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In this work, we have studied the Λb → J/ψK−p decay via Λ∗-charmonium-proton intermediate

states and discussed all possible triangle singularities. Using this process we have done a detailed

analysis of the singularities of the triangle amplitude and derived a formula for an easy evaluation

of the singularities. We have stressed that the χc1 and the ψ(2S) are the relatively most relevant

states among all possible charmonia up to the ψ(2S). Particularly the Λ(1890)χc1 pair plays a

very special role, since the threshold and triangle singularities merge. In the case o of JP = 3
2
−
, 5

2
+

for the narrow Pc, one needs P- and D-waves, respectively, in the χc1 p. This feature reduces the

strength of the contribution and smoothens very much the peak. In this case the singularities

cannot account for the observed narrow peak. On the other hand, for the case of JP = 1
2
+

or
3
2
+

with the latter one of the favored quantum numbers, where χc1 p → J/ψ p can proceed in an

S-wave, the Λ(1890)χc1 p triangle diagram could play an important role.
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1. Introduction

In 2015, the LHCb collaboration observed a narrow peak around 4450 MeV in the Λb →
J/ψK−p decay in the J/ψ p invariant mass spectrum [1, 2]. The possibility that these hidden charm

pentaquark-like structures might be due to a triangle singularity was immediately noted [3, 4, 5].

Triangle singularities in physical processes were introduced by Landau [6] and stem from

Feynman diagrams involving three intermediate particles when the three particles can be placed

simultaneously on shell and the momenta of these particles are collinear (parallel or antiparallel)

in the frame of an external decaying particle at rest. In one of the cases (we call it parallel),

two of the particles in the loop will go in the same direction and might fuse into other external

outgoing particle(s) [7], so that the rescattering process can even happen as a classical process. In

this case, the decay amplitude has a singularity close to the physical region and, thus, can produce

an enhancement. One particular classical case is given when the two on shell particles move in

the same direction and with the same velocities. In the center-of-mass frame of the rescattering

particles, these two particles would also be at rest and the triangle singularity is then located at the

threshold.

In this talk, we invesigate possible triangle singularities in the Λb → J/ψK−p process involv-

ing various Λ∗ and charmonium intermediate states. We search for many combinations of a Λ∗

hyperon and a charmonium in the triangle diagram. However, only a few of them are important

that we are going to discuss here. For detail see Ref. [8].

2. Detailed analysis of the triangle singularity

The triangle diagram for the Λb → J/ψK−p reaction is depicted in Fig. 1. In this process we

assume that Λb decays first to a Λ∗ and a charmonium state, the Λ∗ decays into K−p and then the

charmonium state and the p react to give the J/ψ p. Thus we have J/ψK−p in the final state as in

the experiment of [1].

(P )Λb

Λ∗

(P − q) K− (k)

(P − q − k)(q) cc̄ p

J/Ψ

p

Figure 1: Triangle diagram for the Λb → J/ψK−p decay, where Λ∗ stands for the different Λ∗ consid-
ered in the analysis of [1] and cc̄ stands for different charmonium states. In brackets, the momenta of the
corresponding lines are given.

Let us first consider a triangle diagram in general which is shown in Fig. 2. To analyze the

singularity structure, it is sufficient to calculate the following integral:

I(m23) =
∫

d3q
1

[P0 −ω1(~q)−ω2(~q)+ iε ]
[

E23 −ω2(~q)−ω3(~k+~q)+ iε
]
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P m3

m2, q

p13m1

p23

Figure 2: A triangle diagram showing the notations used in the general discussion of triangle singularities,
where mi’s denote the masses of the intermediate particles, and P, p13, p23 correspond to the four-momenta
of the external particles. The two dashed vertical lines correspond to the two relevant cuts.

= 2π

∫ ∞

0
dq

q2

P0 −ω1(q)−ω2(q)+ iε
f (q) , (2.1)

where ω1,2(q) =
√

m2
1,2 +q2, ω3(~q+~p13) =

√

m2
3 +(~q+~p13)2, E23 = P0 − p0

13, and

f (q) =
∫ 1

−1
dz

1

E23 −ω2(q)−
√

m2
3 +q2 + k2 +2qk z+ iε

, (2.2)

where k = |~p13| =
√

λ (M2,m2
13,m

2
23)/(2M), with M =

√
P2 and m13,23 =

√

p2
13,23, and q = |~q |.

We need to analyze the singularity structure of a double integration: one over q and one angular

integration over z.

The cut crossing particles 1 and 2 provides a pole of the integrand of I(m23) given by

P0 −ω1(~q)−ω2(~q)+ iε = 0 , (2.3)

identifying m1 = mΛ∗ and m2 = mcc̄. However, we have kept the iε here explicitly, which is impor-

tant to determine the singularity locations in the complex-q plane. The solution is

qon+ = qon + iε , qon =
1

2M

√

λ (M2,m2
1,m

2
2) . (2.4)

The function f (q) has endpoint singularities, which are logarithmic branch points, given when

the denominator of the integrand vanishes for z taking the endpoint values ±1, i.e., the solutions of

E23 −ω2(q)−
√

m2
3 +q2 + k2 ±2qk+ iε = 0 , (2.5)

by identifying m2 = mcc̄ and m3 = mp. The + and − signs correspond to z = +1 and −1, i.e., the

situations for the momentum of particle 2 to be anti-parallel and parallel to the momentum of the

(2,3) system in the frame with ~P = 0, respectively.

Eq. (2.5) has two solutions for z =−1:

qa+ = γ (vE∗
2 + p∗2)+ iε , qa− = γ (vE∗

2 − p∗2)− iε , (2.6)

The solutions for z = 1 are:

qb+ = γ (−vE∗
2 + p∗2)+ iε , qb− =−γ (vE∗

2 + p∗2)− iε . (2.7)
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Im q

Re q
qa−

qon+ qa+

0

(a) (c)(b)

Im q

Re q
qa−

qon+ qa+

0

Im q

Re q

qon+

0

qa+

qa−

Figure 3: Pertinent singularities of the integrand of I(m23) when limε→0(qa−) is positive. (a) is for the case
without any pinching, (b) shows the case when the integration path is pinched between qa+ and qa−, which
gives the two-body threshold singularity, and (c) is for the case when the pinching happens between qon+

and qa−, which gives the triangle singularity. The dashed lines correspond to possible integration paths.

In Fig. 3, the integrand has three relevant singularities: a pole qon+ and two logarithmic branch

points qa±. In Fig. 3 (a), all of them are located at different positions and one can deform the

integration path freely as long as it does not hit any singularity of the integrand. In such a kinematic

region, I(m23) is analytic. In Fig. 3 (b), when m23 = m2 +m3 or p∗2 = 0, the integration path is

pinched between qa− and qa+ we have the normal two-body threshold singularity. In Fig. 3 (c), the

integration path is pinched between qa− and qon+ and one gets the triangle singularity or anomalous

threshold which is a logarithmic branch point. Therefore, the condition for a triangle singularity to

emerge is given mathematically by

lim
ε→0

(qon+−qa−) = 0 . (2.8)

This is only possible when all three intermediate particles are on shell and meanwhile z =−1.

Note that the singularity is in the physical region only when the process can happen classically:

all the intermediate states are on shell, and the particle 3 emitted from the decay of the particle 1

moves along the same direction as the particle 2 with a largespeed than the particle 2 and can catch

up with it to rescatter.

For given m2, m3 and invariant masses for external particles, one can also work out the range

of m1 where the triangle singularity shows up, as well as the range of the triangle singularity in

m23. For qon and qa− (taking ε = 0) taking values in their physical regions, one needs to have

m1 ≤ M−m2 and m23 ≥ m2 +m3.

m2
1 ∈

[

M2m3 +m2
13m2

m2 +m3
−m2m3 , (M−m2)

2
]

, (2.9)

I(m23) has a triangle singularity, and it is within the range

m2
23 ∈

[

(m2 +m3)
2,

Mm2
3 −m2

13m2

M−m2
+Mm2

]

. (2.10)

3. Results

We study the Λb → K−J/ψ p from triangle diagrams with a Λ∗ hyperon, a charmonium and

a proton as the intermediate states. We take Λ(1405), Λ(1520), Λ(1600), Λ(1670), Λ(1690),
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cc̄ Most relevant range of MΛ∗ (MeV) Range of triangle singularity (MeV)

ηc [2226, 2639] [3919, 4283]

J/ψ [2151, 2523] [4035, 4366]

χc0 [1949, 2205] [4353, 4588]

χc1 [1887, 2109] [4449, 4654]

χc2 [1858, 2063] [4494, 4686]

hc1 [1878, 2094] [4464, 4664]

ηc(2S) [1806, 1983] [4575, 4741]

ψ(2S) [1774, 1933] [4624, 4775]

Table 1: For each charmonium, the triangle singularity produces prominent effects if the Λ∗ mass takes a
value within the the range given in the second column and the singularity range is shown in the last column
correspondingly.
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Figure 4: The value of |I1| for Λ∗χc1 with a width Γ = 100 MeV for the hyperon.

Λ(1800), Λ(1810), Λ(1820), Λ(1830), Λ(1890), Λ(2100), Λ(2110), Λ(2350), Λ(2585) as Λ∗,

coupled to K−p states, and ηc(1S), J/ψ , χcJ(1P) (J = 0,1,2), hc(1P), ηc(2S), and ψ(2S) as

charmonium. The mass range allowed for the Λ∗ particles can be seen in Table 1, for a certain

charmonium state, in order to have a triangle singularity.

In Fig. 4, We show the contribution to |I1|2 (for |I1| see Eq. (2) Ref. [8]) from a selected

choice of the Λ∗ states. We can see that all of them peak around m23 = 4450 MeV, which is the

χc1 p threshold. The largest strength, with the sharpest shape, comes from the Λ(1890) where the

threshold and the triangle singularities merge.

The cusp structure in the curve for the Λ(1670) comes from the threshold singularity (see in

the second column of Table 1). The peak of the Λ(1810) is sharper, even if the Λ∗ mass is outside

the range of the triangle singularity (see Table 1), but the most relevant factor in the structure is the

threshold singularity.

The Λ(2100) is inside the range of the triangle singularities as seen in Table 1. The structure

of I1 for this Λ∗ state shows a bump, in addition to the normal threshold cusp, around that energy,
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Figure 5: The value of |I|2 for P-wave Λ(1890)χc1 (left) and S-wave Λ(1890)ψ(2S) (right). A constant
width of Γ = 100 MeV is used for the Λ(1890).

as a consequence of the smearing of the triangle singularity by the width of the Λ∗, as discussed

before.

In Fig. 5, we depict the |I2|2 (for |I2| see Eq. (25) Ref. [8]) for the cc̄ = χc1 which requires a P-

wave in the χc1 p system and cc̄ = ψ(2S) which requires an S-wave in both the ψ(2S) p and J/ψ p

channels. As we see in Fig. 5, the amplitude for P-wave Λ(1890)χc1 is very much suppressed

the S-wave case. This is natural. Because the singularity appears when the χc1 p on shell and

at threshold where the P-wave factor vanishes. The S-wave structure is very much peaked and a

narrow, while the P-wave has a background below the peak accumulating more strength than the

peak. In Fig. 5, right, we show |I|2 for the case of cc̄ = ψ(2S) and we see a peak around 4630

MeV. This could lead to 3
2
−

, but in the experimental data the J/ψ p invariant mass distribution in

this region is flat. We, thus, conclude that if the narrow J/ψ p has 3/2− the triangle singularities

due to Λ∗ cc̄ p intermediate states cannot play an important role in the decay Λb → K−J/ψ p.

In the case of 1/2+, 3/2+, the χc1 p amplitude proceeds via an S-wave and we would have the

situation shown as the solid curve in Fig. 4. The peak is narrow enough and located at the right

position. Hence the Λ(1890)χc1 p triangle diagram could play an important role.
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