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In the last decades, the number of exotic candidates which are beyond the conventional quark
model has grown dramatically. At the same time, numerous theoretical interpretations, such as
tetraquark, hybrid, hadroquarkonium and hadronic molecule, have been proposed to understand
their nature. In principle, all the configurations with the same quantum numbers can mix with each
other. Thus at present we aim at identifying the prominent component. As an extended object, a
hadronic molecule has some distinguishable features from other more compact configurations. In
the end, the two Zb states are used to illustrate some features of the molecular scenario.
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1. Introduction

The number of exotic candidates which are beyond the conventional quark model has grown
dramatically during the last decades. Their appearance gives us challenges for understanding of
the strong interaction. Rencently, numerious review papers [1, 2, 3, 4, 5] are written focusing
on different properties. From the theoretical side, various scenarios, such as hybrid, tetraquark,
hadroquarkonium and hadronic molecule as shown in Fig. 1, are proposed. A hybrid is a compact
heavy QQ̄ with excited gluons. A tetraquark is a compact object formed by a diquark and an anti-
diquark. Hadroquarkonium is a compact QQ̄ embedded in light quark cloud. On the contrary, a
hadronic molecule is an extended object made of two or more hadrons. The idea of a hadronic
molecule is based on the observation that the deuteron exists as a shallow bound state of a proton
and a neutron. It is also based on the fact that most (not all) of the exotic candidates are close
to some S-wave thresholds with narrow constituents, e.g. the two Zb states have masses close to
the BB̄∗ and the B∗B̄∗ thresholds, respectively, the two Zc states have masses close to the DD̄∗

and the D∗D̄∗ thresholds, respectively, the X(3872) has a mass close to the DD̄∗ threshold and the
Y (4260) has a mass close to the D1D̄ threshold. Another interesting feature is that splittings are
predominantly given by those of the relevant nearby thresholds, e.g.

mY (4260)−mX(3872) ' mD1−mD∗ , mZc(4020)−mZc(3900) ' mD∗−mD. (1.1)

This suggests that they could be viewed as hadronic molecules. However, in principle, all con-
figurations with the same quantum numbers can mix with each other. Here, we present some
observables that should allow us to distinguish the extended molecular scenario from other more
compact scenarios.

Proposals
Tetraquark

→ Compact object formed from (Qq) and (Q̄q̄)

Hybrid

→ Compact with active gluons and Q̄Q

Hadro-Quarkonium

→ Compact (Q̄Q) surrounded by light quarks

Glueball

→ Compact object just made off gluons

Hadronic-Molecule

→ Extended object made of (Q̄q) and (Qq̄)

Are there hadronic molecules amongst the XYZ states? – p. 8/24

Proposals
Tetraquark

→ Compact object formed from (Qq) and (Q̄q̄)

Hybrid

→ Compact with active gluons and Q̄Q

Hadro-Quarkonium

→ Compact (Q̄Q) surrounded by light quarks

Glueball

→ Compact object just made off gluons

Hadronic-Molecule

→ Extended object made of (Q̄q) and (Qq̄)

Are there hadronic molecules amongst the XYZ states? – p. 8/24

Figure 1: Various scenarios of the exotic candidates, i.e. hybrid, tetraquark, hadroquarkonium and hadronic
molecule (in order). The blue and red colors are used for quarks and antiquarks. Their size indicates the
masses of the (anti-)quarks.

2. Identify hadronic molecules

The size of a hadronic molecule R is characterized by the inverse of its binding momentum 1/γ ,
where γ =

√
2µEB, with µ the reduced mass and EB the binding energy. For near-threshold states,

the size is therefore much larger than that of normal compact states, which allows us to deduce
some physical quantities that are sensitive to their internal structure. In the following subsections,
we present some of them.
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2.1 Effective couplings

Decades ago, S. Weinberg proposed a criterion [6] which related the effective coupling

g2
e f f = Zg2

0 =
2πγ

µ2 (1−Z) (2.1)

to 1−Z the probability for finding the hadronic molecule component in the wave function, with Z
the wave function renormalization constant and g0 the bare coupling [4]. Here, EB and γ =

√
2µEB

are the binding energy and binding momentum, respectively. For a pure hadronic molecule, Z = 0
which produces the maximal effective coupling ge f f . As the branching ratio of Zb → BB̄∗+ c.c.
is about 85.6% in spite of a significant phase space suppression, it indicates that the Zb could be
dominated by the BB̄∗+ c.c. hadronic molecule. For a pure compact object, Z = 1 which produces
a vanishing effective coupling.

2.2 Scattering length

The T -matrix of the two-body continuum channel is [4]

TNR(E) =
g2

0

E +EB +g2
0µ/(2π)(ik+ γ)

(2.2)

with the relative momentum k =
√

2µE. On the other hand, one can match Eq. (2.2) to the effective
range expansion [4]

TNR =−2π

µ

1
1/a+ rk2/2− ik

(2.3)

and obtain the scattering length and effective range as

a =−2
1−Z
2−Z

1
γ
+O(1/β ), r =− Z

1−Z
1
γ
+O(1/β ). (2.4)

For a pure hadronic molecule Z = 0, a =−1/γ and r = 0. For a pure compact object Z = 1, a = 0
and r = −∞. The scattering length of isospin singlet DK scattering from a Lattice calculation [7]
is aI=0

DK = −(1.33± 0.20) fm. That value is consistent with the estimation 1/γ = 1.05± 0.25 fm
based on the pure DK hadronic molecule scenario. The uncertainty of 0.25 fm is from the higher
order contribution O(1/β ) with β the mass of the exchanged ρ . The above estimation indicates
that the D∗s0(2317) could be an isospin singlet DK hadronic molecular state.

2.3 Pole counting approach

The zeros of the denominator of Eq. (2.3) correspond to the poles of the scattering amplitude.
In the k-plane, the two poles are located at [8]

k1 = iγ, k2 =−iγ
(

2−Z
Z

)
. (2.5)

For a pure hadronic molecule Z = 0, only the first pole is located close to the threshold with the
second pole approaching negative infinity along the imaginary axis. For a pure compact object Z =

1, the two poles k1 = iγ and k2 =−iγ are distributed symmetrically respective to the corresponding
threshold. Thus the number of poles near threshold could also help to distinguish the extended
scenario from the compact ones [9].
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2.4 Line shapes in inelastic channels

All the exotic candidates are unstable and have been measured in various channels. Thus the
above scattering amplitude needs some modifications as [4]

Tin ∝

√
Γ0

E−Er +(g2
e f f )/2(ik+ γ)+ iΓ0/2

(2.6)

with the energy E = k2/(2µ) and Γ0 the partial width to the inelastic channels which enter the in-
teraction perturbatively. For a pure compact scenario, the small effective coupling ge f f means that
the first term in the denominator plays an important role for the line shapes in inelastic channels.
Thus the corresponding line shapes are symmetric as shown by the first figure of Fig. 2. Alter-
natively, the large effective coupling in molecular picture means that the third term dominates the
behaviour of the line shapes in inelastic channels, leading to antisymmetric line shapes as shown
by the second figure of Fig. 2. A typical antisymmetric example is the line shape of the Y (4260) in
the J/ψππ channel in Fig. 2. The third figure is the fitted [10] line shape of the Y (4260) based on
the D1D̄ hadronic molecular picture, comparing to Belle data [11], from which one can see a clear
antisymmetric behaviour. The fitted result also agrees with the recent data from BESIII [12]. From
these line shapes, one can conclude that the Y (4260) could be a the D1D̄ molecular candidate.
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FIG. 2: The cross sections for the e+e− → J/ψπ+π− and e+e− → hcπ
+π− around the Y (4260) mass region. The long-

dashed, short-dashed, dotted and solid lines are the contributions from the D1D̄ box diagrams, the Zc(3900) pole, the S-wave
background and the sum of them, respectively. The data in (a) are from Belle [35] and those in (b) from BESIII [7], respectively.
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FIG. 3: The D0π+, D∗−π+ and D0D∗− invariant mass distributions for Y (4260) → D0D∗−π+. The brown dotted, green
dashed and red solid lines are the contributions from the S-wave, the D-wave and the sum of them, respectively.

2.42 GeV — cf . the green dashed line in Fig. 3 (b). Furthermore, due to the same reason, the lower ends of both the
Dπ and D∗π invariant mass distributions are strongly suppressed — cf . the green dashed lines in Fig. 3 (a) and (b).
A significant fraction of the enhancement near the DD̄∗ threshold, as shown by the green dashed line in Fig. 3 (c),

may be understood as a reflection of the enhancement predicted in D̄∗π. With the current data quality and the level
of sophistication of our model we are not able to disentangle this from the contribution of Zc(3900). The apparent
discrepancy between our model prediction and the BESIII data [38] should come from some D̄∗π S-wave contribution
that we here include as an additional, small contribution to the Y (4260) wave function. To investigate this idea
further we include this additional S–wave. Now the full amplitude can be expressed as

MDD̄∗π = ǫaY ǫ
b
D̄∗

[
CSδ

ab + CD(E,MDD̄∗ ,MD̄∗π)

(
q̂aq̂b − 1

3
δab
)]

(6)

with CS the S-wave strength and CD(E,MDD̄∗ ,MD̄∗π) the D-wave strength. The S-wave strength can be parame-
terized as

CS = α(M2
DD̄∗ + β)GZ (E) (7)

which respects Watson theorem as long as α and β are real numbers 3. The D-wave strength is extracted from our
model, i.e. the sum of Fig. 1 (a) and (b).
From the fit to the D0D∗− spectrum from 3.88 GeV to 4.1 GeV, cf . Fig. 3 (c), we obtain |α| = (6.72±0.17) GeV−1,

β = (−15.28±0.01) GeV2 and χ2/d.o.f. = 59.02/(57−3). Since in the invariant mass spectrum there is no interference

3 The equation is adapted from Eq. (7) of Ref. [37]
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Figure 2: The line shapes of inelastic channels near threshold for compact (the first figure) and molecular
(the second one) state. The vertical lines are the relevant thresholds. The third figure is the fitted line shape
of the Y (4260) [10] in J/ψππ channel with data from Belle [11]. The last figure is the fitted line shape in
the third figure comparing to the recent data from BESIII [12].

3. The line shapes of the two Zb stastes

In the next step, we use the line shapes of the two Zb states as an example to extract the
physical quantities which are sensitive to their internal structure. As we know that the Breit-Wigner
parametrization only works for an isolated narrow state and the sum of them violates unitarity,
we proposed a practical parametrization scheme for these near-threshold states [13, 14], which
satisfies all the requirements of the S-matrix, such as unitarity and analyticity. It is also easy to
be implemented in experimental analyses. The formulae are deduced based on some assumptions
which will not affect the final conclusion for the current exotic near-threshold states. As most of
the exotic candidates in the heavy quarkonium sector are observed in channels with one heavy
quarkonium and some pions, they at least have a pair of heavy quarks. The small scattering length
of the scattering between heavy quarkonium and pion on the lattice studies [15, 16] indicates that
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their interaction is weak. As the result, we set them to zero. Furthermore we neglect the possible
left hand cuts. The last assumption is that we work with separable interactions. In the end, we will
illustrate that the inclusion of the non-separable interaction, such as One-Pion-Exchange (OPE)
potential, will not change the final conclusion. The details of this practical parametrization can be
found in Refs. [13, 14].

As these two Zb states have a pair of bottom quarks, we expect that heavy quark spin symmetry
(HQSS) works well here. Thus we produce the potential among elastic channels and inelastic
channels which respects HQSS with additional parameters to control the HQSS breaking effect.
We perform two fit schemes. One respects HQSS and another one allows for HQSS breaking.
These two fit schemes can describe the experimental data equally well. With the fitted parameters,
we search for poles of the two Zb states on the ω plane defined by the conformal transformation

k1 =
√

µ1δ

2

(
ω + 1

ω

)
and k2 =

√
µ2δ

2

(
ω− 1

ω

)
from the k plane to the ω plane. Here, k1 and k2 are

the three momenta of the BB̄∗ and the B∗B̄∗ channels in the center-of-mass frame, respectively. µi

is the reduced mass of the i th channel and δ = mB∗ −mB is the energy gap of these two elastic
channels. The advantage of the ω plane is that it is free of unitarity cut. Although, it is the seven
channel problem, one can search for poles on the Riemann sheet corresponding to the two elastic
channels, since the contribution from the inelastic channels are marginal. The classification of
Riemann sheets are as below

RS− I : Im k1 > 0, Im k2 > 0, RS− II : Im k1 < 0, Im k2 > 0, (3.1)

RS− III : Im k1 > 0, Im k2 < 0, RS− IV : Im k1 < 0, Im k2 < 0. (3.2)

The energy relative to the lower BB̄∗ threshold is

E =
k2

1
2µ1

=
k2

2
2µ2

+δ =
δ

4

(
ω

2 +
1

ω2 +2
)
. (3.3)

The different Riemann sheets in the ω-plane are labeled as shown in the first figure of Fig. 3. The
second and third figure of Fig. 3 show the pole location of the two fit schemes. The upper and
right-hand side poles are close to the physical region and will have large impact on the observables.
The binding energies of the two Zb states within the two fit schemes are around 1MeV as shown in
Table 3. In the HQSS limit, the fit gives εB(Zb) = εB(Z′b) which is a consequence of the so-called
Light Quark Spin Symmetry (LQSS) as proposed by Voloshin [17]. In the HQSS breaking fit, the
two binding energies have some deviations.

To further test the effect of the non-separable interaction, we perform a fit including the OPE
potential. As shown in Fig. 4, the two fits [18], i.e. without and with OPE potential, can describe
the experimental data equally well. It reflects the fact that the line shapes are mainly driven by the
pole position. On the other hand, it also confirms the validity of the parametrization. Furthermore,
we extract the effective couplings of the relevant channels and find that those of ZbBB̄∗ and Z′bB∗B̄∗

are at least one order larger than the others [18]. These two large effective couplings indicate that
Zb and Z′b are dominated by the BB̄∗ and B∗B̄∗ hadronic molecules, respectively.

4. Summary and Outlook

The measurement of exotic candidates challenges us understanding of the strong interaction.
In principle, all the configurations with the same quantum numbers can mix with each other. Thus

4



P
o
S
(
H
a
d
r
o
n
2
0
1
7
)
1
4
4

Exotic candidates with heavy quark(s) Qian Wang

Table 1: The binding energies of the two Zb states with the two fit schemes.

MeV HQSS limit HQSS breaking
εB(Zb) 1.10+0.79

−0.54± i0.06+0.02
−0.02 0.60+1.40

−0.49± i0.02+0.02
−0.01

εB(Z′b) 1.10+0.79
−0.53± i0.08+0.03

−0.05 0.97+1.42
−0.68± i0.84+0.22

−0.34
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Figure 3: First plot: The unitary-cut-free complex ω-plane for the two elastic channels, i.e. BB̄∗ and B∗B̄∗.
The subindices u and l mean the corresponding upper and lower half energy plane. The thick solid curve
indicates the physical region. Second plot: the pole positions on the ω-plane for the fit respecting HQSS.
Third plot: the pole positions on the ω-plane for the fit allowing sizeable HQSS breaking effect.
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Figure 4: The line shapes of the two Zb states in the two elastic channels and hb(mP)π with m = 1,2 chan-
nels. The blue solid and red dashed curves are without and with non-separable OPE potential, respectively.

at present we aim at identifying the prominent component. In this proceeding, we provide some
quantities which can help to distinguish the extended hadronic molecule from more other compact
scenarios for the near-threshold states. To further pin down the nature of these exotic candidates,
efforts are needed from both experimental and theoretical sides. From the experimental side, further
measurements with high accuracy, such as partial widths, line shapes, quantum numbers and so
on are needed. In addition, there should be searches for states in different channels. From the
theoretical side, a comparison with some results from the lattice, such as scattering length and
spectrum, could help to clarify the situation. Furthermore, more observables should be identified
that are sensitive to the internal structure of the exotics.
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