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The transverse charge and magnetization densities provide insight into the nucleon’s inner struc-
ture. In the periphery, the isovector components are clearly dominant, and can be computed in a
model-independent way by means of a combination of chiral effective field theory (χEFT) and
dispersion analysis. With a novel N/D method, we incorporate the pion electromagnetic form-
factor data into the χEFT calculation, thus taking into account the pion-rescattering effects and
ρ-meson pole. As a consequence, we are able to reliably compute the densities down to distances
b∼ 1 fm, therefore achieving a dramatic improvement of the results compared to traditional χEFT
calculations, while remaining predictive and having controlled uncertainties.
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1. Introduction

The study of the transverse charge and magnetization densities provides interesting insights
into the baryon structure and strong interaction dynamics. The transverse densities are given by
the two-dimensional Fourier transforms of the electromagnetic form factors and describe the dis-
tribution of charge and magnetzation at fixed light-front time, as appropriate for relativistic sys-
tems [1, 2, 3]. They are closely connected with the partonic description of nucleon structure in
QCD and correspond to integrals of the impact parameter-dependent generalized parton distribu-
tions (GPDs) over the momentum fraction x.

Of particular interest are the transverse densities at peripheral distances b = O(Mpi−1), since
they are governed by chiral dynamics and can be computed model-independently using ChEFT [4,
5, 6]. This can be done naturally using a dispersive representation of the form factors, where
they are expressed as integrals over their singularities in the timelike region (spectral functions),
which correspond to hadronic exchanges between the nucleon and the current in the t-channel. The
peripheral densities are governed by the lowest-mass hadronic exchange, which is the two-pion
exchange (two-pion cut of the form factor). It was found that at transverse distances larger than
b ∼ 3 fm the electromagnetic densities are dominated by chiral dynamics and can be obtained
from the ChEFT results for the spectral functions on the two-pion cut [7]. At smaller distances the
densities are strongly affected by pion rescattering effects and the ρ-meson resonance in the ππ

channel. In order to compute the peripheral densities down to distances b & 1 fm these effects have
to be included in the ChEFT calculation.

Here we report about a new method which includes ππ rescattering effects in the spectral
functions and permits calculation of the peripheral densities down to distances b ∼ 1 fm with
controled uncertainties [8]. The method is based on elastic unitarity in the ππ system and uses
an N/D method to separate the coupling of the ππ system to the nucleon from the ππ rescattering
effects [8, 9, 10, 11]. ChEFT is used to calculate the coupling of the ππ system to the nucleon with
controled accuracy, while the ππ rescattering effects are included through the empirical pion form
factor. The method represents a great improvement compared to traditional ChEFT calculation of
the spectral functions and has applications beyond the study of transverse densities [9, 10].

In the following, we describe the formalism used, focusing in particular on the dispersive im-
provement mentioned above, based on chiral unitarity and the pion form-factor data. We then show
our results for the spectral functions and transverse densities of the nucleons, down to distances of
b = 1 fm.

2. Formalism

The decomposition of the electromagnetic current for a nucleon N with mass mN in terms of
the Dirac F1(t) and Pauli F2(t) form factors is given as:

〈N(p′)|Jµ |N(p)〉= ū(p′)
[

γ
µF1(t)+

iσ µν∆ν

2mN
F2(t)

]
u(p), (2.1)

with incoming and outgoing nucleon 4-momenta p and p′, respectively, and corresponding Dirac
spinors u(p) and ū(p′). The 4-momentum transfer is denoted ∆ = p′− p, t = ∆2, and we use the
usual definition of σ µν = (i/2) [γµ ,γν ].

1



P
o
S
(
Q
C
D
E
V
2
0
1
7
)
0
5
2

Transverse nucleon densities Astrid N. Hiller Blin

In the light-front form of relativistic dynamics [1, 2], at a fixed light-front time x+ = x0+x3 = 0
the 4-momentum transfer is purely transverse, ∆∆∆T , and the form factors are represented as two-
dimensional Fourier transforms of the transverse densities at the position bbb,

Fi(t =−|∆∆∆T |2) =
∫

d2b ei∆∆∆T ·bbb ρi(b≡ |bbb|) (i = 1,2). (2.2)

The transverse spatial distributions of charge and magnetization ρ1(b) and ρ2(b) are then invariant
under boosts in the z-direction [3].

The baryon form factors are analytic functions of t and have a dispersive representation of the
form

Fi(t) =
∫

∞

tthr

dt ′

t ′− t− i0
ImFi(t ′)

π
(i = 1,2), (2.3)

where tthr is the threshold of the spectral functions. With Eqs. 2.2 and 2.3, the transverse densities
are then connected to the spectral functions via the dispersive integrals [4, 12]

ρ1(b) =
∫

∞

tthr

dt
K0(
√

tb)
2π

ImF1(t)
π

, (2.4)

ρ̃2(b) =−
∫

∞

tthr

dt
√

tK1(
√

tb)
4πmN

ImF2(t)
π

, (2.5)

where Kn(z) (n = 0,1) denote the modified Bessel functions of the second kind. These integrals
converge exponentially at large t and large b, leading to a suppression of higher-mass scales at the
periphery. In this region, it is therefore sufficient to take into account the low-mass hadronic states,
such as the two-pion and two-kaon cuts computed in χEFT. The details of this calculation can be
found in Refs. [8, 13].

The χEFT expressions by themselves describe the nucleon isovector spectral functions only
in the region close to the two-pion threshold, the kaon contributions being negligible. In order to
extend the description to higher t, the strong pion rescattering has to be taken into account. This
effect manifests itself in the t-channel ρ-meson exchange at t ∼ 0.6GeV2.
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Figure 1: Unitarity relation for the isovector spectral function on the two-pion cut.

As is shown in Fig. 1, the nucleon isovector spectral function on the two-pion cut can be
expressed as [14]

ImFi(t) =
k3

cm√
t

Γi(t) F∗π (t) =
k3

cm√
t

Γi(t)
Fπ(t)

|Fπ(t)|2 (i = 1,2), (2.6)

where kcm =
√

t/4−M2
π is the center-of-mass momentum of the two-pion system in the t-channel,

Γi(t) is the complex I = J = 1 ππ → NN̄ partial-wave amplitude, and Fπ(t) is the complex pion
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form factor in the timelike region. This follows from the unitarity condition in the t–channel and
is valid strictly in the region up to the four-pion threshold. The pion form factor has a right-hand
cut at the two-pion threshold, while the partial-wave amplitude has both this right-hand cut and a
left-hand cut resulting from s-channel baryon exchanges. According to the Watson theorem [15],
the complex functions Γi(t) and Fπ(t) have the same phase on the two-pion cut, and therefore their
ratio is real at t > 4M2

π , also being free of pion-rescattering effects. The pion form factor |Fπ(t)|2

can be extracted directly from the e+e−→ π+π− exclusive annihilation cross section, without the
need of determining the phase of the complex form factor. Thus, the ππ → NN̄ t-channel partial-
wave amplitude is represented in the form Γi(t) = N(t)/D(t), such that the right-hand cut (related
to the t–channel exchanges) appears only in the factor 1/D(t) = Fπ(t) [16], and the left-hand cut
(related to the s-channel intermediate states) appears in the factor N(t) = Γi(t)/Fπ(t).

Within relativistic SU(3) χEFT with the explicit inclusion of spin-3/2 degrees of freedom, we
calculate the ratio Γi(t)/Fπ(t), dominated by the singularities of the nucleon Born graphs. It is not
affected by pion-rescattering effects, consequently avoiding large higher-order χEFT corrections.
We then multiply the result with the empirical pion form factor |Fπ(t)|2, containing the effects of
pion rescattering, for which we use the Gounaris-Sakurai parametrization [17] with the parameters
determined in Ref. [18].

Concerning the isoscalar spectral functions, they are dominated by the ω and φ -meson pole
contributions. The model used for their inclusion is detailed in Ref. [8].

3. Discussion of the results

As can be seen in Fig. 2, the N/D prescription described in the previous section results in a re-
markable improvement of the predictions for the nucleon spectral functions (red bands) when com-
pared with those from traditional χEFT (blue bands). Figs. 2a and c show that the improved results
agree well with those obtained from amplitude analyses via analytic continuation of the ππ→ NN̄
partial-wave amplitudes [19, 20] or Roy-Steiner equations [21]: the qualitative agreement is good
in the whole region considered, and, in a leading-order calculation of the ratio Γi(t)/Fπ(t), we
reproduce the amplitude-analysis results quantitatively up to t ∼ 0.3 GeV2 within errors. This is
achieved even though no new free parameters are added, and the results continue being a genuine
prediction of χEFT. Furthermore, it has been shown in Refs. [9, 10] that a next-to-next-to-leading
order calculation of Γi(t)/Fπ(t) is sufficient to reproduce the results in the entire region up to
t ∼ 0.8 GeV2.

The improvement has a dramatic effect on the peripheral transverse densities, as shown in
Figs. 2b and d. At distances b ∼ 1 fm, the predictions become up to an order of magnitude larger
than in traditional χEFT approaches, and even at asymptotically large distances the improvement
changes the densities by a constant factor of approximately 1.3. The densities decay exponentially
at large b, as dictated by the analytic properties of Eqs. (2.4) and (2.5). At distances b > 3 fm, they
are dominated by the isovector component, for which the dispersive improvement of the χEFT
spectral functions performed in this work allows a predictive construction down to small distances
b& 1fm. We show the decomposition into isovector and isoscalar components, {ρ p,ρn}= ρS±ρV

in Fig. 3.

3



P
o
S
(
Q
C
D
E
V
2
0
1
7
)
0
5
2

Transverse nucleon densities Astrid N. Hiller Blin

Be 06

Ho 16

ChEFT Improved

ChEFT

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

0.10 0.15 0.20 0.25 0.30

0.00

0.05

0.10

0.15

0.20

0.25

t (GeV2)

Im
F
1V
/π

ChEFT Improved

ChEFT

1.0 1.5 2.0 2.5 3.0 3.5 4.0
10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

b (fm)

ρ
1V
(f
m

-
2
)

(a) (b)

Be 06

Ho 16

ChEFT Improved

ChEFT

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

0.10 0.15 0.20 0.25 0.30

0.0

0.2

0.4

0.6

0.8

1.0

1.2

t (GeV2)

Im
F
2V
/π

(-)ChEFT Improved

(-)ChEFT

1.0 1.5 2.0 2.5 3.0 3.5 4.0
10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

b (fm)

ρ˜
2V
(f
m

-
2
)

(c) (d)

Figure 2: (a, c) Nucleon isovector spectral functions: the blue bands correspond to the χEFT results;
the red bands are the results after improvement through unitarity; the brown bands and black line are the
spectral functions obtained from Roy-Steiner equations [21] and the analytic continuation of the ππ → NN̄
amplitudes [20, 19], respectively. The main plot shows the functions up to t = 0.3GeV2; the inset shows
them up to t = 1GeV2. (b, d) Nucleon peripheral transverse isovector densities. The magnetic density is
shown with opposite sign (−) on the logarithmic scale.

For the proton, the charge density’s isovector and isoscalar contributions have the same sign,
leading to a positive total density with smooth behavior. For the neutron, on the other hand, the
isovector and isoscalar components contribute with opposite sign, leading to cancellations in the
total density. While in the periphery the neutron charge density is therefore negative, the results
might be consistent with a positive charge density towards the center. However, the uncertainties
in this region are too large to be able to make a definitive statement. The isoscalar component
of the magnetization density is significantly smaller than in the charge density. As a result, the
isovector magnetization density dominates down to much smaller distances b∼ 1fm, and the proton
and neutron have approximately opposite magnetization densities with smaller uncertainties in the
whole region studied.

It is interesting to also inspect the quark flavor decomposition of the transverse charge and
magnetization densities [12]:

ρ = euρ
u + edρ

d + esρ
s (i = 1,2), (3.1)

where ρ f (b) ( f = u,d,s) represent the densities associated with the vector currents of the quark
fields with flavor f . In order to study the relative contribution of the various quark flavors to the
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Figure 3: Transverse charge and magnetic densities of the nucleons. The red band shows the isovector
component calculated using χEFT and dispersive improvement, while the blue band includes the vector-
meson pole contrinbutions to the isoscalar component. The total density is shown in green.

charge density at a given distance, it is convenient to consider the ratios

R f (b)≡=
e f ρ

f
1 (b)

ρ1(b)
, (3.2)

which at any b satisfy

∑
f

R f (b) = 1, (3.3)

and describe how the charge density at a given distance is decomposed into its quark flavor contri-
butions. Its varition with b is slow due to the cancellation of the exponential factors.

In Fig. 4, the ratios calculated with the above introduced methods are shown for the proton.
There are several aspects of interest to be outlined: at large distances b > 3fm the u and d ratios
approach the values Ru = 2/3 and Rd = 1/3, which are in accordance with u and d quark densities
of equal magnitude and opposite sign. This points to the dominant pion-cloud contribution in the
periphery. Even though the central regions in our calculations are provided with less accuracy than
those of the periphery, we do obtain u and d ratios comparable with the number of u and d valence
quarks at distances of b ∼ 1 fm. This agrees with a mean-field picture of the motion of valence
quarks in the nucleon [12]. On the other hand, the strange quark fraction is negligible in most of
the region considered.
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Figure 4: The ratios R f (b) ( f = u,d,s) (denoted RB, f (b) in the figure), Eq. (3.2), describing the relative
contribution of each flavor to the total proton charge density at a given distance b.

4. Summary and conclusions

In this work, we gave predictions for the nucleon peripheral transverse charge and magnetic
densities. We used a method of dispersive improvement of the isovector form factors in order to
include the effects of pion rescattering and the ρ-meson pole. This is achieved by means of an
N/D method that effectively separates the amplitude into a piece free of pion-rescattering effects,
which can be calculated in χEFT, and a piece containing the pion-rescattering effects, which is
represented by the empirical pion form factor.

This results in a major improvement of the form factors in the whole region considered, en-
abling a reproduction of results obtained from amplitude analysis. Furthermore, the isovector den-
sities are enhanced by an order of magnitude in the the region of b∼ 1 fm, and slightly less drasti-
cally so towards the periphery. We conclude the pion-rescattering effects are essential for a reliable
description not only of the central regions, but also for the nucleon periphery.

In the future, the methods presented here can be applied to a large variety of studies, such as
the ∆(1232) transverse densities and nucleon–∆(1232) transition form factors. In fact, while in
the present work we considered the vector form factors, the method can also be extended to the
study of baryon scalar form factors or those related to the strange current. Lastly, with the methods
employed here, it would be interesting to study also the GPDs, connected to the transverse densities
as described in Refs. [5, 6].
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