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Interaction cross-sections for baryon pairs are of fundamental interest and they are actively inves-

tigated theoretically. They are well known for pairs of common (anti-)baryons; however, there

is a lack of precise data for heavier baryons, including the ones carrying strangeness. The two-

particle correlation formalism (femtoscopy) is sensitive to the interaction kernel for a pair of

particles, which is related to the pair interaction cross-section. This formalism is extensively used

to measure two-particle correlations in heavy-ion collisions. In particular, the collisions at RHIC

and LHC produce simultaneously a large number of baryons and anti-baryons. We show how this

formalism can be used to extract the cross-sections from the femtoscopic baryon-(anti-) baryon

correlation functions. The analysis is complicated by the presence of the so-called "residual cor-

relations" arising from weak decay products in the measured sample. We show how this effect can

be exploited to gain further insight into the cross-sections of even heavier baryons. We discuss

the limitations of the measurement technique and estimate the discovery potential of currently

available and soon-to-be-collected heavy-ion collision datasets at RHIC and at the LHC.
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1. Introduction

Interaction of baryons is a fundamental subject in nuclear physics. It is being studied by

various methods, including detailed analysis of the stable and unstable nuclei as well as dedicated

scattering experiments. The knowledge is then used in a wide array of fields, such as baryogenesis

in the early Universe, the study of the neutron stars [1, 2] and the evolution of the heavy-ion

collisions [3]. At the moment, interaction of baryons is well known for protons, neutrons and

their antiparticles [4]. Data also exist for interaction with deuterons. However, the interaction

involving baryons with strangeness is less understood. Data exist on Σ−p interaction for center-

of-mass energy (
√

s) above 5 GeV and for pΛ interaction [5, 6, 7]. The existing experimental

measurements are of limited quality. Data on interaction between baryons and antibaryons with

non-zero strangeness is even more limited. As a result, commonly used hadronic rescattering

models, such as UrQMD, assume the annihilation between all baryon-antibaryon pairs has the same

cross-section as the proton-antiproton interaction, when taken at the same
√

s [3]. This process

for pp̄ was studied in great detail theoretically [8, 9, 10, 11]. Some models aim to describe the

baryon interaction via meson-exchange interaction [12, 13, 14], others use the Chiral Effective

Theory [15]. Both of these approaches would benefit greatly from constraints coming from new

experimental data. Especially information on the behaviour of the cross-section at low relative

momentum, where it is large and changes rapidly, would be desirable.

Heavy-ion collisions at ultra-relativistic energies are studied extensively at Relativistic Heavy-

Ion Collider (RHIC) at
√

sNN = 200 GeV and at the Large Hadron Collider (LHC) at 2.76 TeV and

5.02 TeV. In the collisions of Au or Pb nuclei a large system of deconfined Quark-Gluon Plasma

(QGP) is created. It expands rapidly, cools down and reaches a state when quarks must recom-

bine back into hadrons. This process is well described by a statistical model. The baryochemical

potential of the system is close to zero, which means that the number of produced baryons and an-

tibaryons is very similar [16, 17]. As a result a significant number of baryons and antibaryons are

produced simultaneously in each event. This in turn means that a large number of baryon–baryon

and baryon–antibaryon pairs can be considered. The majority the baryons is emitted with relatively

small transverse momentum pT, below 3 GeV/c. The relative momentum, which determines also

the
√

s in the rest frame of the pairs, is therefore also limited. This presents a unique opportunity

for experimental study of many types of baryon–(anti-)baryon pairs, including those with strange

baryons, at low relative momentum.

The method which is best suited for this task is “femtoscopy”, or the study of two-particle

correlations as a function of pair relative momentum magnitude. It requires that the experiment

performs the particle identification (PID) on a particle-by-particle basis at the low transverse mo-

mentum. The STAR detector at RHIC and the ALICE detector at the LHC have such capabilities. In

this manuscript we will describe briefly the femtoscopic method, introduce the concept of “residual

correlations” and discuss the experimental opportunities in STAR and ALICE.

2. Femtoscopy method

Experimentally, the femtoscopic correlation function is constructed for pairs of particles, where

each particle is of a given type (for example a proton and a Λ). A distribution A of the relative mo-
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menta of such pairs (more precisely of the magnitude of momentum of the “first” particle in the pair

in the rest frame of the pair, denoted as k∗) is created for all pairs where both particles are produced

in the same event. In order to account for trivial single particle acceptance similar distribution B

is constructed where the two particles in the pair come from two different events. The correlation

function is then

C(k∗) = A(k∗)/B(k∗). (2.1)

C is interpreted with the integral equation:

C(k∗) =
∫

S(r, ~k∗)|Ψ(r, ~k∗)|2d4r dcos(θ) dφ , (2.2)

where S describes a probability to emit a pair of particles of the given type from the source from

points separated by r with a given relative momentum k∗, while Ψ describes the interaction for a

given pair type. The integration is also done over all angles of k∗. For non-identical baryons, when

at least one of them is not charged the interaction can be described by a scattering on the strong

interaction potential, taken with the inverse time direction [18]:

Ψ(r, ~k∗) = exp(−i~k∗~r)+ f S exp(ik∗r)

r
, (2.3)

where f S is the scattering amplitude, dependent on pair spin. In the s-wave approximation it can

be expressed as:

f S =

(

1

f0

+
1

2
d0k∗2 − ik∗

)−1

. (2.4)

The parameter f0, the scattering length, is a complex number. Its magnitude determines the cross-

section at low k∗ and its imaginary part described the annihilation channel. Parameter d0 is the

effective range of the potential.

In heavy-ion collisions S is assumed to be a three-dimensional ellipsoid with Gaussian den-

sity distribution, characterized by the overall size R. Then the integral in Eq. (2.2) for the strong

interaction gives [19, 18]:

C(k∗) = 1+∑
S

ρS

[

1

2

∣

∣

∣

∣

f S(k∗)
R

∣

∣

∣

∣

2(

1− dS
0

2
√

πR

)

+
2ℜ f S(k∗)√

πR
F1(2k∗R)− ℑ f S(k∗)

R
F2(2k∗R)

]

,

(2.5)

where F1 and F2 are known functions, S denotes possible pair spin orientations and ρS gives the

spin fractions. This formula can be directly fitted to correlations measured according to Eq. (2.1).

In Eq. (2.5) the scattering amplitude f S and its components are usually divided by system size

R. This means that by changing both in a similar direction one obtains very similar values of the

correlation. In other words an attempt to fit those two parameters together will most likely result

in a degenerate fit. Therefore, realistically one should fix one and fit another. For baryon pairs,

R can often be strongly constrained by femtoscopic measurements of other pair types. Then the

scattering parameters f0 and d0 can be extracted from the fit. That is the basis of the methodology

to extract the strong interaction potential parameters at low relative momentum from the analysis of

the two-baryon femtoscopic correlation function measured in ultra-relativistic heavy-ion collisions.
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3. Residual correlations

Baryons interact via the strong interaction on a timescale of the order of tens of fm/c. Hyperons

and multi-strange baryons decay on a weak interaction timescale, which is orders of magnitude

larger. In a collider setup (for example in STAR and ALICE) a daughter baryon often travels in

a direction very similar to the parent baryon, due to its large mass in comparison to the decay

momentum. As a result it may be difficult to distinguish, in a sample of measured baryons, which

are “primary” and which are decay products. In the correlation function one than has pairs which

are composed of primary particles and others in which at least one baryon comes from the decay.

For a “decay” pair the original correlation, described by Eq. (2.3), comes from the parent pair. Even

though it is smeared by the decay, it can still have significant influence on the overall correlation.

This is called “residual correlation”. It is important if three conditions are met simultaneously [20]:

(A) the parent correlation is strong, (B) a significant fraction of measured baryons comes from the

given decay channel, (C) the decay momentum is small with respect to the width of the parent

correlation effect. All those conditions are met for baryon pairs; therefore, residual correlations are

important and must be properly taken into account. The work [20] provides a formalism in which

such correlations can be incorporated into the analysis using the so-called transformation matrices,

and pair fractions giving the contribution of each type of parent pair to the final sample of measured

pairs. The correlation can be described as

C(k∗AB) = 1+∑
XY

λXY

∫

CXY (k
∗
XY )T (k

∗
XY ,k

∗
AB)dk∗XY

∫

T (k∗XY ,k
∗
AB)dk∗XY

, (3.1)

where A and B are baryon types that compose the final measured pair, X and Y are heavier baryons

that decay weakly into A and B, respectively. Parameters λ are the pair fractions and T is the trans-

formation matrix, describing the probability that a parent pair with k∗XY decays into the daughter

pair with k∗AB. The shape of T depends strongly on X and Y decay kinematics and usually has the

form of a diagonal band with the width roughly equal to the sum of decay momenta.

4. Measurement potential

STAR and ALICE have shown the capability to measure and identify on a track-by-track

basis protons, Λ, Ξ, and Ω baryons. Out of those, protons and Λ’s are produced with large per-

event multiplicities. Therefore even with the current dataset it should be possible to measure the

correlation functions for pp, pp̄, p̄ p̄, pΛ, pΛ̄, Λ̄ p̄, Λ̄p, ΛΛ, ΛΛ̄, and Λ̄Λ̄ pairs. The ALICE

Collaboration has recently shown preliminary results for all these correlations in several centrality

intervals. It is estimated that for example for pp pairs the fraction of residual pΛ pairs is of the

same order as the fraction primary pairs. Clearly the analysis must then be performed using the

formalism given in Eq. (3.1).

Figure 1 illustrates the inter-dependencies between various baryon pairs. The pair types in

solid circles are the one that can be measured in STAR and ALICE at the moment. The ones in

dashed circles can be potentially measured in the next LHC run. Most residual pairs contribute

to only one of the three measured pair types. But four of them contribute simultaneously to two.

In addition the pairs measured directly are also a residual contribution to other measured pairs.
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Figure 1: Residual components interlinks, with decay momenta specified for each decay (in MeV/c (two

momenta are given if both particles in the pair decay).

Moreover, the Λ baryons are reconstructed from a combination of a pion and a proton track in the

detector. It may happen that a random association of a proton and a pion appears as a Λ. If this

“fake” Λ is correlated with a proton, the correlation between this proton and the one contributing

to the “fake” Λ may still be preserved, in a way very similar to residual correlations. We call this

effect a “feed-up” and also show it in Fig. 1.

In summary, the residual correlation mechanism produces a complicated web of interlinks

between all measured and non-measured baryon pairs in the experiment. It is therefore not use-

ful to analyze the measured baryon-baryon or baryon-antibaryon pair types separately. Instead a

single fitting procedure must be created, where all those functions are analyzed simultaneously.

In particular, they must use the same original correlation functions CXY when calculating resid-

ual contributions to all measured correlation functions according to Eq. (3.1). This significantly

complicates the procedure. However, it gives the opportunity to constrain the unknown interac-

tion parameters even more, also for the pairs that are not measured directly but instead are only

accessible via their residual contributions.
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