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We review recent results on chiral SU(2)L×SU(2)R ≈ O(4) and U(1)A symmetry restoration in
QCD. In particular, we discuss how Ward Identities allow one to derive general results on partner
degeneration, which shed light on the distinction between the O(4) and O(4)×U(1)A patterns
of the chiral transition. For that purpose, susceptibilities associated with the O(4) and U(1)A

symmetries are studied. From this analysis we conclude that in the ideal regime of exact O(4)
restoration (formally achieved in the limit of two massless flavours), U(1)A partners degenerate as
well. We also discuss the role of the thermal f0(500) state to describe thermodynamic observables
sensitive to chiral restoration, such as the scalar susceptibility. We pay special attention to the
consistency of our results with recent lattice analysis.
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1. Introduction

Chiral symmetry restoration is one of the main topics regarding the understanding of the QCD
phase diagram. Being linked to deconfinement, at least from the viewpoint of the coincidence of
the transition region, its properties and nature constitute a very active topic of study for current
theoretical, phenomenological and lattice analysis. Its experimental implications are also crucial
for the Physics of Ultrarelativistic Heavy Ion Collisions. It has been already established that in the
physical case of N f = 2+ 1 flavours with m̂� ms masses, the chiral transition is a crossover at a
transition temperature of about Tc ∼ 155− 160 MeV for vanishing baryon density [1, 2, 3]. The
ideal chiral restoration phase transition is reached only for N f = 2 and m̂ = 0, while in the physical
case it is approached in the light chiral limit m̂→ 0+. A particularly relevant question in this
context is whether the asymptotic restoration of the U(1)A symmetry [4] can take place effectively
already at the O(4) transition. If that was the case, the chiral pattern would become O(4)×U(1)A,
which would have different theoretical and phenomenological implications including the transition
order [5] or the dilepton and photon spectrum modification from the η ′ mass reduction [6, 7].

This problem has been recently investigated by different lattice collaborations, mostly through
the study of chiral and U(1)A partners, i.e, states becoming degenerate under those symmetry
groups. Here, we consider the members of the pseudoscalar and scalar nonets, πa = iψ̄lγ5τaψl ,
δ a = ψ̄lτ

aψl , ηl = iψ̄lγ5ψl , ηs = is̄γ5s, σl = ψ̄lψl , σs = s̄s, Ka = iψ̄γ5λ aψ , κa = iψ̄λ aψ , with
ψl the light quark doublet, which correspond to the quantum numbers of the pion, a0(980), light
and strange component of the η/η ′, light and strange components of the f0(500)/ f0(980), kaon
and K(800) (or κ), respectively. For the isospin I = 0,1 sector, chiral and U(1)A transformations

connect the bilinears πa SUA(2)←−−→ σ , δ a SUA(2)←−−→ ηl , πa U(1)A←−−→ δ a and σ
U(1)A←−−→ ηl .

The study of the chiral symmetry pattern through the degeneration of the above partners is
customarily done through the susceptibilities of the corresponding correlators, defined as:

χY (T ) =
∫

T
dx〈T Y (x)Y (0)〉, (1.1)

with
∫

T dx ≡
∫ β

0 dτ
∫

d3~x and Y = P,S the pseudoscalar and scalar quark bilinears defined above.
Susceptibilities correspond to the p = 0 correlators in momentum space and for the particular cases
Y = ψ̄lψl and Y = s̄s, subtracting

∫
T dx〈Y 〉2, one gets the mass derivative of the corresponding

quark condensate [8]. Note in particular that the susceptibility difference χ5,disc =
1
4

(
χπ

P −χ ll
P
)

is a
measure of the O(4)×U(1)A breaking. That particular combination is also interesting because it is
proportional to the topological susceptibility measuring genuine anomalous effects [3]. Actually,
in [3], for N f = 2+1 and physical quark masses, a sizable separation between the susceptibilities
for the O(4) and U(1)A partners was obtained. We plot their results in Fig. 1. However, another
lattice group [9, 10, 11] has obtained results compatible with the O(4)×U(1)A pattern at chiral
restoration, for N f = 2 in the chiral limit. Furthermore, in [12], the same O(4)×U(1)A pattern is
also obtained for N f = 2 and nonzero quark masses.

Here, we will review our recent analysis [13, 14] of Ward Identities (WI) in connection with
the above pattern and partner problem. In addition, we will discuss how the thermal f0(500) pole
plays a crucial role to describe correctly the chiral susceptibility in the scalar channel.
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Figure 1: Lattice data [3] (323×8 lattice size) for susceptibilities in O(4) and U(1)A restoration.

2. Ward Identities: chiral partners and patterns

In order to shed light on the above chiral pattern problem, we have studied [14] a set of WI
derived formally from QCD, which allows one to connect susceptibilities with quark condensates
and differences of susceptibilities with three-point meson vertices. A particular relevant identity
can be obtained by combining the pseudoscalar WIs derived in [13]:

χ
ls
P (T ) =−2

m̂
ms

χ5,disc(T ) (2.1)

where χ ls
P is in general nonzero due to η/η ′ mixing and m̂χ5,disc remains nonzero in the light chiral

limit at T = 0. The importance of (2.1) arises from the fact that if O(4) partners are degenerated

χ ls
P

O(4)∼ 0 since a O(4) transformation rotates ηl → δ a but leaves ηs invariant, so that χ ls
P rotates

into a correlator which vanishes by parity. Thus, (2.1)) implies that in such O(4) degenerating
scenario, χ5.disc (and hence the topological susceptibility) should vanish as well, which supports the
O(4)×U(1)A pattern from the point of view of partner degeneration. This conclusion is consistent
with the lattice works [9, 10, 11, 12], while the discrepancy with [3] can be explained [14] by the
large uncertainties in the degeneration of χ ll

P −χδ
S compared to those in χπ

P −χ ll
S , visible in Fig. 1.

Another consequence of the WI studied in [14] is that the susceptibilities associated to the K
and κ can be related in the following way:

χ
κ
S (T )−χ

K
P (T ) =

2
m2

s − m̂2 [ms 〈q̄q〉l (T )−2m̂〈s̄s〉(T )] , (2.2)

which implies that K − κ also become degenerate in the ideal O(4) restoration regime, i.e for
m̂→ 0+ and 〈q̄q〉l → 0+. Furthermore, (2.2) allows one to parametrize the breaking of that de-
generacy in the lattice, since the r.h.s is proportional to the subtracted quark condensate ∆l,s =

〈q̄q〉l−2(m̂/ms)〈s̄s〉, customarily used in lattice as a chiral order parameter in order to avoid finite
size divergences in individual condensates [1, 2, 3].

We remark that the previous WI have been derived formally from QCD and hence they are
model independent. Although the arguments used rely on symmetry properties of the operators
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involved, in general one must be careful about possible renormalization issues of those operators
in QCD. For that purpose, we have checked their validity within U(3) Chiral Perturbation Theory
(ChPT) [13, 15], which provides a model-independent and renormalizable set-up. The ChPT anal-
ysis also confirms our previous findings, in particular the coincidence of O(4) and U(1)A partner
degeneration in the chiral limit, for which we show preliminary results in Fig. 2.
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Figure 2: U(3) ChPT results for the different partner degeneration temperatures

3. The thermal f0(500)

As shown in the previous sections, the scalar susceptibility

χS(T ) =−
∂

∂ml
〈q̄q〉l (T ) =

∫
E

d4x
[
〈T (ψ̄lψl)(x)(ψ̄lψl)(0)〉T −〈q̄q〉2l

]
, (3.1)

plays a crucial role to describe chiral symmetry restoration. Not only it provides information about
partner degeneration, but it is also a quantity directly sensitive to the transition, since it is expected
to diverge for a second order phase transition [16]. In the physical case with N f = 2+1 flavors and
massive quarks, the peak observed for χS in the lattice signals the transition temperature [1, 2, 3]
as it is seen for χ ll

S in Fig. 1.
On the one hand, the behaviour of χS(T ) in hadron models such as ChPT shows a continuously

increasing function of temperature [8]. However, the expected properties of the susceptibility can
be recovered by recalling that it corresponds to the p = 0 σ -channel propagator and then it is
expected to behave, up to coupling normalizations, as χS ∼ 1/M2

S with MS the scalar mass of that
channel, whose lightest hadron state is the f0(500). On the other hand, it is already well established
that the f0(500) pole can be generated, among other techniques available in the literature [17], by
constructing a unitarized ππ scattering amplitude via the so called Inverse Amplitude Method

tIAM(s;T ) =
t2(s)2

t2(s)− t4(s,T )
. (3.2)

where t2+t4+ . . . is the ChPT series for the I = J = 0 partial wave and the temperature dependence
enters in t4 through loop corrections as calculated in [18]. The amplitude (3.2) satisfies exactly the
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thermal unitarity relation Im tIAM(s+ iε;T ) = σT (s)|tIAM(s)|2 (s≥ 4M2
π ) with

σT (s) =
√

1−4M2
π/s
[
1+2nB(

√
s/2;T )

]
,

the thermal two-particle phase space and nB(x;T ) = [exp(x/T )−1]−1 the Bose-Einstein distri-
bution function. In addition, the unitarized amplitude is analytic and hence the thermal f0(500)
shows up as a pole in the second Riemann sheet at s = sp(T ) = [Mp(T )− iΓp(T )/2]2 [19]. The
real part of the pole, which would correspond to the self-energy real part of a scalar particle ex-
changed between the incoming and outgoing pions, defines a thermal mass for this state, namely
M2

S(T ) = M2
p(T )−Γ2

p(T )/4, which shows a clear dropping behaviour with T [20], corresponding
to the expected chiral restoration features for that state. From the previous arguments, it has been
showed [20] that defining the unitarized susceptibility as

χ
U
S (T ) = A

M4
π

4m̂2
M2

S(0)
M2

S(T )
, (3.3)

and choosing A = 4m̂2

M4
π

χChPT
S (0)' 0.14 to match the ChPT result, one gets a peak very close to the

expected Tc lattice value. Roughly speaking, using (3.3) we are assuming that the thermal f0(500)
saturates the scalar susceptibility and that the possible T dependence of the A factor (in particular
from the effective σππ coupling residue) is smooth enough to be included in the uncertainties of
the method. Actually, the result is very robust under variations in the unitarization method and
under the uncertainty of the Low Energy Constants (LEC) involved [21]. We show in Fig. 3(a)
preliminary results for this f0(500) saturated susceptibility, where the thermal pole has been calcu-
lated with the LEC given in [22] including the LEC uncertainties quoted in that work. Just within
the LEC uncertainty band, i.e without performing any fit to lattice χS data, this approach describes
remarkably well the lattice results. A thermal model fit for the scalar susceptibility only in terms
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Figure 3: (a) Scalar susceptibility saturated by the thermal f0(500) result as given in (3.3), compared with
the ChPT result and with the lattice data in [1]. We include the uncertainty band coming from the LEC in
[22]. (b) Fit of the unitarized χS to the latice data.

of such saturated thermal f0(500) gives also a very good description [21]. In Fig. 3(b) we show
preliminary results of a fit using A in (3.3) as fit parameter, also with the LEC in [22]. The results in
that figure correspond to fitting the lattice points up to T = 167 MeV. The bands correspond to the
95% confidence level interval of the fit, giving for A = 0.13±0.01 and hence compatible with the
ChPT central value used in Fig. 3(a). For that fit we get a coefficient of determination R2 = 0.988.
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4. Conclusions

Ward Identities are a powerful theoretical method, which allow one to reach relevant conclu-
sions about chiral partners and the corresponding pattern. In particular, in the limit of ideal O(4)
partner degeneration, they also predict the degeneration of U(1)A partners, while K− κ become
ideal chiral partners in the I = 1/2 sector. These results are confirmed by a U(3) ChPT analysis.
We have also showed recent results on the role of the thermal f0(500) pole for chiral restoration.
That state generated within unitarized ChPT allows to describe the scalar susceptibility lattice data
by assuming saturation with the associated thermal mass.
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