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We present results on the extraction of tensor resonances in the ηπ system in a joint analysis
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analyticity, to constrain the reaction model. We find two JPC = 2++ resonance poles, the a2 and
a′2.
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1. Introduction

Hadron spectroscopy provides insight into the understanding of Quantum Chromodynamics
(QCD). The constituent quark model has been historically successful in categorizing the hadrons
[1], but as many experiments are gathering unprecedented high-statistics, high-precision data [2,
3, 4], there has been a renewed interest in understanding the QCD spectrum. Exotic states such
as hybrids, which involves active gluons in a qq̄ system [5, 6], are forbidden by the constituent
quark model, but are in principle allowed by QCD. The ηπ(′) system is one of the golden modes
for studying hybrid mesons as the system can be found in a spin-exotic JPC = 1−+ state. In the era
of precision spectroscopic experiments, collaboration between theorist and experimental is vital in
determining hadronic resonance properties. S-matrix principles, such as unitarity and analyticity
[7, 8], need to be implemented in reaction models to ensure that the resonance physics that is
extracted satisfies fundamental principles. In understanding non-quark model states such as the
1−+, it is important to understand conventional quark model states, and ensure our understanding of
reaction models can reliably describe well-known resonances. The a2(1320) is a well-established
state [9] and is known to couple to ηπ . In constructing analytic models to describe ηπ in P-
wave, testing the model on the D-wave will give a first indication that the model satisfies S-matrix
principles. We present here the first results of the JPAC and COMPASS collaborations on an
analysis of D-wave resonances in the ηπ system [10]. This work uses the previous ηπ partial
wave analysis in [2]. We find two resonances, corresponding to the a2 and it’s first excited state the
a′2, as pole singularities in the complex energy plane. For details of the analysis, we refer to [10].

2. Amplitude Model

We consider the reaction π p→ ηπ p, with a 190 GeV/c π-beam (see Fig. 1). At these high
energies, the process is dominated by pomeron (P) exchange [2], and we assume factorization of
the reaction into a “top” vertex (πP→ ηπ) and a “bottom” vertex (p→ Pp). We are interested
in meson resonances of the top vertex and the 2++ data we fit is integrated over the momentum
transfer, so we not have information about the t-dependence of the pomeron exchange. Therefore
we assume the pomeron to have be spin-1 and have an effective momentum transfer teff = −0.5
GeV2. Let a(s) be the partial wave amplitude of the 2++ channel, with s being the invariant
mass squared of the ηπ system and using te f f as the momentum transfer. We fit to the partial
wave intensity distribution in [2] to our amplitude model with I(s) = N p|a(s)|2, where N is a
normalization factor and p= λ 1/2(s,m2

η ,m
2
π)/2
√

s is the break-up momentum of the ηπ final state,
with λ (x,y,z) = x2 + y2 + z2−2(xy+ yz+ xz) being the Källen triangle function.

We look for resonances in the elastic ηπ amplitude, which we denote as f (s). The model satis-
fies elastic unitarity of the ηπ→ ηπ system, and the inelastic unitarity condition of the production
process πP→ ηπ , given as

Im â(s) = ρ(s) f̂ ∗(s)â(s) (2.1)

Im f̂ (s) = ρ(s)| f̂ (s)|2, (2.2)

where â and f̂ are reduced amplitudes that have the kinematic threshold factors removed, and
ρ = 2p5/

√
s is the intermediate ηπ phase space factor that includes the D-wave threshold behavior.
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Figure 1: Diagram for π p→ ηπ p with P-exchange.

In our model, we assume only the ηπ system as the intermediate state in the unitarity conditions.
The effects of coupled channels (dominated by the ρπ system) have a small effect on the pole
positions, and are included as a systematic uncertainty estimate for the resonance parameters.

The amplitudes are subject to the N-over-D method, which we effectively write as

â(s) =
n(s)
D(s)

, (2.3)

where n(s) contains the production process physics, and D(s) contains the resonance physics of the
ηπ rescattering. We take D(s) as

D(s) = c0− c1s− c2

c3− s
− s

π

∫
∞

sth

ds′
ρ(s′)N(s′)
s′(s′− s)

, (2.4)

where ρ(s)N(s) = gλ 5/2(s,m2
η ,m

2
π)/(s+ sR)

7 is our model for the ηπ exchange mechanism, with
sR being responsible for the finite range of strong interactions, and is taken to be sR = 1.5 GeV2.
Here, c0, c1, c2, c3, and g are fit parameters. The terms c0− c1s and c2/(c3− s) are referred to as
CDD poles [11], and associated with resonance parameters. In this analysis, we fix c0 = (1.23)2.
We write the production term as and

n(s) =
1

c3− s ∑
j

a jTj(ω(s)). (2.5)

where the factor 1/(c3− s) cancels the zero of the second CDD pole in D(s), Tj are Chebyshev
polynomials, and ω(s) = s/(s+Λ), which is our approximation for the left-hand singularities of
the production process. The a j are fit parameters, and we take Λ = 1 GeV2.

3. Fit Results

We fit the model Eq. (2.3) to the JPC = 2++ intensity distribution given in [2] using I(s) =
N p|a(s)|2. We use a χ2 minimization with the 56 data points for the D-wave, which range from the
ηπ threshold to 3 GeV. The absolute normalization is not given in [2], so we fix the normalization
N = 106 so that the production parameters a j are of O(1). We fit the parameters a j for a specified
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number of production terms, and c1, c2, c3, and g. We estimate statistical uncertainties for the
parameters and observables by performing a bootstrap analysis using 105 pseudo datasets.

In preliminary studies, we found that seven terms in the production amplitude (a0, . . .a6) re-
sulted in a production amplitude that was smooth, however between three and seven terms, little
deviation was found for the resonance parameters, and we include their effects as systematics (see
Ref. [10]). We find for the two CDD poles, and six terms in the production expansion in n(s), a
χ2/d.o.f = 1.9 (see Fig. 2).
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Figure 2: Intensity distribution and fits to the JPC = 2++ wave. Red lines are fit results, and the
data is taken from Ref. [2]. The error bands correspond to the 3σ (99.7%) confidence level. Figure
taken from Ref. [10].

4. Resonance Poles

Resonance are associated with poles of partial wave amplitudes on unphysical Riemann sheets
of the complex energy-plane [8]. We are interesting in extracting the resonance pole positions
For our model, which amounts to continuing the denominator function D(s) to the second sheet,
and searching for zeroes, i.e. when DII(sp) = 0 for the pole positions sp, where DII(s) = D(s)+
2iρ(s)N(s). We define the mass and width of the resonance pole as m=Re√sp and Γ=−2Im√sp

respectively.
Fig. 3 shows many poles in the complex s-plane, three of which have Res > 0, and two for

Res < 0. We want to understand the nature of all these singularities, primarily in identifying
if these poles correspond to QCD resonances. We see two poles (corresponding to the a2 and a′2
resonances) migrate to the real axis as the coupling is turned off, which is expected for the two CDD
poles we chose. The other poles all migrate to s = −1.5 GeV2, which is the location of the left-
hand singularity in our model. This shows clearly the origin of the poles. Fig. 3 shows snapshots
at different values of g as g→ 0. The poles that tend to s = −1.5 GeV2 are purely model effects,
as dynamically generated poles are expected to migrate off to infinity as the coupling vanishes.
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The two a2 poles were found to have mass and width (see Fig. 4)

m(a2) = (1307±1±6) MeV, m(a′2) = (1720±10±60) MeV,

Γ(a2) = (112±1±8) MeV, Γ(a′2) = (280±10±70) MeV,

where the first uncertainty is statistical (from the bootstrap analysis) and the second one systematic.
The systematic uncertainty is obtained adding in quadrature the different systematic effects related
to the fit model.
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Figure 3: The migration of poles as a function of g as g→ 0.
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Figure 4: Pole positions for the a2 and a′2, with six production terms and with sR varied from 1.0
GeV2 to 2.5 GeV2. Poles are shown with 2σ (95.5%) confidence level contours from uncertainties
computed using 105 bootstrap fits. Figure taken from Ref. [10]
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5. Summary

We have shown that amplitudes constrained by S-matrix principles can describe the peripheral
production process π p→ ηπ p in the 2++ sector. Resonance parameters were extracted and two
resonances were found, corresponding to the a2 and the first excited state, the a′2. This analysis
serves as a template for further analyses, such as the full analysis of the η(′)π system (including
the exotic P-wave), the 3π system in π−p→ π−π−π+p, where the first sector under study is 2−+

[12, 13], and resonance production at GlueX [14].
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