appears in the bare Green’s functions as a Laurent series of the form
∑

∞
i=−n ci ε i, where n is the order on perturbation theory. The renormalization must eliminate all

poles in ε , before the limit D→ 4 can be taken. The most convenient renormalization scheme is
the MS, according to which the renormalization functions (RFs) are defined to only remove poles

2
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d1 d2 d3 d4
Figure 1: Feynman diagrams of the one-loop calculation of the Green’s functions of OΓ. The straight
(wavy) lines represent fermions (gluons). The operator insertion is denoted by a filled rectangle.

in ε . However, an RI-type scheme is more suitable for non-perturbative calculations, and an ap-
propriate conversion factor is necessary in order to obtain the MS. In this Section we present our
results for the RFs in the MS scheme, and provide the conversion factor between an RI-type and
MS.

3.1.1 Renormalization Functions

The clover and gauge fixing parameters have been kept general throughout the calculation.
This allows one to adopt the results for Wilson-type actions with and without a clover term. In
addition, we were able to confirm the cancellation of the gauge dependence. Note that we define
the gauge fixing parameter β , such that β=0(1) corresponds to the Feynman (Landau) gauge. We
find that 1/ε terms arise only from diagrams d2, d3 and d4, giving a total contribution of

〈ψ OΓ ψ̄〉DR
∣∣∣
1/ε

= g2
λΓ Γeiqµ z , λΓ =

C f

16π2
1
ε
(4−β ) , C f ≡

N2−1
2N

. (3.1)

To one-loop level in DR the pole parts are multiples of the tree-level values, Γeiqµ z, which indicates
no mixing between operators of equal or lower dimension. Another feature of the O(g2)/ε con-
tributions is that they are operator independent, in terms of both the Dirac structure and the length
of the Wilson line, z. Eq. (3.1) is combined with the renormalization function of the fermion field,
Zψ , [14], leading to a gauge independent renormalization function for the operators of Eq. (2.3):

ZDR,MS
Γ

= 1+
3
ε

g2C f

16π2 . (3.2)

More details on the extraction of ZDR,MS
Γ

and discussion of the DR results appears in Ref. [8].

3.1.2 Conversion to MS scheme

Continuum perturbation theory is particularly useful for the computation of the conversion
factors between different renormalization schemes. With the perspective of developing a non-
perturbative renormalization for the RFs, we employ an RI′ scheme that is used for the ultra-local
fermion bilinear operators:

Z−1
q ZO(z)

1
12

Tr
[
V (p,z)

(
V Born(p,z)

)−1
]∣∣∣

p2=µ̄2
0

= 1 , (3.3)

where Zq is the renormalization function of the quark field obtained via

Zq =
1
12

Tr
[
(S(p))−1 SBorn(p)

]∣∣∣
p2=µ̄2

0

. (3.4)
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S is the bare quark propagator and Stree is its tree-level value; the one-loop computation of S can be
found, e.g., in Ref. [15].

The conversion factors between the RI′ and MS schemes is then given by:

C MS,RI′ = (ZDR,MS)−1 · (ZDR,RI′) = 1+g2 zDR,RI′
Γ

−g2zDR,MS
Γ

+O(g4) . (3.5)

The quantities zDR,RI′
Γ

(zDR,MS
Γ

) are the 1-loop results of the RFs in the RI (MS) scheme, which we
computed for all operators shown in Eqs. (2.4). The conversion factor is the same for each of the
following pairs of operators: Scalar and pseudoscalar, vector and axial, as well as for the tensor
with and without γ5, as we adopt the prescription in which γ5 has only 4 dimensions. The general
expression for CΓ are shown in Ref. [8] for general gauge fixing parameter. They are expressed
compactly in terms of the quantities F1(q̄,z) - F5(q̄,z) and G1(q̄,z) - G5(q̄,z), which are integrals
over modified Bessel functions of the second kind, Kn. These integrals are presented in Appendix
A of Ref. [8]. Here we only present the conversion factor for the unpolarized and helicity cases,
with the index µ in the same direction as the Wilson line (V1(A1)):

CV1(A1) = 1−
g2C f

16π2

(
−7−4γE + log(16)+

4|z|
((

q̄2 + q̄2
µ

)
F5− q̄2F4

)
q̄

+4F2−3log
(

µ̄2

q̄2

)
− (β +2) log(q̄2z2)

+β

[
3−2γE + log(4)−

2q̄2
µ |z|
q̄

F4−2F1−2
(
q̄2 + q̄2

µ

)
G3

+z2
(

q̄2
µ(F3−F1 +F2)+ q̄2 F1−F2

2

)]
+i

{
4q̄µ(2z(F1−F2−F3)+G1)

+β q̄µ

[
q̄(z|z|F5 +2(G4−2G5))−2G1 +2G2

]})
, (3.6)

where q≡
√

q2. The conversion factors depend on the dimensionless quantities zq̄ and q̄/µ̄ , and the
RI′ (q̄) and MS (µ̄) scales have been kept free. The conversion factors as defined in Eq. (3.5) are
to be multiplied by the ZMS to give ZRI′ . In non-perturbative calculations one may obtain ZMS by
multiplying ZRI′ with CΓ(g2→−g2) which is valid to one-loop level.

3.2 Lattice Regularization

The main goal of the perturbative calculation is to evaluate the lattice-regularized bare Green’s
functions 〈ψ OΓ1 ψ̄〉LR that would allow us to understand the renormalization pattern of Wilson line
operators; this is by far a more complicated calculation, as compared to dimensional regularization.
The main task is to write lattice expressions in terms of continuum integrals, plus additional terms
which are lattice integrals, independent of external momentum q. We compute the one-loop Feyn-
man diagrams Fig. 1 in LR, and we find that diagram 1 gives the same contribution as in DR. This
is due to the fact that the latter is finite as ε → 0, and thus the limit a→ 0 can be taken with no
lattice corrections. Once the loop momentum p is rescaled within the Brillouin zone, p→ p/a,
lattice divergences manifest themselves as IR divergences in the external momentum q→ 0.

4
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3.2.1 Multiplicative Renormalization and Mixing

We want to extract the RFs in the MS scheme directly without an intermediate RI-type scheme.
This is feasible by taking the difference of the Green’s functions in DR and LR, which is necessarily
polynomial in the external momentum (of degree 0 in this case). This leads to a prescription for
defining ZLR,MS

O without any intermediate schemes. As reported in Ref. [2], in regularizations other
than DR there might be a linear divergence associated to the Wilson line. Such a divergence we
find in LR, and to one-loop it is proportional to |z|/a arising from the tadpole diagram [8]. We also
find the at one-loop, the linear divergence is the same for all operator insertions. In a resummation
of all orders in perturbation theory, the powers of |z|/a are expected to combine into an exponential
of the form [2]:

ΛΓ = e−c |z|/a
Λ̃Γ , (3.7)

where c is the strength of the divergence and Λ̃Γ is related to ΛMS
Γ

by an additional renormalization
factor which is at most logarithmically divergent with a. Based on arguments from heavy quark
effective theory, additional non-perturbative contributions may appear in the exponent [16].

To one loop, we find the following form for the difference between the bare lattice Green’s
functions and the MS-renormalized ones:

〈ψ OΓ ψ̄〉DR,MS−〈ψ OΓ ψ̄〉LR =
g2C f

16π2 eiqµ z

[
Γ

(
α1 +α2 β +α3

|z|
a
+ log

(
a2

µ̄
2)(4−β )

)
+
(
Γ · γµ + γµ ·Γ

) (
α4 +α5 cSW

)]
. (3.8)

The presence of the term
(
Γ · γµ+γµ ·Γ

)
indicates mixing between operators of equal dimension,

which is finite and appears in the lattice regularization. In particular, this affects formulations
that break chiral symmetry. The combination of Dirac matrices in the mixing term vanishes for
certain choices of the Dirac structure Γ in the operator. This is true for the operators P, Vν (ν 6=
µ), Aµ , Tµν (ν 6= µ), and as a consequence, only a multiplicative renormalization is required.
The mixing was identified for the first time in Ref. [8] and has significant impact in the non-
perturbative calculation of the unpolarized quasi-PDFs, as there is a mixing with a twist-3 scalar
operator [17]. Such a mixing must be eliminated using a proper renormalization prescription,
ideally non-perturbatively [10].

In Eq. (3.8) all coefficients αi depend on the Symanzik parameters, except for α2 which has
a numerical value α2 = 5.792. This value was expected, as all gauge dependence must disappear
in the MS scheme for gauge invariant operators: Indeed, this term will cancel against a similar
term in ZLR,MS

ψ (see e.g., Ref. [18] ) The mixing coefficients may be obtained perturbatively by
constructing an appropriate 2×2 mixing matrix [8],(

OR
Γ1

OR
Γ2

)
=

(
Z11 Z12

Z21 Z22

)−1(
OΓ1

OΓ2

)
. (3.9)

and the multiplicative RFs (Zii) as well as the mixing coefficients (Zi j) are extracted from

〈ψR OR
Γi

ψ̄
R〉amp = Zψ

2

∑
j=1

(Z−1)i j 〈ψ OΓ j ψ̄〉amp , ψ = Z1/2
ψ ψ

R , (3.10)

5
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where the renormalization matrix Z and the fermion field renormalization Zψ have the following
perturbative expansion:

Zi j = δi j +g2zi j +O(g4) , Zψ = 1+g2zψ +O(g4) . (3.11)

The condition for extracting ZLR,MS
11 and ZLR,MS

12 is the requirement that renormalized Green’s func-
tions be regularization independent:

〈ψR OR
Γi

ψ̄
R〉DR,MS

amp = 〈ψR OR
Γi

ψ̄
R〉LR,MS

amp

∣∣∣
a→0

, (3.12)

leading to

〈ψR OR
Γ1

ψ̄
R〉DR,MS−〈ψ OΓ1 ψ̄〉LR = g2

(
zLR,MS

ψ − zLR,MS
11

)
〈ψ OΓ1 ψ̄〉tree

− g2 zLR,MS
12 〈ψ OΓ2 ψ̄〉tree +O(g4) . (3.13)

The above equation can be combined with Eq. (3.8) for the extraction of the multiplicative renor-
malization and mixing coefficients in the MS-scheme and LR. To one-loop level, the diagonal
elements of the mixing matrix (multiplicative renormalization) are the same for all operators under
study, and through Eq. (3.13) one obtains:

ZLR,MS
Γ

= 1+
g2C f

16π2

(
e1 + e2

|z|
a
+ e3 cSW + e4 c2

SW−3log
(
a2

µ̄
2)) , (3.14)

where the coefficients e1−e4 are given in Table 1, for the Wilson, tree-level Symanzik and Iwasaki
improved actions.

As expected, ZLR,MS
Γ

is gauge independent, and the cancelation of the gauge dependence was

numerically confirmed up to O(10−5). Similar to ZLR,MS
Γ

, the nonvanishing mixing coefficients are
operator independent and have the general form:

ZLR,MS
12 = ZLR,MS

21 = 0+
g2C f

16π2 (e5 + e6 cSW) , (3.15)

where ZLR,MS
i j (i 6= j) is nonzero only for the operator pairs: {S,V1}, {A2, T34}, {A3, T42}, {A4, T23}

(for notation see Ref. [8]). The values of the coefficients e5 and e6 for Wilson, tree-level Symanzik
and Iwasaki gluons are also shown in Table 1.

The strength of the mixing depends on the value of cSW, and one may compare the ratio−e5/e6

with the value of cSW used in numerical simulations. This will allow to estimate how severe is the
mixing for the particular ensemble.

Action e1 e2 e3 e4 e5 e6

Wilson 24.3063 -19.9548 -2.24887 -1.39727 14.4499 -8.28467
TL Symanzik 19.8442 -17.2937 -2.01543 -1.24220 12.7558 -7.67356
Iwasaki 12.5576 -12.9781 -1.60101 -0.97321 9.93653 -6.52764

Table 1: Numerical values of the coefficients e1 - e4 of the multiplicative renormalization functions and e5

- e6 of the mixing coefficients for Wilson, tree-level (TL) Symanzik and Iwasaki gluon actions.

6
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4. Non-Perturbative Renormalization

Understanding the renormalization and mixing pattern from the perturbative calculation led
to the development of a proper non-perturbative prescription for the cases with (unpolarized) and
without (helicity and transversity) mixing. Here we only consider γµ parallel to the direction of
the Wilson line. However, choosing γµ in the temporal direction is ideal for the unpolarized as it
eliminates any mixing.

The non-perturbative RFs will renormalize nucleon matrix elements of fermion operators with
a straight Wilson line, denoted by hΓ(P3,z). The nucleon is boosted with momentum P3 that is
traditionally taken in the same direction as the Wilson line. The quasi-PDFs can be computed from
the Fourier transform of the following local matrix elements:

hΓ(P3,z) = 〈N|ψ̄(0,z)ΓW3(z)ψ(0,0)|N〉, (4.1)

where |N〉 is a nucleon state with spatial momentum P3 along the 3-direction and W3(z) is a Wilson
line of length z in the same direction. For demonstration purposes we focus on the renormalization
of the helicity operator. A prescription on how to eliminate the mixing for the unpolarized case
is provided in Ref. [10]. The non-perturbative prescription in the RI′-scheme and in the absence
of mixing, is given by Eqs. (3.3) - (3.4). The RI′ scale µ̄0 is chosen to be democratic in order to
suppress discretization effects, and scales of the form (nt ,n,n,n) have small discretization effects
[19]. Using renormalization scales leading to a small value for such a ratio has been successful
for the local fermion operators [20, 21]. Note that the vertex functions V (p,z) have the same
linear divergence as the nucleon matrix elements, which allows one to extract both the linear and
logarithmic divergence at once, through the renormalization condition of Eq. (3.3).

-15 -10 -5 0 5 10 15
z/a

-2

0

2

4

6

8

10

Z
∆

h

Re[ZRI]

Im[ZRI]

Re[ZMS] 

Im[ZMS] 

(7,3,3,3)

Figure 2: The z-dependent renormalization function for the matrix element ∆h(P3,z) with aP3 =
6π

L . The
RI′ scale is aµ̄0 are: 2π

32 (
7
2+

1
4 ,3,3,3), while the MS scale is set to 2GeV. Open (filled) symbols correspond

to the RI′ (MS) estimates.

In Fig. 2, we plot the real and imaginary part of the helicity RFs, Z∆h, that renormalizes the
bare matrix element ∆h(P3,z). We extract the RI′ (open symbols) RFs directly from lattice data
and we convert to the MS (filled symbols) using the one-loop conversion factor we computed
perturbatively. The imaginary part of ZMS

∆h is reduced compared to its counterpart in ZRI′
∆h . This

7
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is not a surprise, as the perturbative Z-factor in DR and in the MS scheme is real to all orders in
perturbation theory (extracted from the poles). Therefore, it is expected that the imaginary part of
the non-perturbative estimates should be highly suppressed. The behavior of our non-perturbative
estimates is encouraging, as the imaginary part is very close to zero for |z| up to ∼10a.

In Ref. [10] we perform a careful analysis on the systematic uncertainties related to the lattice
artifacts and the truncation of the conversion factor. We find an effect of 3-5% in the real part of
the RFs, and up to 100% in the imaginary part. Despite the large uncertainty in the imaginary part,
its value is less that 15% of the real part, which leads to a smaller influence in the renormalized
matrix elements.

5. Summary

We presented an one-loop perturbative calculation of the renormalization functions for fermion
operators including a straight Wilson line. We have demonstrated two important features of the
quasi-PDFs in lattice regularization: finite mixing and a linear divergence with respect to the regu-
lator. We extracted the Green’s functions both in dimensional (DR) and lattice (LR) regularizations,
which allows one to extract the LR renormalization functions in the MS-scheme directly. Another
important aspect of this work is the conversion factor between an RI′-type scheme and MS, which
is needed to bring non-perturbative estimates of the RFs to the MS-scheme.

We demonstrate for the first time [8] that certain Wilson line operators mix in the lattice regu-
larization. This affects the numerical simulations of the nucleon matrix elements for the unpolar-
ized quasi-PDFs, which mix with a twist-3 [17] scalar operator. Such a mixing is not present for
the unpolarized case if one uses a Dirac structure perpendicular to the Wilson line direction. Using
the renormalization pattern revealed in this work we developed an appropriate non-perturbative
renormalization prescription for the unpolarized, helicity and transversity quasi-PDFs, explaining
how one can extract both the multiplicative renormalization and mixing coefficients [10].
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