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1. Introduction

Experiments at RHIC and LHC are presently focused on quantifying the transport properties
of the quark-gluon plasma (QGP) and mapping out the QCD phase diagram. As the transition
between QGP and hadronic matter is known to be a cross-over at top RHIC energies and at LHC,
the beam energy scan (BES) program at RHIC investigates signals of a possible critical point –
indicating the change to a first-order phase transition – at lower collision energies, where the QCD
matter is exposed to typically lower temperatures but higher net-baryon densities.

The beam energy scan presents multiple challenges to theoretical models of relativistic heavy
ion collisions. The initial non-equilibrium evolution of the system becomes more prominent and
can have a large effect on the outcome of the calculations. Moreover, a full (3+1)-D hydrodynam-
ical model is required to describe the evolution of the medium, as the simplifying assumption of
a midrapidity plateau is no longer valid. In addition, the non-zero baryon chemical potential µB

needs to be taken into account in the equation of state. These challenges can be overcome using
a hybrid approach, where the the non-equilibrium evolution of the system is described with a mi-
croscopic hadronic transport model, while a (3+1)-D viscous hydrodynamics model is utilized to
model the system close to thermal equilibrium.

Due to the complex nature of the problem, the models of heavy ion collisions at BES range
typically have numerous parameters, each of them contributing to final results of multiple physical
observables in the model calculations. Thus the most robust approach for tuning a model would
be to simultaneously fit all model parameters to all available experimental data. However, after
finding a combination of input parameters which gives a good description of the data, the ques-
tion then becomes how many other combinations would produce an equally good description, and
how much each individual parameter is allowed to vary within this set of equally good parameter
combinations.

This problem of multidimensional parameter fitting and the related uncertainty estimation can
be addressed using the framework of Bayesian statistics, which has already been very successfully
applied to Au+Au collisions at the top RHIC energy and Pb+Pb collisions at the LHC [1, 2, 3].
The outcome of the Bayesian analysis is a multidimensional probability distribution for all the input
parameter combinations of the investigated model. Based on this probability distribution, we can
make statements about what parameter values are most likely to provide a good description of the
experimental data, and how large uncertainties we should associate to any given parameter values.

In this proceedings article, we apply Bayesian analysis on the input parameters of a transport
+ (3+1)-D viscous hydrodynamics model [4] to investigate the µB dependence of η/s in Au+Au
collisions, using the collision energy

√
sNN as the control parameter with values 19.6,39.0, and

62.4 GeV. We give a brief description of the hybrid model in Section 2. The Bayesian analysis
methods are described in Section 3 and the results of the analysis are presented in Section 4. A
summary of the investigation is provided in Section 5.

2. Transport + hydrodynamics hybrid model

In the hybrid model used for this study [4], the time evolution of the collision system is sim-
ulated in three separate phases. The UrQMD hadron-string cascade [5, 6] is used for the initial
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non-equilibrium evolution. The duration of the initial phase is controlled with the time parameter
τ0, which is constrained from below by the condition that the two colliding nuclei must have passed
through each other during this phase.

At the time τ = τ0, the microscopic particle properties are mapped to hydrodynamic densities
using 3-D Gaussians with width parameters Wtrans, Wlong. These density profiles provide the initial
state for the hydrodynamical evolution, which is done using a (3+1)-D relativistic viscous hydro-
dynamics code [7]. The shear viscosity of the medium is adjusted with the input parameter η/s,
which is treated as a constant throughout the hydrodynamical phase. A chiral model equation of
state [8] is used to accommodate for finite values of baryon chemical potential.

Finally, the energy density parameter εSW is used to govern the transition from hydrodynamics
back to UrQMD for final scatterings and decays. Once the local rest frame energy density in all
hydro cells has fallen below εSW , hadrons to be evolved in the final phase are sampled according to
Cooper-Frye procedure from the iso-energy density hypersurface ε(t,x) = εSW . The hypersurface
is constructed by the Cornelius hypersurface finder [9].

3. Statistical analysis

The Bayes’ theorem states that the posterior probability for a combination of input parameters
~x = (η/s,τ0,Wtrans,Wlong,εSW ) to provide the best description of the data is a product of our prior
knowledge P(~x) about the plausible range of values for each parameter, and the likelihood L (~x) of
the given combination of parameter values when compared to experimental data. For the present
study, the prior probability P(~x) distribution is a uniform 5-dimensional box, while the likelihood
function has the general form

L (~x) ∝ exp
(
−1

2
(~y(~x)−~yexp)T

Σ
−1(~x)(~y(~x)−~yexp)

)
(3.1)

where the covariance Σ matrix contains the uncertainties associated with the comparison of model
output ~y(~x) and the experimental data ~yexp; more precisely, Σ includes statistical and systematic
errors (summed in quadrature) and the emulator error (described below).

We sample the Bayesian posterior distribution using Markov chain Monte Carlo (MCMC),
where the starting points of the random walkers are taken from the prior P(~x), while the probability
for a walker to accept a proposed step direction is determined by the likelihood function L (~x).

As the MCMC sampling involves O(103) random walkers performing O(104) steps, fast eval-
uation of the likelihood function becomes necessary. Clearly running full hybrid model simulations
to determine ~y(~x) for an arbitrary ~x requires an infeasible amount of computational effort in this
context. The solution to this problem is to use a surrogate model, namely a Gaussian process (GP)
emulator [10], to estimate ~y(~x). In addition to predicting the model output, GP emulators pro-
vide also uncertainty estimation by construction, which is included in the covariance matrix in the
likelihood computation.

GP emulators need to be conditioned on training data to make sensible predictions. We have
sampled∼ 100 training points for each collision energy, using Latin hypercube method to distribute
the points evenly in the input parameter space.
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4. Results

To impose strong constraints on the model parameters, our aim has been to use as compre-
hensive set of experimental data as possible for each collision energy. For

√
sNN = 62.4 GeV, we

have included charged particle multiplicities Nch [11], pseudorapidity distributions dNch/dη [12],
and elliptic flow v2{EP} [13, 14]. Identified particle observables include charged pion HBT radii
Rout, Rside and Rlong [15], the multiplicity ratio of K+ and π+ and their mean transverse momenta
[11], as well as the multiplicity and 〈pT 〉 of Ω [16, 17]. At

√
sNN = 39 GeV, the available data

consists of charged particle elliptic flow v2{2} [13], charged pion HBT radii, multiplicities and
mean transverse momentum of π+, π−, K+ and K− [18], as well as the pT spectrum of Ω [19]. In
addition to the observables at 39 GeV, the data set at

√
sNN = 19.6 GeV includes also the charged

particle pseudorapidity distribution [12].
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Figure 1: Model-to-data ratio of charged particle multiplicity for five centrality classes at
√

sNN = 62.4
GeV. Grey dashed boxes represent the initial range of values from the training data, while the widths of the
blue shaded areas illustrate the probability densities for expected outcomes using samples from the posterior
distribution. Red triangles show the result from full hybrid model simulations using the median values of
the posterior distribution for the input parameters, and open squares indicate the emulator predictions for the
median value simulations.

An example of the effectiveness of the statistical analysis procedure is demonstrated in figure
1. The initial results from the emulator training points allow for multiplicities over three times
larger than the measured values. After the model-to-data calibration procedure, the range of mul-
tiplicities has shrunk within 10% of the measurement for the majority of the input parameter com-
binations sampled from the posterior distribution. There is a trend for underestimating Nch at more
non-central collisions; this may indicate that using the same value of τ0 for all centralities is an
oversimplification and a more sophisticated initial state model with an impact parameter dependent
τ0 is needed.

The emulator prediction quality is also demonstrated in Fig. 1 by showing both the full hybrid
model simulations, where the median values of the posterior probability distributions were used as
the input parameters, and the respective emulator predictions for the same parameter values. As
seen in the figure, the predictions are very accurate for all centralities.

Figure 2 shows one-dimensional projections of the posterior probability distributions for shear
viscosity over entropy density ratio η/s and hydro-to-transport switching energy density εSW for
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Figure 2: Violin plots of the collision energy dependence of 1-D posterior probability distributions of shear
viscosity over entropy density η/s (left) and hydro-to-transport switching energy density εSW (right). Open
symbols indicate the peak values of the distributions, while the full symbols and associated error bars rep-
resent median values and 90% confidence limits, respectively. For each plot, the width of the shaded area
reflects the probability density at the corresponding parameter value.

the three investigated collision energies. The most probable value of η/s increases towards lower
collision energies, but the same is true also for the uncertainties. At present there remains a sig-
nificant probability density overlap in the range η/s = 0.10−0.15, so a constant value within that
range remains a possibility.

The switching energy density does not have an obvious trend with respect to the collision
energy. Wide probability distributions at 39 GeV and 62.4 GeV are consistent with the underlying
assumption of a range of density values where hydrodynamics and hadron transport provide an
equal description of the system. However, a very early transition from hydrodynamical evolution
to hadron transport is preferred at

√
sNN = 19.6 GeV.
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Figure 3: Violin plots of the collision energy dependence of 1-D posterior probability distributions of hydro
starting time τ0 (left), transverse smearing parameter Wtrans (center), and switching energy density Wlong

(right).

We present an illustration of the collision energy dependencies of the posterior distributions
of the initial state parameters in figure 3. As mentioned in section 2, the hydro starting time τ0

is limited from below by the interpenetration time of the two colliding nuclei, which is longer at
lower collision energies. Overall, the earliest possible starting time for hydrodynamics is preferred
at all three collision energies.

The two initial density profile smearing parameters have notably different collision energy
dependencies. While the most likely value for the longitudinal smearing parameter Wlong remains
roughly constant over the investigated energy range, the amount of transverse profile smearing
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needed for the best description of the experimental data is much larger at
√

sNN = 19.6 GeV com-
pared to 62.4 GeV.
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Figure 4: Model-to-data ratio of charged particle elliptic flow v2{2} for three centrality classes at
√

sNN =

19.6 GeV. Left: Samples from the full posterior distribution. Right: Samples from the posterior distribution
limited to Wtrans ≤ 1.0 fm (the narrow tail of Wtrans in the middle panel of figure 3).

The relatively high peak value of εSW and the increase in the hydro starting time τ0 work to
diminish the role of hydrodynamics on the time evolution of the collision system at

√
sNN = 19.6

GeV. At the same time the large values of η/s and Wtrans are expected to further decrease elliptic
flow and increase the final particle multiplicity [4]. Indeed, as shown in figure 4, the smaller values
of Wtrans cause v2{2} predictions to be systematically above data.

5. Summary

We have utilized Bayesian statistics combined with Gaussian process emulators for a robust
and comprehensive model-to-data comparison on a transport + hydrodynamics hybrid model de-
scribing Au+Au collisions at RHIC beam energy scan. We find the most likely value of shear
viscosity over entropy density ratio to be largest at

√
sNN = 19.6 GeV and smallest at

√
sNN = 62.4

GeV, suggesting that η/s depends on baryon chemical potential µB. A constant value of η/s cannot
be fully excluded with the present uncertainties, however.
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