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Within the framework of the Kibble-Zurek Mechanism, we investigate the universal behavior of
the non-equilibrium critical fluctuations, using the Langevin dynamics of model A. With prop-
erly located typical time, length and angle scales, τKZ, lKZ, and θKZ, the constructed function
f̄n((τ− τc)/τKZ,θKZ) for the cumulants of the sigma field show universal behavior near the criti-
cal point, which are independent from some non-universal factors, such as the relaxation time or
the evolution trajectory.
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Universal scaling of Langevin dynamics

1. Introduction

Recently, the RHIC Beam Energy Scan (BES) program has measured the higher order cumu-
lants of net charges and net protons in Au+Au collisions at different collision energies ranging from
7.7 to 200 A GeV [1–5]. The kurtosis of net protons shows a large deviation from the poisson base-
line and presents obvious non-monotonic behavior from lower to higher collision energies, which
indicates the potential of locating the QCD critical point.

Although equilibrium critical fluctuation could explain the acceptance dependence for the cu-
mulants of the net protons [6–8], it fails to qualitatively describe the skewness data due to the
intrinsic positive contributions [8]. On the other hand, it is also important to address the non-
equilibrium effects near the critical point due to the dramatically increased relaxation time of the
slow mode. In Ref. [9, 10], the non-equilibrium critical fluctuation of the sigma field have been
investigated using Fork Planck equations and Langevin dynamics within the framework of model
A, which showed that the critical slowing down effects could change the signs of the higher order
cumulants compared with equilibrium ones.

These predicted cumulants of the non-equilibrium critical fluctuation are influenced by free
inputs and free parameters in the model calculations, such as the evolution trajectory of the heat
bath, the relaxation time and damping coefficient, initial conditions, etc. Recently, it was realized
that, the Kibble-Zurek Mechanism (KZM) could lead to the emergence of the universal scaling
for a dynamical evolving system that undergoes a continuous phase transition with the critical s-
lowing down. The KZM was first pointed out by Kibble [11] in cosmology and then extended to
the condensed matter physics by Zurek [12]. After then, the KZM has been applied to various
non-equilibrium systems with both classical [13] and quantum phase transitions [14–16]. In rel-
ativistic heavy ion collisions, the KZM has been applied to the non-equilibrium dynamics of the
Fokker-Planck equation and extracted several universal scaling functions for the cumulants of the
zero mode sigma field [17], which indicates the possibility of constructing parameter-independent
observables for the search of the QCD critical point. In this proceeding, we will investigate the
universal behavior of the critical fluctuations with Langevin dynamics of model A, which keeps the
spatial information of the evolving sigma fielld.

2. Langevin dynamics near QCD critical point

As a system evolves near the critical point, its non-equilibrium dynamics can be described by
a dynamical model associated with certain dynamical universality class. It is generally believed
that the evolving hot QCD system belongs to model H [18] according to the classification of [19].
However, the related numerical simulations are complicated, which have not been implemented so
far. For simplicity, we focus on the dynamics of model A, which only evolves the non-conserved
order parameter field. For the Langevin dynamics of model A, the evolution equation can be written
as:

∂σ(τ,xxx)
∂τ

=− 1
m2

σ τeff

δU [σ(xxx)]
δσ(xxx)

+ζ (xxx,τ), (2.1)

where τeff is the relaxation time, mσ is the mass of the sigma field and ζ (xxx,τ) is the white noise
that satisfies the fluctuation-dissipation theorem. The effective potential U(σ) can be expanded in
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Figure 1: (color online) Left panel: illustrations of two types of trajectories on the phase diagram in r− h
plane. The magenta line is the trajectory of type A with a fixed chemical potential. Other colored curves are
trajectories of type B with approximately equal correlation length near the crossover line. The black dashed
curve donates the boundary of critical regime with ξeq = 1fm. Middle and right panels: illustration of locat-
ing τ∗ for type A and type B trajectories. The solid and dashed lines are quench times τquench and relaxation
times τeff, respectively. The points where τeff = τquench gives the proper time τ∗ and the corresponding τKZ .

the powers of σ(xxx):

U [σ ] =
∫

d3x
{

1
2
[∇σ(xxx)]2 +

1
2

m2
σ [σ(xxx)−σ0]

2 +
λ3

3
[σ(xxx)−σ0]

3 +
λ4

4
[σ(xxx)−σ0]

4
}
. (2.2)

where σ0 is the equilibrium mean value of σ(x), λ3 and λ4 are the coupling coefficients, and
the mass mσ and the equilibrium correlation length ξeq satisfies ξeq = 1/mσ . These parameters
can be obtained from identifying the equilibrium cumulants of this potential with the ones from
the 3d Ising model, together with a linear map between the QCD variable (T,µ) and the Ising
model variable (r,h): (T −Tc)/∆T = h/∆h, (µ − µc)/∆µ = −r/∆r. Note that, in Ising model, r
and h can be expressed with variables R and θ : r(R,θ) = R(1− θ), h(R,θ) = R5/3(3θ − 2θ 3),
from which the changing rate of θ is used to characterize the changing of the thermodynamic
potential in the following calculations. In this proceeding, we set other related parameters as:
∆T = Tc/8, ∆µ = 0.1GeV, ∆r = (5/3)3/4, ∆h = 1, Tc = 0.16GeV and µc = 0.395GeV. For the
detailed explanation, please refer to Ref. [9, 20].

To numerically solve Eq. (2.1), one needs to input the temperature T (xxx) and chemical potential
µ(xxx) profiles for the evolving potential U [σ ] with the T −µ dependent parameters mσ , λ3 and λ4.
Here, we assume that T (xxx) and µ(xxx) are provided by an external heat bath that evolves along two
types of trajectories that satisfies: r = rc− ahh2, where rc and ah are free parameters. For the
trajectory of type A, we set ah = 0 and rc = 0.02∆r. This corresponds to a trajectory with a fixed
chemical potential, where the change of the thermodynamical potential is mainly controlled by the
change of the correlation length ξeq. The trajectories of type B are constructed with approximately
equal correlation length ξeq near the crossover line, which ensures that the changing rate of θ is the
dominant factor for the change of the thermodynamical potential. Here, we first set rc = 0.6,0.7,0.8
and 0.9 and then tune ah in a way that leads to approximate equal ξeq near the cross over phase
transition. The left panel of Fig. 1 shows the critical regime of the phase diagram in r− h plane
with two types of trajectories A and B, where the boundary of critical regime is defined by the
correlation length ξeq = 1 fm.

For both types of trajectories A and B, we assume that the temperature of the heat bath drops
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Figure 2: (Color online) (Left): The evolution of the non-equilibrium cumulants Cn (n=1 ... 4) along the
trajectory of type A, with different relaxation time τrel/τc = 0.02,0.06,0.1,0.14. The black dashed line
represents the equilibrium value. (Right): The constructed universal function f̄n((τ − τc)/τKZ,θKZ) (n=1 ...
4) as a function of the rescaled time (τ− τc)/τKZ.

down in a Hubble-like way: T = TI(τ/τI)
−0.45, where τI and TI are the initial time and temperature,

respectively. The effective relaxation time τeff is another necessary input of Eq. (2.1). Here we set
it as τeff = τrel(ξeq/ξmin)

3 1, where ξmin and τrel represent the correlation length and the relaxation
time at the boundary of the critical regime, and τrel is the free parameter in our calculations. With
the probability function: P [σ (xxx)] ∼ exp(−U (σ)/T ), the initial profiles of the sigma field can be
constructed, which are then evolved according to Eq. (2.1) event by event. With the obtained σ (xxx)
profiles, we calculate the time dependent cumulants: C1 ≡ 〈σ〉,C2 ≡ 〈(δσ)2〉,C3 ≡ 〈(δσ)3〉,C4 ≡
〈(δσ)4〉−3〈(δσ)2〉, where the variance is defined as δσ ≡ σ−〈σ〉, σ denotes the spatial average
of σ(xxx), and 〈· · · 〉 denotes the average over the whole events.

3. Kibble-Zurek scaling

The cumulants of the sigma field are influenced by non-universal factors in the calculations,
such as the relaxation time, the mapping between 3d Ising model and the hot QCD systems, the
evolution trajectory, etc. Recently, it was realized that, within the framework of KZM, one could
construct universal variables that are independent from the non-universal factors [17]. In this sec-
tion, we will first explain the Kibble-Zurek scaling near the critical point, and then explore it with
the Langevin dynamics of model A.

As the hot QCD system evolves near critical point, the effective relaxation time dramatically
increases with the large enhancement of the correlation length: τeff = τrel(ξeq/ξmin)

3 . Meanwhile,
the quench time τquench that measures the variation rate of the thermodynamic potential decreases
with the fast expansion of the system. For the trajectory of type A, the quench time is mainly
determined by the changing rate of the correlation length: τ

ξ

quench = |ξeq/(∂τξeq)|. For the evolution
along trajectories of type B, the changing rate of parameter θ is much larger than the one of the
correlation length, which becomes the dominant factor to influence the variation of the potential.
Correspondingly, the quench time is defined as: τθ

quench = |θ/∂τθ |. As illustrated in Fig. 1 (middle

1For the dynamical critical exponent, we use the one from model H with z = 3.
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Figure 3: (Color online) Similar to Fig. 2, but for the case of non-equilibrium evolutions along different
trajectories of type B

and right), there exists a specific point τ∗ where τeff is equal to τquench. As the system evolves to
that point, the order parameter field σ is incapable of following the change of the thermodynamic
potential due to the large relaxation time, which becomes "frozen". The relaxation time at τ∗ that
characterizes the typical emergent time scale is denoted as τeff(τ

∗) ≡ τKZ. The correlation length
ξeq at τ∗ that characterizes typical length scale of the correlated domain is denoted as ξeq(τ

∗)≡ lKZ.
Similarly, the parameter θ at τ∗ is denoted as: θ(τ∗)≡ θKZ. With lKZ, τKZ and θKZ, one can propose
the following scaling form for the cumulants of the sigma field [17]:

Cn(τ− τc))∼ l
−1+5(n−1)

2
KZ f̄n((τ− τc)/τKZ,θKZ), n = 1,2,3,4, · · · . (3.1)

where τc is the time when the hot QCD system evolves to the crossover phase transition line. The
exponent of lKZ is consistent with the n−order cumulants in equilibrium which is also proportional
to the [−1+5(n−1)]/2 powers of the correlation length ξeq [6]. After rescaling Cn and τ−τc with

the Kibble-Zurek scale l
−1+5(n−1)

2
KZ and τKZ, one could obtain the universal function f̄n.

The left panel of Fig. 2 presents the non-equilibrium cumulants of the sigma field that evolve
along the trajectory of type A with differen relaxation time τrel/τc = 0.02, 0.06, 0.1 and 0.14. It
shows that the relaxation time strongly influences the cumulants of the evolving sigma field. From
Eq. (3.1), one could obtain f̄n as a function of the rescaled time (τ−τc)/τKZ for each cumulant curve
in Fig. 2 (left). The right panel in Fig. 2 shows that, with such rescaling procedure, these different
Cn (n = 1...4) curves converge into the universal curves f̄n near the critical point. Note that, for
trajectory of type A, the quenching time is determined by the changing rate of ξeq. Therefore, one
can construct the universal function from the respective scales of lKZ and τKZ.

Fig. 3 shows the time evolution of the non-equilibrium cumulants along these different trajec-
tories of type B, which shows a strong dependence on the evolution trajectory. For these trajecto-
ries, the quenching time is determined by the changing rate of θ . Therefore, the construction of
the universal function f̄n((τ − τc)/τKZ,θKZ) involves three different scales, lKZ,τKZ and θKZ. Here,
we tune the free parameter τrel/τc to ensure that θKZ is the same for different trajectories. From E-
q.(3.1), one could obtain the universal scaling function f̄n. As shown in Fig. 3, after such rescaling
procedure, these different cumulants curves becomes universal ones in the vicinity of the crossover
line, which are independent from the evolving trajectories.
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4. Summary

The non-equilibrium critical fluctuations of the hot QCD system in the model calculations are
always influenced by many non-universal factors, such as the relaxation time, the mapping between
3d Ising model and the hot QCD system, the evolution trajectory, etc. Within the framework of
Kibble-Zurek Mechanism, we studied the universal behavior of the critical fluctuations using the
Langevin dynamics of model A. We mainly focused on two cases: 1) systems evolving along one
trajectory with fixed chemical potential (type A), but with different relaxation times, 2) systems
evolving along different trajectories with different approximate-equal correlation length near the
phase transition (type B). After locating the typical scales of time, length and angle τKZ, lKZ, and
θKZ, we constructed the related universal scaling function f̄n((τ−τc)/τKZ,θKZ) for the cumulants of
the sigma field. The related numerical simulations showed that such universal functions have been
successfully constructed for both cases, which are either independent on the relaxation times or the
evolution trajectories. In the near future, it is worthwhile to explore the construction of possible
universal observables near the QCD critical point for the RHIC BES program and to investigate
whether the realistic QGP fireball evolution and particle emissions could preserve such universal
behavior.
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