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1. Introduction

To analyse the quark gluon plasma that is created in heavy ion collision experiments at the LHC
or RHIC a theoretical understanding of the deconfinement region of QCD is needed. Lattice QCD
is a good tool to study QCD since this area can not be accessed perturbatively. At the moment direct
simulations that are continuum extrapolated and at physical quark masses are restricted to vanishing
or imaginary chemical potential. On the other hand the collisions especially at RHIC take place
away from the axis of zero µB [1]. Therefore information in that region are needed. Even though
it is not possible to do direct lattice simulations, it is possible to extrapolate observables from zero
or imaginary chemical potential. This method is called analytical continuation. The analytical
continuation from imaginary potential is by now well established (see for example [2, 3, 4, 5]).

2. The crossover temperature

A first step for the investigation of the phase digram is the determination of the transition
temperature. Since at µB = 0 the transition is a crossover [6] it also has to be a crossover for small
values of the chemical potential. Our results for this regime that were presented in [7, 8] are shown
in figure 1. The blue shade in the background illustrates that the crossover temperature can vary
with different observables. The presented curve was gained from the chiral condensate, defined as
given in [6]

〈ψ̄ψ〉= T
V

∂ lnZ
∂mq

. (2.1)

The renormalization was done by subtraction of lattice simulations as zero temperature:

〈ψ̄ψ〉r =−(〈ψ̄ψ〉(T,β )−〈ψ̄ψ〉(0,β )) ml

m4
π

(2.2)

The continuum limes was calculated from simulations on lattices with sizes 403× 10, 483× 12
and 643× 16. To match the conditions in heavy ion experiments our simulations are done at the
strangeness neutral point 〈nS〉= 0.

3. The equation of states

The next step in our investigation of the phase diagram is the determination of the equation of
state [9, 10]. In [11] the coefficients c2 to c6 were presented on Nt = 6 and Nt = 8 lattices. c2 was
calculated in the continuum in [12]. The most recent results on the equation of state obtained from
the Taylor expansion method were presented in [13].

An important contribution for the systematic error of our results comes from the fit in the µ̂B

direction, that is used to determine the Taylor coefficients of the pressure at µB =, as well as for the
extrapolation to real chemical potentials. We use the ansatz for the pressure

P
T 4 = p0 + p2

µ2
B

T 2 + p4
µ4

B

T 4 + p6
µ6

B
T 6 + . . . . (3.1)

However we have no information about the higher order terms p8, . . . . One option to account for
this terms is the use of different fit functions as done in our original analysis in [9, 10]. However to
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Figure 1: The extrapolation to finite chemical potential.

avoid a bias when choosing the functions we use a slightly different approach. We implement the
condition

∂ 8

∂ µ̂8
B

(
P
T 4

)
.

∂ 4

∂ µ̂4
B

(
P
T 4

)
(3.2)

by using a fit function of the form

f (µ̂B) = a+bµ̂
2
B + cµ̂

4
B +

bε

840
µ̂

6
B. (3.3)

with
µ̂i =

µi

T
. (3.4)

In this ansatz a ∝ p2, b ∝ p4 . . . . We chose 500 different values for ε in equation 3.3 from a normal
distribution and weight of the result is determined by the AIC information criteria [14]. The results
for the coefficients p2, p4 and p6 can be seen in figure 2.

Besides the Taylor coefficients we compute the equation of state. In heavy ion collisions if one
neglects dissipative effects, the quark gluon plasma created in the collision expands with a fixed
baryon number and without generation of entropy. Therefore the ratio S

NB
is constant. The medium

cools down along isentropic trajectories (where S
NB

is constant) in the T -µB-plane. Therefore we
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compute the equation of state along this trajectories. In figure 3 we show six trajectories that were
matched to the beem energies of RHIC determined in [15]. The solid lines are predictions of the
HRG model that we use to continue our trajectories at lower temperatures. As it can be seen from
the errors the trajectory with S

NB
= 30 corresponding to a beam energy of 14.5 GeV is at the end of

how far we can extrapolate in µB. As the error there is relatively large we compute the equation of
state along the trajectories with S

NB
= 51 and S

NB
= 420. Figure 4 shows the pressure and the trace

anomaly along the isentropic trajectories.
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Figure 2: The Taylor coefficients of the pressure obtained from a fit function of the form given in equa-
tion (3.3).
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Figure 3: The trajectories of constant S
NB

matched to the beam energies of RHIC as determined in [15].

4. Fluctuations

Fluctuations can be measured on the particle distributions in heavy ion collisions (see for
example [16]). A comparison between the experimental measurements and the theoretical calcu-
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Figure 4: The pressure and the trance anomaly along trajectories of constant S
N .

lations allows then for the determination of the order of the transition. A similar analysis form
simulations at imaginary chemical potential was done in [5], that we will improve upon by pre-
senting calculations to higher orders in µB. Results on the same observables were also studied by
the Taylor expansion method and published in [13]. In contrast to our analysis for the transition
temperature and the equation of state (section 2 and 3) the simulations for the fluctuations are done
on lattice of sice 483×12 with µS = µQ = 0. We present our analysis in three steps. We start with
χB

2 , χB
4 , χB

6 and χB
8 where we use the notation

χ
B,Q,S
i, j,k =

∂ i+ j+k(p/T 4)

(∂ µ̂B)i(∂ µ̂Q) j(∂ µ̂S)k . (4.1)

First we do the analysis for each temperature separately (section 4.1). Afterwards we use the
information that the results are expected to lie on a smooth curve, by introducing a spline through
the results (section 4.2). Finally we use the same techniques introduced for χB

i to calculate three
different ratios of the cumulants of the baryon distribution at 〈nS〉= 0 and 〈nQ〉= 0.4〈nB〉 in terms
of the χ

B,Q,S
i, j,k (section 4.3).

4.1 Single Temperature

First we analyse the data for a single temperature. For each µB 6= 0 we measure χB
1 , χB

2 , χB
3

and χB
4 , while for µB = 0 only χB

2 and χB
4 are measured since χB

1 and χB
3 are odd functions in µB

and therefore equal to zero.
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We make the ansatz for the partition sum:

χ
B
0 µ̂B = c0 + c2µ̂

2
B + c4µ̂

4
B + c6µ̂

6
B + c8µ̂

8
B. (4.2)

From this we can calculate the derivatives that we can measure on the lattice:

χ
B
1 µ̂B = 2c2µ̂B +4c4µ̂

3
B +6c6µ̂

5
B +8c8µ̂

7
B (4.3)

χ
B
2 µ̂B = 2c2 +12c4µ̂

2
B +30c6µ̂

4
B +56c8µ̂

6
B (4.4)

χ
B
3 µ̂B = 24c4µ̂B +120c6µ̂

3
B +336c8µ̂

5
B (4.5)

χ
B
4 µ̂B = 24c4 +360c6µ̂

2
B +1680c8µ̂

4
B. (4.6)

In a first step we determine the coefficients c2, c4 and c6 from a correlated fit to the data, while c8

is set to zero. The results are shown as blue points in figure 5. This ansatz does not account for the
systematic uncertainties that arise from higher order contributions in µB

T . To obtain a first estimate
for this uncertainties we include c8 in our fit and check for changes in c2 to c6, which are shown in
figure 6. While the results for χB

2 and χB
4 remain mostly unchanged, the changes for χB

6 after the
inclusion of χB

8 are significant. This stresses that a careful investigation of the influences of higher
orders are necessary.
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Figure 5: Preliminary results for χB
2 , χB

4 and χB
6

4.2 Spline Fit

We expect our results for χB
i (T ) to lie on a smooth curve. To implement this information we

fit the results with a spline. The fit parameters c2 , c4, c6 and c8 now become functions of T them-
selves. For the spline fitting procedure the choice of note points is crucial. To reduce the bias that is
implemented with a specific choice we have three different modes. The first and possibley simplest
method is just to have all note points evenly spaced. However at higher temperatures we expect
slower changes in our curves. Also for µB = 0 our simulation points at high temperatures are more
sparse. Therefore as a second choice we double the distance between the last three note points. As
a last possibility we chose our note points randomly, with a uniform distribution. However to avoid
the case of two note points that are very close to each other we only except a configuration if the
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Figure 6: Preliminary results for χB
2 , χB

4 and χB
6 when χB

8 is included in the fit.

distance between two neighbouring note points is at least 10 MeV. An illustration of this different
node point configurations is shown in figure 7. Also the number of note points is varied between
six and eight. The results are shown by the blue band in figure 5 and figure 6.

Figure 7: Different techniques for choosing the spline node points.

4.3 Cumulants

For a comparison with heavy ion collision experiments the cumulants of the net baryon distri-
bution are a useful tool. The first four cumulants are the mean MB, the variance σ2

B, the skewness
SB and the kurtosis κB. By forming appropriate ratios, we can cancel out explicit volume factors.
However the measured distributions themselves may still depend on the volume, which one should
take into account, when comparing to experiments.

Heavy ion collisions with lead or gold take place with at µB > 0, 〈nS〉= 0 and 〈nQ〉= 0.4〈nB〉.
Since our simulations are done at µS = µQ = 0 and µB 6= 0 we have to do some calculations to arrive
at the same observables that are measured in experiments (see for example [16]). We investigate
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three different rations of cumulants and write each as a Taylor expansion:

MB

σ2
B
=

χB
1 (T, µ̂B)

χB
2 (T, µ̂B)

= µ̂BrB,1
12 + µ̂

3
BrB,3

12 + . . . (4.7)

SBσ3
B

MB
=

χB
3 (T, µ̂B)

χB
1 (T, µ̂B)

= rB,0
31 + µ̂

2
BrB,2

31 + . . . (4.8)

κBσ
2
B =

χB
4 (T, µ̂B)

χB
2 (T, µ̂B)

= rB,0
42 + µ̂

2
BrB,2

42 + . . . (4.9)

The µB dependence of the χB
i (T, µ̂B) can be again written in terms of the Taylor expansion:

χ
BQS
i, j,k (µ̂B) = χ

BQS
i, j,k (0)+ µ̂B

[
χ

BQS
i+1, j,k(0)+q1χ

BQS
i, j+1,k(0)+ s1χ

BQS
i, j,k+1(0)

]
(4.10)

+
1
2

µ̂
2
B

[
χ

BQS
i+2, j,k(0)+ s2

1χ
BQS
i, j+2,k(0)+q2

1χ
BQS
i, j,k+2(0) (4.11)

+2q1s1χ
BQS
i, j+1,k+1(0)+2s1χ

BQS
i+1, j+1,k(0)+2q1χ

BQS
i+1, j,k+1(0)

]
+ . . . (4.12)

(4.13)

with

q j =
1
j!

d j µ̂Q

(dµ̂B) j (0) (4.14)

s j =
1
j!

d j µ̂S

(dµ̂B) j (0) (4.15)

We can now use the constrains 〈nS〉= 0 and 〈nQ〉= 0.4〈nB〉 which can be rewritten as

χ
Q
1 = 0.4χ

B
1 , χ

S
1 = 0 (4.16)

to determine rB,k
i j coefficients form the equations (4.7), (4.8) and (4.9). However we now need to

know not only the behaviour of the χB
i but also of derivatives with respect to µS and µQ. For now

our simulations are restricted to ensembles with finite µB. Therefore the µS and µQ derivatives have
to be calculated directly and without the support from the fit that we used in the µB direction. We
calculate various χ

B,Q,S
i, j,k with the appropriate values of j and k and all possible values for i so that

i+ j+ k ≤ 4. (4.17)

For each group of fluctuations with the same j and k we perform a fit analogous to the procedure
described in the sections 4.1 and 4.2. This is sufficient to determine the first to rB,k

i j coefficients for
all three observables. The results are shown in figure 8, 9 and 10. For higher order coefficients,
higher order derivatives in µS and µQ are needed. The direct measurements have a rapidly increas-
ing error with each derivative and very large statistics would be needed to improve our calculations
in that manner. Another possibility would be add ensembles with finite µS and µQ and do a similar
fit as for the µB direction. This approach has been used in [5].
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4.4 Error Analysis

For a reliable comparison between experimental measurements and theoretical calculations
the error estimation is an important ingredient. As we present work in progress results the error
estimation process is not yet finished. Our statistical error is estimated by the Jack-Knife-Method.
For our systematic error there are several sources, which we have not yet completely covered. We
determine our systematic error by the histogram method described in [17], where each analysis is
weighted with the akaike information criteria. We include the influence of the number of points
in the µB direction, by either including or ignoring the data from our highest value for µB. We
also try to estimate the influence of the spline node points as described in section 4.2. However
a very important source for our systematic error is the influence of the higher order contributions
in µB that are not included in our fit ansatz. A rough idea of this influences can be gained from
the comparison of the results shown in figure 5 and figure 6, where one order more was included.
However a more detailed analysis is necessary to obtain a reliable error on our result.
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