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We discuss the method to investigate the origin of hadron resonances from the analytic structure
of the scattering amplitude. Recently, there have been discussions on the relation between the
hadron structure and the position of the CDD (Castillejo–Dalitz–Dyson) zero, which is defined
as the zero of the amplitude. To study the relation between the position of the CDD zero and the
internal structure of the hadrons, we consider the zero coupling limit (ZCL) of the coupled channel
scattering amplitude, where the couplings among different channels are turned off. With the
behavior of the pole in the ZCL, we reveal the origin of the eigenstate. By studying the behavior
of the eigenstate poles and the CDD zeros in the ZCL, it is shown that the origin of the pole
accompanied by a nearby CDD zero is the dynamics of the hidden channel. As an application,
we show that the High-mass (Low-mass) pole of the Λ(1405) baryon has the dynamical origin of
the K̄N (πΣ) channel.
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1. Introduction

The emergence of the many candidates of the exotic hadrons in the recent experiment [1]
requires the method to clarify the internal structure of hadrons with experimental analyses. With
the experimental analyses, we can obtain the scattering amplitude on the real energy region, which
can be analytically continued to the complex energy axis [2]. In the scattering amplitude, the
eigenstate is expressed as the pole. Thus by deriving the relation between the structure of the
amplitude around the pole energy and the internal structure of the eigenstate, we can discuss the
structure of hadron resonances directly from the experimental data.

On the other hand, the importance of the zero of the scattering amplitude, which is called the
Castillejo–Dalitz–Dyson (CDD) zero [3, 4], is discussed in several studies [5, 6, 7, 8, 9].1 While its
importance is recognized, the direct relation between the structure of the state and the CDD zero
is still unclear. However, according to the discussion in Refs. [8, 9], there seems to be the relation
between the position of the CDD zero and the internal structure of the hadron resonances.

In this paper, we discuss the relation between the structure of the hadron resonances and posi-
tions of the poles and CDD zeros. First, we show that the origin of the eigenstate is specified with
the behavior of the coupled channel scattering amplitude in the zero coupling limit (ZCL), where
the inter-channel coupling is switched off. Next, with the consideration on the topological nature
of the scattering amplitude, we show the relation between the origin of the hadron resonances and
the position of the CDD zero. Finally, we show the application to the Λ(1405) baryon. All the
contents in this paper is based on Ref. [10].

2. Zero coupling limit and origin of eigenstate

In this section, we show how to extract the information of the internal structure of hadron
resonances from the coupled-channel scattering amplitude in a given partial wave. To this end,
we focus on the positions of the pole Epole and CDD zero ECDD of the diagonal component of the
scattering amplitude Fii(E). We notice that the eigenstate pole emerges at the same energy Epole

in all the components of the coupled channels. On the other hand, the existence and the position of
the CDD zero, which is defined as the zero of the amplitude Fii(ECDD) = 0, is channel dependent.

Taking the zero coupling limit (ZCL), where the coupling between different channels are
switched off [11, 12, 13], we can specify the origin of the eigenstate as follows. Decreasing the
coupling, the eigenstate pole moves in the complex energy plane. In the exact ZCL, the pole re-
mains only in the one of the components, which is considered as the origin of the eigenstate. If
the pole remains in the amplitude of the focused channel in the ZCL, the dynamics of the focused
channel is the origin of the eigenstate. In contrast, if the pole decouples from the amplitude, the
dynamics of the focused channels is not the origin. In the following, we show that the position of
the CDD zero is related to the origin of the eigenstate.

To derive the relation between the origin of the eigenstate and the position of the eigenstate, let
us consider a single-channel scattering problem coupled to a bare state, utilizing the nonrelativistic

1The CDD zero is often called as “CDD pole” because it is the pole of the inverse amplitude. In this paper, to avoid
the confusion with the eigenstate pole, we call it CDD zero.
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effective field theory introduced in Ref. [9] :

H =
∫

d3xxx
[

1
2M ∇ψ† ·∇ψ + 1

2m ∇ϕ † ·∇ϕ + 1
2M0

∇B†
0 ·∇B0 +ω0B†

0B0

+g0

(
B†

0ψϕ +ϕ †ψ†B0

)
+ v0ψ†ϕ †ϕψ

]
, (2.1)

with h̄ = 1. By solving the Lippmann-Schwinger equation, we obtain the exact on shell T -matrix:

t(E) =
v0(E −ω0)+g2

0

(E −ω0)[1− v0G(E)]−g2
0G(E)

, G(E)≡
∫ d3 ppp

(2π)3
1

E − p2/(2µ)+ i0+
, (2.2)

where G(E) denotes the loop function of the scattering channel and µ = Mm/(M+m). The scat-
tering amplitude F (E) is given as F (E) =−µt(E)/(2π).

Let us suppose the system to have a discrete eigenstate. The pole position of the amplitude
E = Epole is given as

(Epole −ω0)[1− v0G(Epole)]−g2
0G(Epole) = 0. (2.3)

The residue of the pole g2 can be given as

g2 =
v0(Epole −ω0)+g2

0

1− v0
[
G(Epole)+(Epole −ω0)G′(Epole)

]
+g2

0G′(Epole)
, (2.4)

where G′(E) denotes the energy derivative of the loop function G(E).
Now we consider the ZCL where the coupling between the scattering channel and discrete

channel vanishes; g0 → 0. Equation (2.3) tells us that Epole moves toward ω0 or E0 with 1 −
v0G(E0) = 0. If the interaction of the scattering channel is the origin of the eigenstate, the pole
remains in the amplitude and its position in the exact ZCL is determined by the dynamics of the
scattering channel. Thus the pole moves toward E = E0 in this case. On the other hand, if the origin
is the eigenstate, the pole must move to ω0. Simultaneously, the residue of the pole in Eq. (2.4)
vanishes and the pole decouples from the amplitude.

Next we consider the relation between the CDD zero and the ZCL. The position of the CDD
zero can be determined by the zero of the numerator of Eq. (2.2) as

ECDD = ω0 −g2
0/v0. (2.5)

In the ZCL, the CDD zero moves toward ω0. Thus, if the eigenstate originates in the discrete state,
the CDD zero and the pole have the same destination. In the exact ZCL, the pole and the CDD
zero decouple from the amplitude because the zeros of the numerator and denominator in Eq. (2.2)
cancel out each other. The distance between Epole and ECDD in this case proportionals to g2

0. Thus
when the coupling g0 is small but finite, the CDD zero lies near the pole.

3. Origin of eigenstate and nearby CDD zero

In the previous section, we have seen that the CDD zero cancels out the eigenstate pole when
the pole decouples from the amplitude. In this section, with the discussion on the topological nature

2



P
o
S
(
H
a
d
r
o
n
2
0
1
7
)
0
7
0

Structure of hadron resonance with nearby CDD zero Yuki Kamiya

of the scattering amplitude, we show that this annihilation of the pole occurs inevitably rather than
a coincidence.

Let us consider the topological property of an analytically continued partial-wave scattering
amplitude Fii(z) of channel i, where z denotes the complex energy variable. Because Fii(z) is a
meromorphic function of z, for a counterclockwise closed contour C on which Fii(z) is analytic,
the argument principle leads to

1
2π

∮
C

dz
d argFii(z)

dz
= nZ −nP ≡ nC, (3.1)

where nZ and nP are integers representing the number of zeros and poles enclosed by the contour
C.2 To derive Eq. (3.1), one can rewrite the integrand as (dFii(z)/dz)/iFii(z). 3 Because nC is the
topological invariant of π1(U(1)) ∼= Z, it must be an integer. As an example, if one pole (zero) is
enclosed by C, nC equals to −1(+1).

When we gradually reduce the channel coupling toward the ZCL, the poles and zeros move
continuously and make the trajectories in the complex z plane. As long as the contour C is cho-
sen not to intersect with the trajectories, the value of nc must be kept because of the topological
nature. This means that an abrupt transition from the amplitude with one pole in C (nC = −1) to
nothing (nC = 0) is forbidden. Thus, for a pole to decouple from the amplitude in the ZCL, which
corresponds to the case where the eigenstate pole originates in the hidden channel in the previous
discussion, it is necessary for the pole to encounter with a nearby zero because the pair annihilation
of the pole and the zero is the only way to disappear without changing the value of nC.

With the above discussions, we understand that the pole must have the nearby CDD zero if
the pole is not dynamically generated in the channel of interest. This means that the origin of the
eigenstate can be elucidated as the following manner:

1. If there is no CDD zero near a pole in Fii(z), the eigenstate originates in channel i.

2. If a pole has a nearby CDD zero, the origin of the eigenstate is not in channel i.

Thus, just with the position of the eigenstate pole and CDD zero obtained by the analyses of the
scattering amplitude, we can specify the origin of the eigenstate.

4. Application to Λ(1405)

We apply the developed method to the Λ(1405) baryon resonance and discuss its origin. The
two pole structure of Λ(1405) [14] is confirmed in the recent analyses of experimental data with
next-to-leading order chiral SU(3) dynamics [15, 16]. In the latest version of PDG [1], the pole
near the K̄N (πΣ) threshold is called High-mass (Low-mass) pole.

Utilizing the effective Tomozawa–Weinberg (ETW) model [16] with isospin symmetric hadron
masses, we study the singularity structure of the K̄N and the πΣ amplitude. The pole positions are
obtained as

W Low
pole = 1375−65i MeV, W High

pole = 1423−22i MeV. (4.1)
2Here we take C so as not to intersect the branch cut.
3Here it is assumed that all the poles and zeros are simple. Singularities with multiplicity can appear only with a

fine tuning of the parameters, and its existence is not stable against the small perturbation of the parameters.
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Figure 1: The positions of W Low
pole , W High

pole , W Low
CDD and W High

CDD in the K̄N amplitude (a) and the πΣ amplitude
(b) quoted from Ref. [10]. The solid (dashed) line denotes the trajectories of poles (CDD zeros) toward the
ZCL.

Searching for the CDD zero in the K̄N and πΣ amplitude in the Λ(1405) energy region, we find one
CDD zero in each component. Because the zero in the K̄N amplitude lies close to the Low-mass
pole while that in the πΣ amplitude lies close to the High-mass pole, we denote their energy as
W Low

CDD and W High
CDD , respectively, which are obtained as

W Low
CDD = 1381−108i MeV, W High

CDD = 1428−0i MeV. (4.2)

The positions of the poles and CDD zeros are shown in Fig. 1.
Now we discuss the origin of the eigenstates with the positions of the pole and CDD zeros.

First let us focus on the High-mass pole. In the πΣ channel, this pole has the accompanied CDD
zero, which indicates that the origin of this pole is not the dynamics of the πΣ channel. On the
other hand, absence of the nearby CDD zero in the K̄N channel tells us that the K̄N channel is its
origin. In the same manner, we can conclude that the origin of the Low-mass pole is the dynamics
of the πΣ channel because the nearby CDD zero exits only in the K̄N channel.

Finally, to verify the origin of the eigenstate expected in the above discussion, we calculate the
trajectories of the poles and the CDD zeros toward the ZCL, as shown in Fig. 1. While the High-
mass (Low-mass) pole encounters with the High-mass (Low-mass) zero and decouples from the
amplitude in the πΣ (K̄N) channel, it remains in the K̄N (πΣ) amplitude. This behavior supports
that the origin of the High-mass (Low-mass) pole is the dynamics of the K̄N (πΣ) channel, as
concluded with the method constructed in this study.

5. Summary

We have discussed the relation between the CDD zeros lying near the eigenstate poles and the
origin of the eigenstate. We have shown that the origin is specified with the behavior of the pole
in the ZCL of the coupled channel scattering amplitude. If the state has the dynamical origin of
the hidden channel, the pole must be annihilated with the nearby CDD pole, whose existence is
guaranteed with the topological property of the scattering amplitude. Then we have argued that the
origin of the eigenstate can be specified whether the eigenstate pole has the nearby CDD zero or
not. By applying this method to Λ(1405), it is concluded that the origin of the High-mass (Low-
mass) pole is the dynamics of the K̄N (πΣ) channel. Finally, we emphasize that our method has
the broad applicability because it is constructed based on the topological nature of the scattering
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amplitude without any assumption on the interaction. Furthermore, this is a model independent
method because what we need to utilize is only the positions of the poles and CDD zeros, which
are in principle be uniquely determined from the amplitude. Because of these advantages, this
method will shed light on the origin of many hadrons resonances.
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