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In this conference proceeding, I discuss in detail the deconfinement to quark matter that takes
place at large densities and/or temperatures. The first-order phase transition that is assumed to
appear beyond a critical point gives rise to mixtures of phases when more than one globally
conserved quantity (such as charge fraction) is imposed. The modifications caused by these mix-
tures of phases in the QCD phase diagram can have consequences on signals of the existence of
quark matter expected to be created in heavy-ion collisions, as well as supernova explosions and
neutron-star mergers.
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At low and zero chemical potentials, it has been known for quite some time that the quark
deconfinement in isospin-symmetric matter is a smooth crossover [1]. At larger chemical poten-
tials, on the other hand, there are only hints that there is a critical point, beyond which quark
deconfinement takes place in the form of a first-order phase transition. The relevant data include
flow measurements near mid-rapidity recorded by the STAR detector at the Relativistic Heavy Ion
Collider (RHIC) [2] and measurements of the cumulants (up to fourth order) of event-by-event
multiplicity distributions from the first phase of the beam energy scan program at RHIC [3].

To study the QCD phase diagram and the characteristics of the chiral symmetry restoration and
quark deconfinement phase transitions, I employ an effective relativistic model, the Chiral Mean
Field (CMF) model [4, 5, 6]. It is an extended non-linear realization of the SU(3) sigma model,
which uses pseudo-scalar mesons as parameters of the chiral transformation [7]. It includes the
baryon octet, leptons, and quarks as degrees of freedom and was fitted to reproduce nuclear, lattice
QCD, heavy-ion collision, and astrophysical constraints. In this model, the degrees of freedom
change from hadrons to quarks through a contribution of the field Φ (named in analogy to the
Polyakov loop) to their effective masses, which are generated by the interaction with the medium:

M∗
i = giσ σ +giδ τ3δ +giζ ζ +M0i , (1)

where M0i are small explicit mass terms. The values for the model couplings, together with the
bare mass values and Φ contributions can be found in Ref. [5].

A potential for Φ, which acts as an order parameter for deconfinement,

U = (a0T 4 +a1µ
4 +a2T 2

µ
2)Φ2 +a3T 4

0 log(1−6Φ
2 +8Φ

3 −3Φ
4) , (2)

is present at all chemical potentials and temperatures and generates the first-order phase transition
(quark deconfinement) coexistence lines seen in Fig. 1. The circles mark critical points, beyond
which the deconfinement and chiral transitions become smooth crossovers, and individual phases
cannot be further identified. The shaded regions in the figure exemplify some of the different
regimes that can be described within the CMF model (that can be applied to the entire µB − T
plane) and how these different regimes, involving laboratory experiments and astrophysical ob-
jects/events, can overlap. The lower black line shows that for isospin-symmetric matter, the nuclear
liquid-gas phase transition is reproduced (within the CMF model) at low chemical potentials and
temperatures. For large chemical potentials and temperatures, the black and pink lines stand for the
deconfinement lines for isospin-symmetric matter with zero net strangeness and charge neutral and
chemically equilibrated matter, respectively (again calculated within the CMF model). It is impor-
tant to point out that the deconfinement critical points were obtained under the assumption that, for
finite temperature, there are quarks in the hadronic phase and hadrons in the quark phase and each
phase is defined by the value of the order parameter for deconfinement Φ. Its values become more
similar across the phase transition as the temperature increases and, finally coincide at the critical
point.

Phase transitions in systems with macroscopic phases that possess more than one globally con-
served charge are of non-congruent type (see Refs. [8, 9, 10] and references therein for details). In
these kind of phase transitions, the local concentration of the charge associated with the conserved
quantity varies in the two coexisting macroscopic phases and the associated chemical potential
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Figure 1: (Color online) QCD phase diagram for isospin-symmetric matter (with zero net strangeness) and
neutron-star matter (charge neutral and in chemical equilibrium) calculated using the CMF model.

is the same in both phases. Here, two examples are shown concerning the deconfinement phase
transition to quark matter:

• with fixed baryon number and charge fraction Yc = 0.5, Yc = 0.3 (with zero net strangeness)

• with fixed baryon number and zero charge (in chemical equilibrium)

The first case in which baryon number and fixed (but not zero) charge fraction are conserved
is going to be referred to as HI, as this kind of matter is created in heavy-ion collisions. Charge
fraction is defined as the total baryonic charge over total baryon number

Yq =
Q
B
=

∑i Qeini

∑i QBini
, (3)

where Qei is the electric charge, QBi is the baryon number, and ni the number density of each baryon
or quark. Note that ∑QBini is not the same as the baryon number density nB, as the latter comes
from the derivative of the pressure with respect to the baryon chemical potential and, therefore,
also contains a contribution from the potential U for Φ (when quarks are present).

Although the charge fraction in Au-Au or Pb-Pb collisions is ∼ 0.4, for very energetic colli-
sions this does not matter, as matter created behind the collision in the fireball has no net baryon
number density. For lower energy collisions, on the other hand, baryonic matter experiences "stop-
ping" and the charge fraction involved is important. In this work, two charge fractions are studied
and compared, Yc = 0.5 and Yc = 0.3.
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Figure 2: (Color online) Phase diagram for isospin-symmetric (HIS) matter with charge fraction Yq = 0.5
showing temperature vs. baryon chemical potential. DC stands for deconfinement curve and CC for con-
finement curve.

Since strangeness is set to zero when describing matter generated in heavy-ion collisions,
charge fraction Yc = 0.5 is a synonym to isospin-symmetric matter Yiso = 0. This can be easily
verified starting from the relation between isospin projection, electric charge, baryon number, and
strangeness quantum numbers of each baryon or quark

Ii = Qei −
1
2

QBi +
1
2

Si , (4)

which, summed over all baryons and quarks and divided by the baryons number, gives

I
B
=

Qe

B
− 1

2
B
B
+

1
2

S
B
, (5)

Yiso = Yq −
1
2
+

1
2

Ys , (6)

For the half-charged matter Yc = 0.5 (isospin-symmetric case HIS), the chemical potential
associated with the conserved quantity charge (or isospin), µq, is necessarily zero so the proton
and neutron have the same chemical potential. This results in an azeotropic behavior [11] and
a necessarily congruent phase transition. Figure 2 shows the respective phase diagram using the
CMF model. In this case, there is no extended phase coexistence region and the deconfinement
and confinement curves coincide. Note that, if temperature were plotted against pressure instead,
the slope of the coexistence line would still be negative, which is the opposite behavior from the
liquid-gas type of phase transition. For details concerning this issue, see Refs. [12, 9, 13].

Fig. 3 illustrates the non-congruent features that take place in the case of a fixed charge fraction
Yq = 0.3 (isospin-asymmetric case HIAS). The phase coexistence occupies an extended region of

3



P
o
S
(
C
P
O
D
2
0
1
7
)
0
3
3

PT’s in Dense and Hot Matter Veronica Dexheimer

0

50

100

150

200

T
[M

e
V

]

0 200 400 600 800 1000 1200 1400

[MeV]

HIAS DC

HIAS CC

HIAS_fc DC & CC

µ̃

Figure 3: (Color online) Phase diagram for isospin-asymmetric (HIAS) matter with charge fraction Yq = 0.3
showing temperature vs. modified baryon chemical potential. DC stands for deconfinement curve and CC
for confinement curve. fc illustrates the non-physical forced congruent case.

the diagram going from the confinement curve until the deconfinement curve. Inside, the charged
chemical potential (which is the same in each phase) changes continuously, as has already been
discussed in Refs. [14, 15, 16]. Nevertheless, the area within this region becomes vanishingly small
for large temperatures. Such an effect is not observed for the nuclear liquid-gas phase transition
region that extends to much lower temperatures [17, 11]. In Fig. 3, there is also a curve calculated
for a forced congruent phase transition, in which the charge fraction is forced to be the same in
both phases. In this case, shown only for comparison, the charge fractions are conserved locally in
each phase and each phase has a distinct charged chemical potential. Finally, note that the x-axis in
Fig. 3 is µ̃B, which is the chemical potential that is the same in both phases (µB is not). It is defined
as µ̃B = µB +Yqµq (see Ref. [18, 9, 19] for details).

In neutron stars, the conserved quantities are baryon number and zero charge. In addition,
matter is in beta equilibrium and contains net strangeness. In the astrophysics community, non-
congruent phase transitions are referred to as Gibbs constructions [20] and congruent phase tran-
sitions (physically forced by a possibly large surface tension between phases) are called Maxwell
constructions. Figure 4 illustrates those two scenarios together with an example trajectory for a cold
neutron star at zero temperature. The most relevant non-congruent feature that can take place in
neutron stars is the appearance of a coexistence of charged microfragments of hadrons and quarks
that extends over a large portion of the star’s radius (see for example Ref. [5]). Note that in Fig. 1
the neutron-star matter phase transition is congruent because of the assumption of local charge
neutrality.

Summarizing, in order to have a complete description of dense and hot matter, different de-
grees of freedom have to be considered. These include necessarily nucleons, hyperons, and par-
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Figure 4: (Color online) Phase diagram for neutron-star (NS) matter showing temperature vs. baryon chem-
ical potential assuming local (NSLCN) and global charge neutrality (NSGCN). DC stands for deconfinement
curve and CC for confinement curve.

ticularly when describing hot matter, quarks. Note that, as shown in Fig. 1, hot matter not only
applies to matter created in heavy-ion collisions, but also matter created inside the core of super-
nova explosions and generated during different stages of neutron star mergers. The CMF has been
calibrated and is suitable to describe the entire QCD phase diagram, including the description of
critical points. It is in agreement with zero temperature nuclear physics, astrophysics, heavy-ion
collisions, and lattice QCD. The model is consistent with perturbative QCD at zero temperature
(Fig. 1 of Ref. [21]) and finite temperature [22].

In this work, the CMF model was used to study the thermodynamics of the QCD phase dia-
gram and draw comparisons between possible mixtures of phases generated by assuming different
constraints. Although these results are quantitatively model dependent, the qualitative statements
are not. Therefore, the appearance of mixtures of phases should be taken in to account when look-
ing for signals for deconfinement in the lab and in the sky.

The author would like to thank Matthias Hempel and Igor Iosilevskiy for helpful discussions.
The author acknowledges the support from NewCompStar COST Action MP1304.
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