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New Lorentz Invariance Relations (LIRs) were presented between twist-three Generalized Parton
Distributions (GPDs) and transverse momentum, kT , moments of twist-two Generalized Trans-
verse Momentum-Dependent Distributions (GTMDs). By implementing both these LIRs and the
QCD Equations of Motion in the quark quark correlation function, we generated a new series of
Wandzura Wilczek (WW) relations in the off-forward sector. Two of these WW relations take
on a particularly interesting physical meaning in that they provide a clear interpretation of the
QCD structure of Orbital Angular Momentum (OAM) in the nucleon. In particular, they provide
a solution to the outstanding puzzle of how OAM could be simultaneously described by twist-two
GTMDs and twist-three GPDs. Additional relations were discussed, in particular, for the helic-
ity configurations that can be detected analyzing specific spin asymmetries: one corresponding
to a longitudinally polarized quark in an unpolarized proton, associated with spin-orbit correla-
tions, and one for transverse proton polarization, as a generalization of the relation obeyed by the
g2 structure function; finally, we defined a relation connecting the off-forward extension of the
Sivers function to an off-forward Qiu-Sterman term.
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Generalized Wandzura Wilczek Relations Simonetta Liuti

The operator product expansion (OPE) is a powerful tool for analyzing hard scattering pro-
cesses in QCD. Within OPE, the twist [1], given by the dimension minus the spin of the operators
entering the hard processes description, allows one to order the dominant light cone singularities
while separating out their short and long distance components. At a given value of the hard scale,
Q, the quark-quark operators of twist two provide the dominant, leading twist terms, while higher
twist structure functions are associated with operators of higher dimension and they are suppressed
by powers of O(1/Qtw−2). Practical evaluations of the hard processes cross section are, however,
performed within a diagrammatic description based on light front quantization. The way power
suppressed terms appear in this approach is through a different construct than OPE: the quark
fields are decomposed into "good" and "bad" components, where the good components represent
the independent terms in the equations of motion [2]. The good components are the leading terms
while the bad components are suppressed by 1/Q. The structure functions which contain only good
components are of dynamical twist two. The appearance of bad components introduces terms of
higher dynamical twist. Dynamical twist is in principle independent from the twist quantum num-
ber from OPE. The latter is defined as geometric since it appears as a consequence of the Lorentz
covariance of the theory, without involving the dynamics of the fields. Notwithstanding the inher-
ent non-covariance of the light front approach, structure functions of dynamical twist two can be
shown to be in one to one correspondence with the geometric twist two terms from OPE.

The underlying difference between the Lorentz invariant structure of OPE and the light front
quantization produces a mismatch in the geometric and dynamic twist terms of higher twist. The
Wandzura-Wilczek (WW) relations are a rendition of this mismatch.

The first WW relation to be derived was the one for the polarized nucleon distribution, g2 [3],

g2(x) =−g1(x)+
∫ 1

x

dy
y

g1(y)+ ḡ2(x), (1)

where the dynamical twist three function g2 on the LHS is written in terms of the twist two distribu-
tion, g1, and the geometric twist three quark-gluon-quark (qgq) correlation, ḡ2. 1 In a nutshell, the
physical origin of this relation is from a constraint in the parametrization of the unintegrated corre-
lation functions associated to each specific type of operator, ÔΓ, with Γ = 1,γ5,γ

µ ,γµγ5, iσµν : the
same Lorentz structure combinations that appear in the parametrization with coefficients labeled
as Ai

E,F,G,H for each operator type (i being an index running over the different types of Lorentz
structures), enter simultaneously the corresponding type of dynamical twist two and twist three
structure functions obtained integrating over the quark light cone component, k− [4, 5].

For our specific case, the Parton Distribution Functions (PDFs) g1, gT = g1 + g2, and the
Transverse Momentum Distribution (TMD), g1T , are composed of elements of the same set of
three amplitudes of the AG type, and they are therefore connected. The relation between them is
given by the following equation,

1
2

d
dx

∫
d2kT

k2
T

M2 g1T (x,k2
T ) = gT (x)−g1(x)− ĝT (x) (2)

This type of relation is called a Lorentz Invariance Relation (LIR). Notice that we included an extra
term, ĝT (x), originating from the gauge link (ĝT (x) is a so-called LIR violating term [6, 7, 8]).

1The form of this term will be given below, as well as an additional qgq term originating from the inclusion of the
gauge link in the twist two correlation function which is missing from the original formulation.
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In a second step, applying the Equations of Motion (EoM) to the correlation function entering
the polarized deep inelastic process leads to a relation involving the same dynamical twist two and
three distributions,

1
2

∫
d2kT

k2
T

M2 g1T (x,k2
T )− xgT (x)+

m
M

h1(x)+ xg̃T (x) = 0, (3)

where we also included a qgq term, g̃T , from the covariant derivative and a term, mh1, from the
quark mass appearing in the EoM. To obtain a WW relation we now merge the information from
the LIR and EoM relation such as to eliminate the TMD moment. We have,

gT =
∫ 1

x

dy
y

g1 +
m
M

(
1
x

h1−
∫ 1

x

dy
y2 h1

)
+

(
g̃T −

∫ 1

x

dy
y

g̃T

)
+
∫ 1

x

dy
y

ĝT (4)

Eq.(4) involves twist two and twist three Parton Distribution Functions (PDFs) plus two distinct
qgq terms. 2

The physical content of the geometric twist three functions ĝT , and g̃T , is quite different even
if they are both qgq correlations. On one side, for g̃T we have [9],

xg̃T (x) =
1

4M

∫
d2kT

(
M 1,A

+−+ iM 2,A
+−+M 1,A

−+− iM 2,A
−+

)
≡M A

T (5)

where,

M i,S
Λ′Λ = − i

4

∫ dz−d2zT

(2π)3 eixP+z−−ikT ·zT

× 〈p′,Λ′ | ψ
(
− z

2

)[
(
−→
/∂ − ig/A)U Γ

∣∣∣
−z/2

+ ΓU (
←−
/∂ + ig/A)

∣∣∣
z/2

]
ψ

( z
2

)
| p,Λ〉z+=0

(6)

M i,A
Λ′Λ = − i

4

∫ dz−d2zT

(2π)3 eixP+z−−ikT ·zT

× 〈p′,Λ′ | ψ
(
− z

2

)[
(
−→
/∂ − ig/A)U Γ

∣∣∣
−z/2
− ΓU (

←−
/∂ + ig/A)

∣∣∣
z/2

]
ψ

( z
2

)
| p,Λ〉z+=0

(7)

where Λ(Λ′) are the helicities for the proton in its initial and final states, respectively.
On the other hand, ĝT , is defined as [9],

ĝT (x) =
d
dx

(
M A

T −M A
T

∣∣
v=0

)
(8)

To ensure gauge invariance, the quark bilocal operator in the correlation function requires a gauge
link, U along a path connecting the quark operator positions−z/2 and z/2. Two important choices
of path are a direct straight line and a staple-shaped connection characterized by an additional four-
vector v. v describes the legs of the staple-shaped path. In the special case v = 0, the staple

2This is a rather new development, see e.g. Ref.[6], at variance with the original formulation (valid for a straight
link) in Eq.(1). Notice also that the term containing the transversity structure function, h1, originating from the part
proportional to quark mass, m, in the EoM, disappears in the chiral limit.
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degenerates to a straight link between the two positions. The different path choices will give rise
to different geometric twist three contributions to the correlators.

The detaild twist three contributions to polarized structure functions were studied in Ref.[6]
where the numerical difference between g̃T and ĝT was found to be small in a phenomenological
extraction from data.

In Refs.[9, 10] we showed how these effects impact the off-forward case in a more funda-
mental way since they turn out to be associated to the physical interpretation of Orbital Angular
Momentum (OAM). Through deeply virtual exclusive experiments one can study the spin corre-
lations for an unpolarized quark in a longitudinally polarized proton (UL), or vice-versa for the
polarized quark inside an unpolarized proton (LU). As shown in [11], these correlations measuring
twist three GPDs are associated to specific azimuthal angular dependent terms in the cross section.

The LIRs involving twist three GPDs and twist two GTMDs relevant to our case are, for the
vector and axial vector cases respectively,

d
dx

∫
d2kT

k2
T

M2 F14 = Ẽ2T +H +E +AF14 (9)

d
dx

∫
d2kT

k2
T

M2 G11 = −
(

2H̃ ′2T +E ′2T

)
− H̃ +AG11 , (10)

where the kT -integrals over the twist two vector and axial-vector GTMDs, F14 and G11, can be
associated, respectively, with the x distributions of the longitudinal OAM component, Lz, and the
quark spin-orbit, LzSz [12]; the combinations, Ẽ2T +H +E, and −(2H̃ ′2T +E ′2T )− H̃ are expressed
in an analogous format as shown for gT = g1 + g2, H +E and Ẽ2T being vector twist two and
twist three GPDs, in this case, and similarly, H̃ and 2H̃ ′2T +E ′2T being axial-vector twist two and
twist three GPDs; AF14 and AG11 are LIR violating terms analogous to ĝT , (Eq.(8), that can be
expressed in terms of genuine twist three contributions. These relations are valid point by point
in the kinematical variables x and t = ∆2 (∆ = p′− p, being the momentum transfer between the
initial and final protons in the deeply virtual exclusive scattering process).

The EoM relations for the off-forward case can be written as [9, 10],

xẼ2T (x) = −H̃(x)+
∫

d2kT
k2

T

M2 F14−MF14 (11)

x
[
2H̃ ′2T (x)+E ′2T (x)

]
= −H(x)+

m
M
(2H̃T (x)+ET (x))−

∫
d2kT

k2
T

M2 G11−MG11 (12)

where the qgq term now read,

MF14(x) =
∫

d2kT
∆i

∆2
T

(
M i,S

++−M i,S
−−

)
(13)

MG11(x) = iε i j
∫

d2kT
∆ j

∆2
T

(
M i,A

+++M i,A
−−

)
, (14)

with the expressions for M
i,S(A)
ΛΛ′ given in Eqs.(6,7).
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Eliminating the GTMD term from Eqs.(9,10) and (11,12), we obtain the following off-forward
WW relations,

Ẽ2T =−
∫ 1

x

dy
y
(H +E)−

[
H̃
x
−
∫ 1

x

dy
y2 H̃

]
−
[

1
x
MF14−

∫ 1

x

dy
y2 MF14

]
−
∫ 1

x

dy
y

AF14 (15)

2H̃ ′2T +E ′2T =−
∫ 1

x

dy
y

H̃−
[

H
x
−
∫ 1

x

dy
y2 H

]
+

m
M

[
1
x
(2H̃T +ET )−

∫ 1

x

dy
y2 (2H̃T +ET )

]
−
[

1
x
MG11−

∫ 1

x

dy
y2 MG11

]
+
∫ 1

x

dy
y

AG11 (16)

Eqs.(9-16) are valid for either a staple or a straight gauge link structure (with staple vector v on the
light cone in the former case), keeping in mind that AF14 ≡ 0 and AG11 ≡ 0 in the straight-link case.

The gauge link structure takes on a specific meaning for OAM. It is well known that an ambi-
guity is introduced in performing the decomposition of the total angular momentum, J, as defined
from the QCD energy momentum tensor, into its quark and gluon L and S components. In the quark
sector, in particular, the two decompositions known as Jaffe-Manohar (JM) and Ji, differ from one
other in the definition of L, in that they involve a partial and a covariant derivative, respectively,
thus implying different contributions from the gluonic component. In Refs. [13, 14, 15] this contri-
bution was worked out explicitly; in particular in Ref.[15] it was shown that JM OAM is calculated
using a staple link, while Ji OAM uses a straight link, or a link with length v = 0. In Ref.[9] we
found a concrete expression for this difference, in terms of the invariant amplitudes, AF

i , listed in
Ref.[16], namely

AF14(x) ≡ v−
(2P+)2

M2

∫
d2kT

∫
dk−

[
kT ·∆T

∆2
T

(AF
11 + xAF

12)+AF
14

+
k2

T ∆2
T − (kT ·∆T )

2

∆2
T

(
∂AF

8
∂ (k · v)

+ x
∂AF

9
∂ (k · v)

)]
=

=
d
dx

∫
d2kT

k2
T

M2 F14−
d
dx

∫
d2kT

k2
T

M2 F14

∣∣∣∣
v=0

=
d
dx

(
MF14−MF14 |v=0

)
. (17)

We can reexpress the relation above in order to emphasize its description of OAM as,

LJM(x)−LJi(x) = MF14−MF14 |v=0 =−
∫ 1

x
dyAF14(y). (18)

(we likewise obtains the analogous relation for AG11).
We conclude that an experimental determination of the difference between JM and Ji OAM,

described by AF14 , is possible only by measuring separately the GPDs Ẽ2T , H and E, and the GTMD
F14, using Eq.(9). GTMD measurements are much harder because of the number of variables in-
volved: the proposed reactions, to date, can be considered only at a speculative level [17, 18].
GTMDs can be, however, evaluated in lattice QCD calculations [19]. Notwithstanding, an impor-
tant spin-off from our study is that we solve the question of an ambiguity in the composition of
the intrinsic qgq twist three contribution to the twist three structure functions raised in Ref.[6]. As-
suming that all GPDs, being collinear objects, are not affected by the gauge link path, from Eq.(18)
we see that the qgq term for a staple link which is composed by two types of contributions (from

4
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M and A ), must be equal to the qgq term for a straight link, which is composed by only one term
(M ). Experimental measurements of twist three GPDs and PDFs do not allow us to distinguish
among the two.
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