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The non-perturbative nature of QCD at hadronic scales implied the development of phenomeno-
logical approaches such as quark models or, more recently, computer-based calculations using
Lattice QCD. However, the unique properties of heavy quarkonium systems allow an entire
calculation in terms of non-relativistic perturbative QCD. In this work, the bottomonium spec-
trum, up to n = 3, and the ground state charmonium states, are analyzed in the framework of
Non-Relativistic Quantum Chromodynamics at N3LO. For bottomonium, finite charm quark mass
effects in the QCD potential and the MS-pole mass relation are incorporated to the highest known
order, O(ε3) in the ϒ-scheme counting. The bottom quark pole mass is expressed in terms of
the MSR mass, a low-scale short-distance mass which cancels the u = 1/2 renormalon of the
static potential. We study the n` = 3 and n` = 4 schemes, finding a negligible difference between
the two if finite mc effects are smoothly incorporated in the MSR mass definition. We find that
bottomonium n = 3 states are not well behaved within perturbative NRQCD. Hence, fitting to
the n = 1,2 bb̄ states we obtain mb(mb) = 4.216± 0.039 GeV. Similarly, from the lowest lying
charmonium states we find mc(mc) = 1.273±0.054 GeV.
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1. Introduction
Heavy quarkonium systems are unique, as their dynamics allow a full calculation using non-
relativistic QCD (NRQCD) with perturbative methods. Within NRQCD the calculation of the
energy levels of heavy quarkonium relies on the accurate description of the static QCD potential
VQCD(r). Most recent calculations computed the energy levels of the lower-lying bottomonium
states up to O(α5

s m) and O(α5
s m logαs) using pNRQCD [1], which describes the interactions of a

non-relativistic system with ultrasoft gluons organizing the perturbative expansions in αs and the
velocity of heavy quarks systematically. A closed expression for arbitrary quantum numbers can
be found in [2].

The convergence of the perturbative expansion depends, though, on the short-distance mass
scheme employed to ensure the O(ΛQCD) renormalon cancellation. The authors of Ref. [3] em-
ployed the well-known MS scheme, commonly used for physical situations in which the relevant
scale is of the order or larger than the heavy quark mass. For heavy quarkonium the typical scale
is much smaller, therefore the results can be substantially improved by switching to a low-scale
short-distance scheme.

In this work we study the predictions for the energy levels of heavy quarkonium at N3LO
using the MSR scheme [4], and determine the bottom quark mass, including finite charm quark
mass effects, using states with n ≤ 3 and the charm quark mass from the low-lying charmonium
spectrum. A careful study of scale variation is performed, using the idea that the argument of
perturbative logarithms should roughly vary between 1/2 and 2, while keeping at all times the
renormalization scale above 1GeV such that perturbation theory is still valid. A more detailed
description of this work has been recently presented in Ref. [5]. The reader is kindly referred to the
latter work for further details.

2. Computation of QQ Bound States
The energy of a non-relativistic QQ bound state with arbitrary quantum numbers and with n` mass-
less active flavors reads, in the pole scheme reads [6, 7, 2] :

EX(µ,n`) = 2mpole
Q

[
1−C2

F α
(n`)
s (µ)2

8n2

∞

∑
i=0

(
α
(n`)
s (µ)

4π

)i

ε
i+1Pi(Ln`)

]
, (2.1)

with

Ln` = log
(

nµ

CFα
(n`)
s (µ)mpole

Q

)
+Hn+` , Pi(Ln`) =

i

∑
j=0

ci, j L j
n` , (2.2)

where Hn is the harmonic number and ε is a bookkeeping parameter used to organize the various or-
ders in the ϒ-expansion scheme. Imposing µ independence of the energy levels, the ci, j coefficients
can be recursively calculated from ci,0, which have been calculated up to i = 3 in Refs. [8, 9].

A precise determination of the heavy quark masses directly from Eq. (2.1) is inadequate, as
such equation inherits the u = 1/2 renormalon of the static potential. Thus, the pole mass must
be expressed in terms of a short-distance mass. Furthermore, a low-scale short-distance mass is
advisable to avoid large logarithms of the ratio of the non-relativistic scale and the quark mass. In
this work, two equivalent versions of the MSR mass [10, 4] will be used.
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The MSR scheme was built as a natural extension of the MS mass for renormalization scales
below the heavy quark mass. Its definition is derived directly from the MS-pole mass relation and,
in contrast with the MS mass, which has only logarithmic dependence on the scale µ , MSR mass
has logarithmic and linear dependence on an infrared scale R :

δmMSR
Q ≡ mpole

Q −mMSR
Q (R) = R

∞

∑
n=1

an(n`)

(
α
(n`)
s (R)
4π

)n

. (2.3)

The an are derived from the MS pole mass relation, and are different for the practical and natural
versions of the MSR mass, which are two alternative but equivalent ways to change from a scheme
with (n`+1) dynamical flavors to another with only n`. On the one hand, the practical MSR mass
(MSRp) uses the threshold matching relation of the strong coupling to rewrite α

(n`+1)
s (m) in terms

of α
(n`)
s (m) and, on the other hand, the natural MSR mass (MSRn) directly integrates out the heavy

quark Q from the MS to pole relation setting all diagrams with heavy quark loops to zero.
The R dependence of the MSR mass is described by :

− d
dR

mMSR
Q (R) = γ

R[α
(n`)
s (R)] =

∞

∑
n=0

γ
R
n

(
α
(n`)
s (R)
4π

)n+1

, (2.4)

where γR
n = an+1−2∑

n−1
j=0(n− j)β j an− j are the R-anomalous dimension coefficients [4].

Effects from the finite charm quark mass contribute to the relation of the pole mass to the
MSR mass and to Eq. (2.1). Corrections to the binding energy result in an energy-shift to the heavy
quarkonium mass and have been calculated up to O(ε3) [11, 12, 13]. In the pole mass scheme they
can be written as :

EX(µ,n`,m
pole
Q ,mpole

q ) = EX(µ,n`,m
pole
Q )+ ε

2
δE(1)

X + ε
3
δE(2)

X . (2.5)

The exact δE(2)
X term has only been computed for the ` = 0 bottomonium states [12, 13]. For the

rest of states we follow the approach used in Ref. [8], where the authors employ the mc→ ∞ limit,
which we complete by requiring that the correction in the n` scheme vanishes for mc→ 0.

The corrections from the finite charm quark mass to the MSR-pole mass relation start at
O(α2

s ) :

δmMSR
Q (R,mc) = δmMSR

Q (R)+R ∑k=2 ∆
(k)
mc
(ξ )

(
α
(n`)
s (R)

4π

)k

, (2.6)

where ξ = mc/R and δmMSR
Q is given in Eq. (2.3). The ε2 correction term has been calculated

exactly in Ref. [14]. The ε3 correction was analytically calculated in Ref. [15], but due to its com-
plexity we have used a numerical approximation using a Padè parametrization, which is accurate
up to 8 significant digits in the range 0≤ ξ ≤ 1, enough for our purposes [5].

The aforementioned finite charm mass corrections also modify the R-anomalous dimension :

− d
dR

mMSR
Q (R) = γ

R[α
(n`)
s (R)]+ ∑

n=1
δγ

R
n (ξ )

(
α
(n`)
s (R)
4π

)n+1

, (2.7)

2



P
o
S
(
H
a
d
r
o
n
2
0
1
7
)
0
3
1

Bottom and Charm Quark Mass Determination from Quarkonium at N3LO Pablo G. Ortega

with δγR
n (ξ ) = ∆n(ξ )−ξ

d∆n(ξ )
dξ
−2∑

n−2
j=0(n− j)β j ∆n− j(ξ ).

The O(α4
s ) finite charm quark mass corrections are unknown so in our calculations we will

cut the propagation of ∆
(2,3)
mc

(ξ ) terms to the O(ε4) order, in order to avoid possible cancellations
among crossed terms.

Up to now we have explicitly account for the charm mass corrections in the n` scheme. Al-
ternatively, one can integrate out the charm quark, as it is sufficiently large compared to typical
NRQCD scales to assume it is near the decoupling limit (mc → ∞). Therefore we will study, to-
gether with the n` scheme with charm quark mass corrections, a scheme with (n`−1) dynamical
flavors.

3. Results

Our aim is to extract the MS bottom and charm masses from the perturbative expression for the
mass of heavy quarkonium states, contained in Eq. (2.1) in the MSR mass scheme, fitting it against
experimental values from the PDG. For a given dataset, mQ is obtained from the minimum of the
following χ2 function, which depends on a set of pairs of renormalization scales {µn,Rn}, where
the index n runs over each principal quantum number in the dataset :

χ
2({µn,Rn}) = ∑

i

(
Mexp

i −Mpert
i (µi,Ri,mQ)

σ
exp
i

)2

. (3.1)

The previous sum extends to the individual heavy quarkonium states in the dataset and Mexp
i and

σ
exp
i are the experimental masses and errors extracted from the PDG [16]. Such fit would give us

a best-fit MS mass value as a function of the {µn,Rn} pair. This approach is taken because the
theoretical uncertainties are highly correlated among various states and the so-called d’Agostini
bias [17] emerges, which states that the global best-fit value is considerably lower than individual
determinations from each state in the set. An alternative way is to perform a weighted average
of the best-fit results. Both methods are in quite good agreement, though this last option leads to
slightly larger perturbative uncertainties.

The renormalization scales µ and R are varied independently, within reasonable ranges, to es-
timate the the perturbative uncertainties. Such ranges depend on the convergence behavior for each
heavy quarkonium state. Our procedure is to select ranges where the argument of the perturbative
logarithms are roughly unity. This implies that, for n = 1 and n = 3 states, the renormalization
scales should be varied between (µ1,R1) ∈ [1.5,4 ]GeV, whereas for states with n = 2 the range
(µ2,R2) ∈ [1,4 ]GeV is preferred. For charmonium we use the range 1.2GeV≥ µcharm ≥ 4GeV,
which gives a pattern very similar to the n = 1 bottomonium states. It is worth noticing that the µn

and Rn scales have to be varied together to account for theoretical correlations.
From the χ2 minimization we obtain the central value of mQ, calculated as the average of all

the best-fits in the (µ,R) grid, and the uncertainty coming from the experimental error of the heavy
quarkonium masses, denoted as ∆exp, also taken as the average in the grid.

The largest source of error is the one associated to the variation of the scales, that is, ∆pert.
Its value is calculated as the difference of the maximum and minimum best-fit values in the grid.
Finally, there are additional errors originating from the uncertainty on the strong coupling ∆αs and,
for the bottom (charm) mass fits, the charm (bottom) mass ∆mc (∆mb).
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Figure 1: Left panel : Bottom quark mass determinations from individual fits to bottomonium states with
principal quantum number n≤ 3 (black dots with error bars) and global fits to n= 1 (green band), n= 2 (blue
band), and n = 3 states (orange band). All computations at N3LO in the MSRn scheme with n` = 3 active
flavors. Right panel : Same for charm quark mass. Both panels : only perturbative uncertainties shown.

We have carried out fits for 14 individual bottomonium states (all states with n≤ 3) and global
fits for sets with n = 1 states, n = 2 states, n = 3 states, and different combinations such as all states
with n≤ 2 and n≤ 3. Our results are shown in Fig. 3 for the MSRn scheme with n` = 3.

The expansion with n` = 3 flavors is favored over n` = 4, as suggested by Ref. [18]. We
consider the set with n≤ 2 states as our default, as such states can be accurately described within
perturbation theory. We take the MSRn scheme (which is theoretically cleaner) as our default,
finding our final result for the bottom mass :

mb(mb) = 4.216±0.009exp±0.034pert±0.017αs±0.0008mc GeV = 4.216±0.039GeV. (3.2)

The perturbative uncertainty clearly dominates over the rest, followed by the error from the strong
coupling. The error due to the uncertainty on the charm mass is negligible, as the experimental
one.

Equivalently, the charm mass can be obtained from cc̄ bound state calculations via Eq. (2.1).
We will restrict ourselves to n= 1 states and vary µ and R between 1.2GeV and 4GeV, which yields
order-by-order convergence with moderate perturbative uncertainties. We will perform individual
and global fits (for n = 1), which are summarized at N3LO in Fig. 3. We find that the result of the
global fit is almost identical to the individual fit to the J/ψ state, due to its extremely precise mass
value with respect to the ηc state.

As previously, we take the MSRn scheme as our default, so our final value for the charm quark
mass from the global fit of n = 1 states is :

mc(mc) = 1.273±0.0005exp±0.054pert±0.006αs±0.0001mb GeV = 1.273±0.054GeV. (3.3)

Again, we observe that theoretical uncertainties greatly dominate over αs uncertainties, and again
experimental uncertainties (coming form the fit) are negligibly small. The mb uncertainty is also
negligible, as the dependence on the bottom mass comes only from the αs threshold matching from
5 to 4 flavors. A more complete analysis of this work is to be found in Ref. [5].
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