Beam energy dependence of the anisotropic flow coefficients v_n

Niseem Magdy (For the STAR Collaboration)
Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA
E-mail: niseemm@gmail.com

Recent STAR measurements of the anisotropic flow coefficients, v_n, are presented for Au+Au collisions spanning the beam energy range $\sqrt{s_{NN}} = 7.7 - 200$ GeV. The measurements indicate dependences on harmonic number, n, transverse momentum (p_T), pseudorapidity (η), collision centrality (cent) and beam energy ($\sqrt{s_{NN}}$) which could serve as important constraints to test different initial-state models and to aid precision extraction of the temperature dependence of the specific shear viscosity.
1. Introduction

A major goal of the heavy-ion experimental program at the Relativistic Heavy Ion Collider (RHIC) is to study the properties of the strongly interacting quark-gluon plasma (QGP) created in ion-ion collisions. Recently, many studies have emphasized the use of anisotropic flow measurements to study the transport properties of the QGP [1–7]. An important question in many of these studies has been the role of initial-state fluctuations and their influence on the uncertainties associated with the extraction of \(\eta/s \) for the QGP [8, 9]. This work presents new measurements for the anisotropic flow coefficients, \(v_n > 1 \), and the rapidity-even dipolar flow coefficient, \(v_{\text{even}}^1 \), with an eye toward developing new constraints which could aid a distinction between different initial-state models and hence, facilitate a more precise extraction of the specific shear viscosity \(\eta/s \) [10, 11].

Anisotropic flow is characterized by the Fourier coefficients, \(v_n \), obtained from a Fourier expansion of the azimuthal angle (\(\phi \)) distribution of the particles emitted in the collisions [12]:

\[
\frac{dN}{d\phi} \propto 1 + 2 \sum_{n=1}^{\infty} v_n \cos(n(\phi - \Psi_n)),
\]

where \(\Psi_n \) represents the azimuthal angle of the \(n^{th} \)-order event plane; the coefficients, \(v_1, v_2 \) and \(v_3 \) are commonly called directed, elliptic, and triangular flow, respectively. The flow coefficients, \(v_n \), are related to the two-particle Fourier coefficients, \(v_{n,n} \), as:

\[
v_{n,n}(p_T^a, p_T^b) = v_n(p_T^a) v_n(p_T^b) + \delta_{\text{NF}},
\]

where \(a \) and \(b \) are particles selected with \(p_T^a \) and \(p_T^b \) respectively, and \(\delta_{\text{NF}} \) is a so-called non-flow (NF) term, which includes possible short-range contributions from resonance decays, Bose-Einstein correlations and near-side jets, and long-range contributions from the global momentum conservation (GMC) [13–15]. The short-range contributions can be reduced by employing a pseudorapidity gap, \(\Delta\eta \). However, the effects of GMC must be explicitly considered. For the current analysis, a simultaneous fitting procedure, outlined below, was used to account for GMC.

2. Measurements

The correlation function technique was used to measure the two-particle \(\Delta \phi \) correlations:

\[
C_r(\Delta \phi, \Delta \eta) = \frac{(dN/d\Delta \phi)_{\text{same}}}{(dN/d\Delta \phi)_{\text{mixed}}},
\]

where \((dN/d\Delta \phi)_{\text{same}} \) represent the normalized azimuthal distribution of particle pairs from the same event and \((dN/d\Delta \phi)_{\text{mixed}} \) represents the normalized azimuthal distribution for particle pairs in which each member is selected from a different event but with a similar classification for the collision vertex location, centrality, etc. The pseudorapidity requirement \(|\Delta \eta| > 0.7\) was also imposed on track pairs to minimize non-flow contributions associated with the short-range correlations.

The two-particle Fourier coefficients, \(v_{n,n} \), are obtained from the correlation function as:

\[
v_{n,n} = \frac{\sum_{\Delta \phi} C_r(\Delta \phi, \Delta \eta) \cos(n \Delta \phi)}{\sum_{\Delta \phi} C_r(\Delta \phi, \Delta \eta)},
\]
and then used to extract v_1^{even} via a simultaneous fit of $v_{1,1}$ as a function of p_T^A, for several selections of p_T^B with Eq. 1.2:

$$v_{1,1}(p_T^A, p_T^B) = v_1^{\text{even}}(p_T^A) v_1^{\text{even}}(p_T^B) - C p_T^A p_T^B.$$ \hspace{1cm} (2.3)

Here, $C \propto 1/\langle \langle \text{Mult} \rangle \langle \rho_T^2 \rangle \rangle$ takes into account the non-flow correlations induced by a global momentum conservation \cite{15, 16} and $\langle \text{Mult} \rangle$ is the corrected mean multiplicity. For a given centrality selection, the left hand side of Eq. 2.3 represents the $N \times N$ matrix which we fit with the right hand side using $N + 1$ parameters; N values of $v_1^{\text{even}}(p_T^A)$ and one additional parameter C, accounting for the momentum conservation \cite{17}.

![Figure 1](image1.png)

Figure 1: (a) The extracted values of v_1^{even} vs. p_T for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. (b) A representative set of the associated values of C vs. $\langle \langle \text{Mult} \rangle \rangle^{-1}$ from the same fits. The shaded bands represent the systematic uncertainty.

3. Results

Representative results for v_1^{even} and $v_{n \geq 2}$ for Au+Au collisions at several different collision energies are summarized in Figs. 1, 2, 3, 4 and 5.

The values of $v_1^{\text{even}}(p_T)$ extracted for different centrality selections (0-10%, 20-30% and 40-50%) are shown in Fig. 1(a). They indicate the characteristic pattern of a change from negative v_1^{even} at low p_T to positive $v_1^{\text{even}}(p_T)$ for $p_T > 1$ GeV/c. They also show the expected increase of v_1^{even} as collisions become more peripheral, in line with the expected centrality dependence of the dipole asymmetry ϵ_1, where $\epsilon_1 \equiv \langle |r^3 \epsilon^\phi| \rangle / r^3$ \cite{18, 19}. Fig. 1(b) shows the results for the associated momentum conservation coefficients, C; they indicate the expected linear dependence on $\langle \langle \text{Mult} \rangle \rangle^{-1}$.

Figure 2 and 3 show p_T and η differential $v_{n \geq 2}$ measurements for the centrality selection 0-40%, for a representative set of beam energies. Fig. 2 indicates a sizable dependence of the magnitude of v_n on p_T and the harmonic number, n, with similar trends for each beam energy. Figure 3 shows a similarly strong n dependence for $v_{n \geq 2}$ but with a much weaker η dependence.

The centrality dependence of $v_{n \geq 2}$ is shown in Fig. 4 for the same representative set of beam energies. They indicate a weak centrality dependence for the higher harmonics, which all decrease.

3
Beam energy dependence of the anisotropic flow coefficients v_n

Figure 2: Examples of $v_n(p_T)$ as a function of p_T for charged particles in 0-40% central Au+Au collisions. The shaded bands represent the systematic uncertainty.

Figure 3: Examples of $v_n(|\eta|)$ as a function of $|\eta|$ for charged particles in 0-40% central Au+Au collisions. The shaded bands represent the systematic uncertainty.

Figure 4: Examples of v_n(Centrality%) as a function of Au+Au collision centrality for charged particles with $0.2 < p_T < 4$ GeV/c. The shaded bands represent the systematic uncertainty.
Beam energy dependence of the anisotropic flow coefficients v_n

Niseem Magdy

Figure 5: Examples of $v_n(\sqrt{s_{NN}})$ for charged particles with $0.2 < p_T < 4$ GeV/c and 0-40% central Au+Au collisions. The shaded bands represent the systematic uncertainty.

with decreasing values of $\sqrt{s_{NN}}$. These patterns may be related to the detailed dependence of the viscous effects in the created medium, which serve to attenuate the magnitude of v_n.

Figure 5 shows the excitation functions for the p_T-integrated $v_{2,3,4}$ for $0-40\%$ central Au+Au collisions. They indicate an essentially monotonic trend for v_2, v_3 and v_4 with $\sqrt{s_{NN}}$, as might be expected for a temperature increase with $\sqrt{s_{NN}}$.

4. Conclusion

In summary, we have performed a comprehensive set of STAR anisotropic flow measurements for Au+Au collisions at $\sqrt{s_{NN}} = 7.7$-200 GeV. The measurements use the two-particle correlation method to extract the Fourier coefficients, $v_{n>1}$, and the rapidity-even dipolar flow coefficient, $v_{1\text{ even}}$. The rapidity-even dipolar flow measurements indicate the characteristic patterns of an evolution from negative $v_{1\text{ even}}(p_T)$ for $p_T < 1$ GeV/c to positive $v_{1\text{ even}}(p_T)$ for $p_T > 1$ GeV/c, expected when initial-state geometric fluctuations act along with the hydrodynamic-like expansion to generate rapidity-even dipolar flow. The $v_{n>1}$ measurements indicate a rich set of dependences on harmonic number n, p_T, $|\eta|$ and centrality for versus the beam energy. These new measurements may provide additional constraints to test different initial-state models, and to aid precision extraction of the temperature dependence of the specific shear viscosity.

Acknowledgments

This research is supported by the US Department of Energy under contract DE-FG02-87ER40331.

References

Beam energy dependence of the anisotropic flow coefficients v_n

Niseem Magdy

