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In a precision era of hadron spectroscopy, new tools are required for the analysis of data from
hadron reactions. In this talk, we show an analysis of low-energy neutral pion photoproduction
data using the Least Absolute Shrinkage and Selection Operator (LASSO) in combination with
criteria from information theory and K-fold cross validation. These analysis techniques will be-
come relevant in the near future. First, we illustrate these methods with synthetic data; then,
the latest available measurements of differential cross sections (dσ/dΩ), photon-beam asymme-
tries (Σ), and target asymmetry differential cross sections (dσT/d ≡ T dσ/dΩ) in the low-energy
regime, are analyzed, and its feasibility for real data is demonstrated.
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1. Introduction

Partial-wave analysis of hadronic reactions is a prerequisite for many theoretical approaches to
access information from the experimental data, especially if the comparison to hadron resonances
is the goal. Narrowing the focus to photoproduction reactions, their decomposition into partial
waves (multipoles) is usually performed through an energy-dependent (ED) parametrization of the
amplitude. As long as data are not abundant and precise enough, it is not yet possible to perform a
(truncated partial-wave) complete experiment [1, 2] in the resonance region. A parametrization in
energy is needed for the determination of resonances, or as a stabilizing starting point for single-
energy (SE) solutions in which energy-binned data are fitted independently. The selection of fit
parameters is a fundamental problem that we address in this study for the case of neutral pion
photoproduction in the low energy region.

The parametrization of the amplitude in pion photoproduction is commonly chosen accord-
ing to the considered energy range. Heavy Baryon Chiral Perturbation Theory (HBChPT) [3, 4]
and Relativistic Baryon Chiral Perturbation Theory (RBChPT) [5] provide effective parametriza-
tions for low-energy neutral pion photoproduction up to Eγ ' 170 MeV [6, 7]. The inclusion of
the ∆(1232) resonance as an explicit degree of freedom in RBChPT allows to extend the agree-
ment between theory and data up to Eγ ' 200 MeV [8]. At intermediate energies, effective field
theory approaches, K-matrix parametrizations, or related approaches are used [9–12]. For higher
energy, Regge parametrizations are effective [13, 14]. Partial waves can be also parameterized
purely phenomenologically in terms of functions that are in agreement with basic S-matrix princi-
ples such as coupled-channel two-body unitarity, the correct threshold behavior or Fermi-Watson’s
theorem [15, 16], but that are otherwise left free to ensure a high degree of model independence as
in the SAID approach [12].

Yet, several problems can appear in the analyses. If the amplitude is under-parameterized,
the quality of the data description is not satisfactory and the quality of the extracted amplitudes is
difficult to assess. Over-parametrization can result in limited predictability of the amplitude out-
side the fitted data range and inflated uncertainties. Furthermore, problems in the data themselves
(incompatibility of data, systematics, or even statistics) may be interpreted as significant physics in
over-parameterized fits. In many approaches resonances are introduced in the parametrization as
explicit terms, that will unavoidably improve the fit quality at the cost of potentially false positive
resonance signals [17]. The Least Absolute Shrinkage and Selection Operator (LASSO) [18–20]
provides a tool to scan a plethora of different models, in particular multiple combinations of differ-
ent resonances. Manually, such a scan would be impossible due to the large number of combina-
tions, but the LASSO provides an automatized, “blind-folded” technique [21].

Having the above-mentioned extensions for future work in mind, we concentrate in this study
on the question of how to select the simplest amplitude for a real-life example of photoproduction
reactions.

1.1 Parametrization

An energy-dependent parametrization is formulated for both real and imaginary parts of the
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three P waves, as well as for the real parts of E0+ and the four D-wave multipoles,

Re, ImML± =
q`

π0

m`+1
π+

imax

∑
i=0

ai

10−i

(
ωπ0−mπ0

mπ+

)i

(1.1)

where qπ0 is the center-of-mass momentum of the neutral pion, ω2
π0
= m2

π0 +q2
π0 , and ai are the fit

parameters. This expansion is theoretically justified by ChPT calculations [3]. The quantity M

stands for the electric (EL±) and magnetic (ML±) multipoles, or alternatively, the partial waves P1,
P2 and P3 for the P waves, related to each other by E1+ = 1

6(P1 +P2), M1+ = 1
6(P1−P2 + 2P3)

and M1− = 1
3(P3 +P2−P1). In Eq. (1.1) for the real parts of the multipoles, ` = L, while for the

imaginary parts of the P-wave multipoles, `= 3L+1 =4. Fit parameters are called ai throughout,
omitting the indices specifying to which partial wave they belong. For the real parts of the P-waves
and D-waves, imax = 4 while for the imaginary parts of the P-wave, imax = 0. The imaginary parts
of the D-waves are set to zero, fixing the overall-phase problem. For the S-wave multipole E0+, a
real-valued term of the form of Eq. (1.1) with imax = 4 is supplemented by a term of the form

∆E0+ = i
qπ+

m2
π+

i=2

∑
i=0

ai

10−i

(
qπ+

mπ+

)2i

(1.2)

to take into account the π+n threshold cusp. The term provides an imaginary part above the π+n
threshold and contributes to the real part of E0+ below it. In total, there are imax = 46 free fit
parameters.

1.2 LASSO, cross validation and criteria from information theory

The χ2
T is defined in the LASSO method to penalize models with a large number of parameters,

and thus select the simplest model [18–20], as follows:

χ
2
T (λ ) = χ

2(λ )+P(λ ), with P(λ ) = λ
4

imax

∑
i=1
|ai|. (1.3)

The question is now how to choose the best value for λ , i. e., more accurately describes the model
without overfitting the data. One of the tools which can be used is cross validation [18–20]. There,
data are randomly divided into a training set and a validation set (usually one of five partitions).
For a given λ , the penalized χ2

T of the training set is minimized and the χ2
V of the validation

set is determined. For very large λ , χ2
V is large, because the data are underfitted. While as λ

decreases a point is reached below which the data are overfitted, i.e., non-physical structures such
as statistical fluctuations in the training set are described. The validation χ2

V becomes thus larger
again. The minimum in χ2

V is then regarded as the point where the fit optimally describes the data
without describing fluctuations. One can then further constrain the search for the simplest model
by selecting the λopt > λmin that is compatible within errors with the minimum of χ2

V at λ = λmin.
This is referred to as the 1-σ rule [22].

To select the optimal λ one can also use criteria from information theory. The three criteria
that we use to find an optimal λ are the Akaike Information Criterion (AIC) [23,24], a finite sample
size corrected version of the AIC (AICc) [25], and the Bayesian Information Criterion (BIC) [26].
For all three of the criteria, the optimal value of λ is given by the respective minimum [19, 20].

2



P
o
S
(
H
a
d
r
o
n
2
0
1
7
)
1
3
5

Analysis Tools R. Molina

2. Analysis of low-energy neutral pion photoproduction data

2.1 LASSO in a Benchmark Model

We first generate synthetic data from a benchmark model (B-model), in which all the ai in
Eqs. (1.1) and (1.2) are set to zero except for: a0 and a1 for the real parts of every S and P wave
in Eq. (1.1) and a0 in Eq. (1.2), totaling 9 parameters. All the imaginary parts of the P waves
are consequently set to zero. No D waves are included. These synthetic data are then analyzed
with the full 46-parameter model as defined in the previous section, minimizing the penalized
χ2

T = χ2 +P for different λ according to Eq. (1.3). Using the Lasso method, in combination with
cross validataion or information criteria leads to a simpler model with 10 parameters, remarkably
close to the true model. All parameters related with D waves turn out to be zero, as it should be.
The results of this fit are described in detail in Ref. [27].
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Figure 1: Left: in the top figure, the absolute value of the parameters ai as function of λ in a logarithmic
scale, are shown. The red lines indicate the finally chosen parameters, the gray lines show the unnecessary
parameters. Middle, the AIC, AICc and BIC criteria, and, in the bottom, the cross-validation χ2

V for the
analysis of real data. Right: S and P-wave partial waves from the fits to real data. The orange lines and bands
show the 46-parameter fit with zero penalty λ = 0. The brown lines show the fit at optimal λ . Removing
the parameters that are effectively zero and refitting produces the result with red bands. The vertical lines at
W = 1120 MeV indicate the upper limit of fitted data. The blue circles show the single-energy solution of [6]
for the real parts of S- and P-wave partial waves. The green triangles indicate the solution from Ref. [7].

2.2 LASSO for real data

We analyze here the data on dσ/dΩ, Σ, and dσT/dΩ for the reaction γ p→ π0 p from Refs.
[6, 7] for energies from the π0 p threshold up to W = 1120 MeV. Here, we set all imaginary parts
of the P waves to zero. For the D waves themselves, we have kept them fixed at the real values
given by the Born terms of photoproduction [6]. In total, the number of available parameters is
23. Performing the LASSO scan in combination with the information theory criteria and cross
validation, we obtain the results shown in Fig. 1. The effectively non-zero parameters are shown
in red. The horizontal line indicates the cut-off below which a parameter is counted as zero. It
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is remarkable to observe the parameters drop by three orders of magnitude because it means that
LASSO is also capable of disentangling the extreme correlations between parameters present at
λ = 0, as the unnaturally large parameter values indicate. The BIC delivers the most pronounced
minimum, or minimal plateau. We choose an optimal λ = 2.8 which coincides with the minimum
of the BIC which is also the last point of the plateau. For the cross validation χ2

V there is no
minimum at all in this case (as there was for B-model [27]). Only an upper bound for λ can be
determined continuing the upper end of the error bar at λ = 2.8 to the right as indicated. This
leads to a maximal value of λ = 3.4 that is compatible within errors. Overall, the number of model
parameters is reduced from 23 to 13 (in the B-model: from 46 to 10).

The S and P-wave partial waves solutions are shown in Fig. 1 (right). The fit at λ = 2.8 is
shown with the brown lines in Fig. 1 (right). Removing all parameters that are effectively zero
and refitting the remaining 13 parameters, the final solution is indicated with the red lines and
uncertainty bands. The orange lines and bands indicate the unconstrained 23-parameter fit with
zero penalty λ = 0. The uncertainty bands of the 23-parameter fit are wider than the ones of the 13-
parameter simplest model. We also observe largely widened error bands for the unconstrained fit at
very low energies and beyond the fitted region (vertical bands) indicating the reduced predictability
of the λ = 0 fit. The simplest model (red lines and bands) shows good qualitative agreement with
the SE solution from [6] for the real parts of the partial waves. The imaginary part of E0+ of the
simplest model agrees well with the SE extraction performed in [7] (green data points) as Fig. 1
(right) shows. For the cusp parameter at threshold we obtain β0 = (2.41±0.05) · 10−3 m−1

π+ . This
agrees with the value from [7]: β0 = (2.2±0.2[stat.]±0.6[syst.]) · 10−3 m−1

π+ . Note, however, the
very different size of the statistical uncertainty.
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Figure 2: Differential cross section. Data from Ref. [6]. The labels in the plot indicate the scattering energy
W in MeV. The red lines show the central value of the simplest model as determined in this study.

In Fig. 2, the best fit for the differential cross section data from Ref. [6] is shown,
corresponding to the 13 parameter fit indicated with the red lines in Fig. 1 (right). The description
of the data is consistently good. Data on polarized differential cross section σT = dσ/dΩT from
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Ref. [7] and beam asymmetry from Ref. [6] were also analyzed in Ref. [27]. The description of
the data with the LASSO scan was remarkably good as well.
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