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Within our description of Goldstone-type pseudoscalar mesons as almost massless bound states of

quark and antiquark by a three-dimensional bound-state equation of Bethe–Salpeter origin, taking

into account the pointwise behaviour of the full light-quark propagators enables to characterize the

effective interquark interactions more precisely than earlier studies exploiting just specific aspects.
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1. Inversion Starting Point: an Instantaneous Bethe–Salpeter Bound-State Equation

In the spectrum of hadron states, the lightest pseudoscalarmesons, the pions and kaons, occupy
a very isolated position: On the one hand, they must be viewedas bound states of a quark–antiquark
pair. On the other hand, they represent (nearly massless) Goldstone bosons related to the dynamical
chiral symmetry breakdown of quantum chromodynamics (QCD), owing their nonzero masses only
to some additional, explicit breaking of the chiral symmetries. Needless to say, both of these aspects
should be incorporated in any reasonable description of such mesons within the framework of QCD.

The homogeneous Bethe–Salpeter equation constitutes a Poincaré-covariant framework for the
description of bound states within quantum field theory. Problems due to the occurrence of timelike
excitations, inherent to fully relativistic formalisms, may be evaded by relying on three-dimensional
reductions accomplished, for instance, by assuming all theeffective interactions experienced by the
bound-state constituents to be, in the center-of-momentumframe of the bound states, instantaneous.
Information on these effective interactions, extracted inform of central potentialsV(r), r ≡ |x|, may
be deduced by inversion of one’s bound-state equation [1]. Recently, we did this for the presumably
simplest reduction of this kind [2], the Salpeter equation [3], and a straightforward generalization of
the latter [4], designed to incorporate more of the Bethe–Salpeter formalism’s relativistic nature [5].

In the present context, inversion simply means the reconstruction of the effective interactions in
one’s bound-state equation from available knowledge aboutsolutions to this very equation. For ease
of presentation, let us impose flavour symmetry, by assumingour two bound-state constituents to be
some quark and the corresponding antiquark. Information about this required input to the envisaged
inversion process may be harvested by exploiting the fact that the gauge invariance of QCD implies,
in the chiral limit, an identity [6] relating the quark propagator and the Bethe–Salpeter solution for a
massless pseudoscalar meson in its center-of-momentum frame. If one’s formalism strictly respects
Poincaré covariance, the full propagatorS(p) of a fermion of four-momentump is totally defined by
two Lorentz-scalar functions, this fermion’s massM(p2) and wave-function renormalizationZ(p2):

S(p) =
i Z(p2)

6p−M(p2)+ i ε
, 6p≡ pµ γµ , ε ↓ 0 .

The semirelativistic bound-state equation constructed inRef. [5] as an instantaneous approximation
to the Bethe–Salpeter formalism poses an implicit eigenvalue problem, with the bound-state masses
M̂ as eigenvalues. Its solutions, the Salpeter amplitudesφ(p), encode the distribution of the relative
three-momentap of the involved bound-state constituents. Forpseudoscalarbound states of spin-1

2

fermions, the Salpeter amplitudeφ(p) involves only two independent component functionsϕ1,2(p):

φ(p) =

[
ϕ1(p)

γ0 [γ ·p+M(p2)]√
p2+M2(p2)

+ϕ2(p)

]
γ5 .

Assuming for the effective interactions Fierz and spherical symmetry, our bound-state equation gets
recast to a coupled set of one integral and one algebraic relation [7] for the radial functionsϕ1,2(|p|):

2
√

p2+M2(p2)ϕ2(|p|)+
4
π

Z2(p2)

|p|

∞∫

0

d|q| |q|
∞∫

0

dr sin(|p| r)sin(|q| r)V(r)ϕ2(|q|) = M̂ ϕ1(|p|) ,

2
√

p2+M2(p2)ϕ1(|p|) = M̂ ϕ2(|p|) . (1.1)
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2. Inversion: Confining Interquark Potential Compatible wi th Goldstone’s Theorem

In the exact Goldstone limit̂M = 0, immediately ensuringϕ1(|p|) = 0, the set (1.1) collapses to
a single integral equation for the sole surviving componentϕ2(|p|) 6≡ 0. From the Fourier transform
of that latter relation, the sought configuration-space potentialV(r) is easily read off. We extract our
inversion input from a popular chiral-limit model solution[8] to the QCD equation of motion for the
full quark propagator. Figure 1 illustrates our finding forϕ2 in configuration and momentum space.1

Using this in the Fourier transform of Eq. (1.1), the behaviour ofV(r) given in Fig. 2 can be derived,
regrettably only in numerical form, but, at least within therange ofr depicted in Fig. 2, can be easily
represented in terms of elementary functions,e.g., with the parameter values collected in Table 1, by

V(r)≈ a0+a1 r +a2 r2+bexp(cr) . (2.1)

Table 1: Numerical values of the parameters in our approximation (2.1) to the potentialV(r) shown in Fig. 2.

Parameter a0 [GeV] a1
[
GeV2] a2

[
GeV3] b[GeV] c[GeV]

Value −3.229 1.0095 −0.083685 1.411×10−5 0.8475
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Figure 1: Nonvanishing radial Salpeter component function (dashed) in configuration (a) and momentum (b)
space [4], perfectly matching thêM = 0 solution (dotted) to our three-dimensional bound-state equation (1.1)
with the inversion-rooted potentialV(r) depicted in Fig. 2 [5], solved by application of variationaltechniques
(a) or conversion to an equivalent matrix eigenvalue problem (b). Here,p indicates the radial variablep≡ |p|.

1The predicted meson size makes sense [4]: average interquark distance〈r〉= 0.483 fm and root-mean-square radius
√

〈r2〉= 0.535 fm nicely match the measured electromagnetic charge radius
√

〈r2
π 〉=(0.672±0.008) fm [9] of the pion.
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Figure 2: PotentialV(r) [4] defining Fierz-symmetric effective interactions providing a proper description of
Goldstone-type pseudoscalar mesons by the (three-dimensional) bound-state equation formulated in Ref. [5]:
rising in a confining manner from a finite value,V(0)=−1.92 GeV, after passing a zero atr = 15.7 GeV−1 to
infinity, it resembles, in contrast to earlier findings [2] focusing on particular aspects, a smoothed square well.
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