The $\rho B^{*} \bar{B}^{*}$ System within the Fixed Center Approximation to The Faddeev Equations

M. Bayar*
Department of Physics, Kocaeli University, 41380 Izmit, Turkey
E-mail: melahat.bayar@kocaeli.edu.tr
\section*{P. Fernandez-Soler}

Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia, Spai
E-mail: pedro.fernandez@ific.uv.es

Z-F. Sun

Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC
Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia, Spai
E-mail: sunzf@lzu.edu.cn

E. Oset

Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC
Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia, Spai
E-mail: oset@ific.uv.es

We investigate the interaction of the three body system composed of a ρ meson and a $B^{*} \bar{B}^{*}$ pair. We use the Fixed Center Approximation (FCA), that is, we consider the pair of b mesons forming a $J=2$ cluster, and let the ρ meson interact with the cluster. We see that the combination of ρ meson and a $B^{*} \bar{B}^{*}$ pair would generate a new $J=3$ bound state with our formalism.

[^0]
1. Introduction

Here we study the interaction of the three body system composed of a ρ meson and a $B^{*} \bar{B}^{*}$ pair. We use the Fixed Center Approximation (FCA), that is, we consider the pair of b mesons forming a $J=2$ cluster, and let the ρ meson interact with the cluster as can be seen in Fig. 1. The motivation for study such a system is that in previous works, the ρB^{*} interaction was found very attractive, specially in $J=2$ where it was found the most bound state [2]. On the other hand, the $B^{*} \bar{B}^{*}$ interaction was studied in [3] and found degenerate states in all spins. We can think that the combination of these two attractive subsystems would generate a new $J=3$ bound state with our formalism. For detail see Ref. [1].

2. FORMALISM

Figure 1: Diagrammatic representation of the fixed center approximation to Faddeev equations.

The main assumption is that the heavy B^{*} and \bar{B}^{*} mesons will be forming a cluster of spin two. Then we can construct the diagrammatic series of Fig. 1 which account all the possible terms for the scattering of the ρ (particle a_{3}) and say, the B^{*} (particle a_{1}). Thus, denoting this sum as T_{1} :

$$
\begin{align*}
& T_{1}=t_{1}+t_{1} G_{0} t_{2}+t_{1} G_{0} t_{2} G_{0} t_{1}+\ldots \tag{2.1}\\
& T_{2}=t_{2}+t_{2} G_{0} t_{1}+t_{2} G_{0} t_{1} G_{0} t_{2}+\ldots \tag{2.2}
\end{align*}
$$

where we have also written in Eq. (2.2) the series for the scattering with the \bar{B}^{*} (particle a_{2}). From Eqs. (2.1) and (2.2) we deduce the coupled Faddeev equations,

$$
\begin{align*}
& T_{1}=t_{1}+t_{1} G_{0} T_{2} \tag{2.3}\\
& T_{2}=t_{2}+t_{2} G_{0} T_{1} \tag{2.4}
\end{align*}
$$

and the full scattering T-matrix is $T=T_{1}+T_{2}$. The G_{0} (dashed line in Fig. 1) is the ρ propagator inside the cluster of mass M_{c},

$$
\begin{equation*}
G_{0}\left(q^{0}\right)=\frac{1}{2 M_{\mathrm{c}}} \int_{\mathbb{R}^{3}} \frac{\mathrm{~d}^{3} q}{(2 \pi)^{3}} F_{R}\left(\vec{q}^{2}\right) \frac{1}{\left(q^{0}\right)^{2}-\vec{q}^{2}-m_{a_{3}}^{2}+\mathrm{i} \varepsilon} \tag{2.5}
\end{equation*}
$$

the F_{R} function in Eq. (2.5) is the form factor of the resonance or cluster, which is the Fourier transform of its wave function. There q^{0} and $m_{a_{3}}$ are the energy and the mass of the ρ meson. We will consider the following form factor description for s-wave functions

$$
\begin{equation*}
F_{R}\left(\vec{q}^{2}\right)=\frac{1}{N} \int_{\{|\vec{p}|,|\vec{p}-\vec{q}|<\Lambda\}} d^{3} p \mathscr{A}(\vec{p}) \mathscr{A}(\vec{p}-\vec{q}), \tag{2.6}
\end{equation*}
$$

where \mathscr{A} and N are defined by,

$$
\begin{gather*}
\mathscr{A}(\vec{p})=\frac{1}{M_{\mathrm{c}}-\omega_{a_{1}}(\vec{p})-\omega_{a_{2}}(\vec{p})}, \tag{2.7}\\
N=F_{R}\left(\vec{q}^{2}=0\right), \tag{2.8}
\end{gather*}
$$

and Λ is a three-momentum cutoff used to regularize the meson-meson loop function in the $B^{*} \bar{B}^{*}$ system in order to obtain the $B^{*} \bar{B}^{*}$ as a bound state [4].

It is interesting to note that this is the only information needed from the $B^{*} \bar{B}^{*}$ system. One is not taking the $B^{*} \bar{B}^{*}$ interaction explicitly, but it is considered implicitly since it leads to the binding of the $B^{*} \bar{B}^{*}$ system, and we can determine the wave function and the form factor from this information.

The t_{1} and t_{2} are the ρB^{*} and $\rho \bar{B}^{*}$ interaction in $J=2$, studied in [2] with the unitarization of amplitudes given by the local Hidden Gauge approach, that generated the $B_{2}^{*}(5747)$. In this formalism we have $t_{1}=t_{2}$.

The quantum numbers of the cluster are $I\left(J^{P C}\right)=0\left(2^{++}\right)$, and the ρ meson is an isotriplet, thus it is necessary to write the 3 body $T(I=1)$ matrix in terms of proper isospin states of the ρB^{*} and $B^{*} \bar{B}^{*}$ subsystems. This provides the result

$$
\begin{equation*}
T=\frac{2 \tilde{t}}{1-\tilde{t} G_{0}} \tag{2.9}
\end{equation*}
$$

3. Results

As we can see in Fig. 2, we find a $I\left(J^{P}\right)=1\left(3^{-}\right)$bound state of the three body system with a mass $M=10968 \pm 57 \mathrm{MeV}$ and a width of $36 \pm 7 \mathrm{MeV}$. In Fig. 3 we have plotted the modulus squared of the t_{1}, which is the contribution of the $J=2 \rho B^{*}$ interaction, the solid line. We can see a clear peak, which is directly related with the $B_{2}^{*}(5747)$ resonant state found in the unitary Hidden Gauge formalism. Furthermore, we have plotted the denominator of $T, 1-G_{0} \tilde{t}_{1}$, dashed line, which is the effect of the ρ orbiting around the heavy mesons in the FCA. This term is the responsible of displacing the peak to lower energies, see the dotted line, and we appreciate that the strong binding energy of the two subsystems plays a fundamental role on the generation of the three-body state.

Figure 2: Plot of the numerator and denominator of Eq. (2.9) together with the total T

References

[1] M. Bayar, X. L. Ren and E. Oset, Eur. Phys. J. A 51, no. 5, 61 (2015) doi:10.1140/epja/i2015-15061-8.
[2] P. Fernandez-Soler, Z. F. Sun, J. Nieves and E. Oset, Eur. Phys. J. C 76 (2016) no.2, 82 doi:10.1140/epjc/s10052-016-3918-y.
[3] A. Ozpineci, C. W. Xiao and E. Oset, Phys. Rev. D 88 (2013) 034018 doi:10.1103/PhysRevD.88.034018.
[4] L. Roca and E. Oset, Phys. Rev. D 82 (2010) 054013 doi:10.1103/PhysRevD.82.054013.

[^0]: *Speaker.

