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Important contributions to the study of the excitation spectra of baryons are provided by mea-
surements of polarization observables in reactions that involve particles with spin. Pseudoscalar
meson photoproduction poses an example-reaction that has been under intense investigation re-
cently.

The extraction of resonance-parameters from the polarization-data in so-called energy-dependent
fits, often involving sophisticated reaction- theories and analyzing several reaction-channels at
once, represents the state-of-the-art method to get to the spectrum. While yielding important
scientific insights, the construction and handling of such models is very sophisticated.

The analysis of partial waves at single energies in so-called energy-independent fits represents a
simpler problem. However, due to mathematical ambiguities rising exponentially in number with
the amount of non-zero partial waves, such analyses still require some experience. In order to
obtain first insights into a newly measured polarization dataset, simpler alternatives are desirable.
Here we present the very basic method of moment-analysis for pseudoscalar meson photopro-
duction, which proceeds by analyzing just the angular distributions. The order of the dominant
partial waves contributing in the data can be extracted quickly using this method. Furthermore,
the coefficients extracted from the angular distributions show interesting composition-patterns in
terms of multipoles and allow for instructive comparisons to models.
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In hadron spectroscopy, for instance baryon spectroscopy, resonance parameters are typi-

cally extracted from scattering data by means of so-called energy-dependent (ED) fits. Here, a
reaction-theory is constructed taking into account coupled-channel effects, which should satisfy
well-established theoretical principles (analyticity, unitarity and crossing). Once such a model has
been fitted to data, resonances are extracted as poles in the complex energy plane. The Bonn-
Gatchina model [1] is a well-known example for such an analysis.
Another, technically less sophisticated, approach to analyze scattering observables consists of
single-energy (SE) fits, or truncated partial-wave analyses (TPWAs). As an example, consider
a 2 — 2-reaction with spinless particles. The only observable is the differential cross section oy,
which, up to phase-space factors which are suppressed here, is given in terms of the amplitude
as 6y = |A(W, 0)|*. The infinite partial wave series reads A(W, ) = Y7 (20 + 1)A¢Ps(cos 6). In
case this series is truncated at some maximal angular momentum quantum number ¢,x and then
inserted into the cross section, one obtains the expansion (see reference [2])

2Umax Limax

oo(W,0) =LY aX(W)R(cos6),  a (W)= Y A;(W)EHAW). )

n=0 £k=0

Then, in a SE fit, one would try to solve for the real- and imaginary parts of (possibly) phase-
constrained partial waves. The extraction of Legendre-moments using the first equation in (1) is
still simple and numerically well-behaved. However, the bilinear equations in the second rela-
tion of equation (1) generally admit multiple discrete ambiguities [3] and thus generally require
additional (model-) input in order to be solved. One could also try to be content just with the
moment-expansion of the angular distribution and try to learn as much as possible about the data
using just this expansion.
The same spirit, i.e. trying to learn as much as possible about a particular dataset using the sim-
ple Ansatz of moment-analysis, may be applied to more complicated reactions, for instance the
photoproduction of a single pseudoscalar meson. One may consider the most common case of
pion photoproduction, YN — N, but the following formulae hold even with other pseudoscalar
mesons in the final state.
Photoproduction is described model-independently using 4 complex spin-amplitudes, for instance
CGLN-amplitudes {F;(W,0),i = 1,...,4} [4], which are accompanied by 16 polarization observ-
ables [5]. The observables are bilinear hermitean forms in the amplitudes and they divide into the
subsets of group . observables {0y, X, T, P} and furthermore three classes of beam-target (%#.7),
beam-recoil (A%) and target-recoil (7 %) observables with four quantities each. Furthermore,
the CGLN-amplitudes can be expanded into a partial wave series defined by electric and magnetic
multipoles {Egi,Mgi} [4].
Once the multipole-series is truncated at £;,,x, the observables acquire the following standard-form
which is an analog of equation (1):
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Type Qc Ba Yo | Type {Za Bo Yo
Op 0 0 Oy 1 0
S 2 2| B% O. 2 —1
T 1 -1 Cy 1 0
P 1 —1 C, 0 +1
E 0 0 Ty 2 -1
BT G 2 2\ g% T, 1 0
H 1 —1 Ly 1 0
F 1 -1 L. 0 +1

Table 1: The parameters listed here describe the angular parametrizations for the 16 polarization observables
given in equations (2), (3). The Table and numbers are taken over (up to slight modifications) from Tiator [8].

where we have adopted a notation by Chiang and Tabakin [6] to denote the observables Q%
and the index « runs as @ = 1,...,16. The multipoles present in a certain truncation are sorted in

the vector
‘//Zmax> = [EO-‘ME1+7M1+)M1—5E2+7E2—7M2+7M2—7 LR 7Mfmax*]T . (4)

Table 1 lists a consistent set of parameters defining the photoproduction moment expansion. They
are consistent with reference [7], where also the Legendre parametrizations (2) and (3) were pub-
lished. Tiator [8] showed similarly formalized expansions in the context of a cos(8)-series.

The matrices defining the coefficients (3) are hermitean and have dimensions (4/ymax) X (4¢max),
for £max > 1. The discrete ambiguities allowed by these bilinear forms have been subject of some
studies in the past [9, 10]. The question whether or not they allow for a unique amplitude extraction
in so-called complete experiments has received recent attention [11, 12]. In reference [7], we chose
to represent these matrices in a color-scheme (’chessboard-plots’), which is exemplified in Table 2.
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Table 2: The Matrix ‘522 which defines the coefficient (a2)§ for an expansion of ¥ up to fax = 2 is shown.
This is an example for the color-scheme mentioned in the main text. Every matrix element corresponds to a

particular interference term. Positive matrix elements are drawn in red, negative ones in blue. The relative
strength of each block scales with the size (i.e. modulus) of the respective entry. (color online)
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This formalism allows for moment-analyses in photoproduction under two main aspects:

(1) fmax-analysis: The form of the angular distribution (2) is fitted for different ¢,,,x. The )(2 /ndf
is compared for different fits, starting with the lower one’s. In case it is unsatisfactory, one
has to increase fmax. Once a good fit is obtained, the resulting /i, gives in a lot of cases
already quite a good estimate for the maximal angular momentum detectable in the data.
Plots of x2/ndf vs. energy show *bumps’ whenever new important contributions come in
(see Figure 1, top).

(ii)) Model-comparisons: The fitted Legendre coefficients (agmax)?a can be compared to the right
hand side of equation (3) evaluated in terms of multipoles .#; stemming from a model. One
can do these comparisons switching on/off certain model partial waves and thus sometimes
obtains valuable information on which partial wave interferences are important (see Table 3).

Figure 1 and Table 3 show results for moment-analyses for a measurement of the beam-asymmetry
Y measured by the GRAAL-collaboration [13]. These illustrative results were discussed during the
talk and are also a part of reference [7], where also a lot more details, as well as results for more
observables, can be found.

References

[1] A. V. Anisovich, R. Beck, E. Klempt, V. A. Nikonov, A. V. Sarantsev and U. Thoma, Eur. Phys. J. A
48, 15 (2012).

[2] J. E. Bowcock and H. Burkhardt, Rep. Prog. Phys. 38, 1099 (1975).

[3] A. Gersten, Nucl. Phys. B 12, p. 537 (1969).

[4] G.F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, Phys. Rev. 106, 1345 (1957).
[5] A. M. Sandorfi, S. Hoblit, H. Kamano, T. -S. H. Lee, J. Phys. G 38, 053001 (2011).
[6] W.-T. Chiang and F. Tabakin, Phys. Rev. C 55, 2054 (1997).

[7]1 Y. Wunderlich, F. Afzal, A. Thiel and R. Beck, Eur. Phys. J. A 53, no. 5, 86 (2017).
[8] L. Tiator, AIP Conf. Proc. 1432, 162 (2012).

[9] V. Grushin, in "Photoproduction of Pions on Nucleons and Nuclei", Proceedings of the Lebedev
Physics Institute Academy of Science of the USSR (Nova Science Publishers, New York and
Budapest, 1989), Vol. 186 (1989).

[10] A.S. Omelaenko, Sov. J. Nucl. Phys. 34, 406 (1981).

[11] Y. Wunderlich, R. Beck and L. Tiator, Phys. Rev. C 85, 055203 (2014).
[12] Y. Wunderlich, PhD-thesis, expected in 2018, University of Bonn (2018).
[13] O. Bartalini et al., Eur. Phys. J. A 26, 399 (2005).



Moment analysis in photoproduction

Yannick Wunderlich

&

x2ndf

600 800 1000 1200
— T T

E, [MeV]
1400

a0

(a‘);GRAAl [ub/sr]

o [Lb/sr]

(a);

£ aran [HD/ST]

T

- Lmax=1.
- Lmax=2.
- Lmax=3

- Lmax=z§

T

W=1504 MeV

Toraar [ub/sr]

& 05 0 05
W=1771 MeV

1
cos®

Figure 1: The beam-asymmetry ¥ data from the
GRAAL-collaboration [13] with only statistical error
was fitted using associated Legendre polynomials ac-
cording to eq. (2) and truncating the expansion at
lmax = 1,...,4. (a) The resulting xz/ndf values of the
different ¢, -fits as a function of the center of mass en-
ergy W and photon LAB-energy Ey are shown. (b) 6 out
of 31 selected angular distributions of ¥ (black points)
are plotted together with the different ¢,.-fits (solid
lines) starting at W= 1504 MeV up to 1885 MeV. (¢)

0 W [MeV] A comparison of the fit coefficients for ¢p,x = 4 (black
points), (a4)§‘?‘§*‘“ (see eq. (2)), with the BnGa2014-02
solution (url: https://pwa.hiskp.uni-bonn.de) truncated
at different £, (solid lines) is shown. Colors are the
same as in (a). The figures have been published origi-
nally in reference [7].
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(as)§ = (S.D) + (P,P)
+(P,F)+(D,D)
+(D,G)+ (F,F)
+(F,H) +{(G,G)
+ (H,H)

(as) = (S.F) + (PD)
+(P,G)+(D,F)
+(D,H)+ (F,G)
+ (G,H)

(as)} = (S.G) + (P,F)
+(P,H> + (D,D}
+(D,G)+ (F,F)
+(F,H)+(G,G)
+(H,H)

(as)s = (S.H) + (P,G)
+(D,F)+(D,H)
+ (F, G) + (G,H}

Table 3: Left: The matrices ‘5225 shown here in the color scheme (cf. Table 2), define the coefficients

((15));‘,_,5 for an expansion of the beam-asymmetry ¥ up to £pax = 5. Center: Coefficients (a4)§“‘§AAL obtained
from a fit to the X-data by the GRAAL-collaboration [13] (black points). Coefficients evaluated from Bonn-
Gatchina multipoles, truncated at different £p,x ({max = 1 is drawn in green, {p,x = 2 in blue, {px = 3 in
red and {0 = 4 in black) are shown as well. Right: All partial wave interferences for ¢p,,x = 5 are indicated
(S means £ =1, P means ¢ =2, ...). These figure have originally been published in exactly this form in
reference [7]. We refer the reader to this paper for more details. (color online)



