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1. Introduction

QCD thermodynamics at net zero baryon density below the chiral crossover can be described

by hadron resonance gas (HRG) model. Equation of State and second order fluctuations of con-

served charges obtained in lattice QCD agree well with HRG predictions (see e.g. Refs. [1, 2]). The

HRG model can be justified using the relativistic virial expansion. In most cases after summation

over spin and isospin channels only resonance contributions survive in the second virial coefficient,

and thus the interacting gas of hadrons can be approximated as the gas of non-interacting hadrons

and hadronic resonances [3]. However, not all hadronic interactions can be treated this way. One

example is the nucleon-nucleon interactions, which are non-resonant.

For higher order fluctuations of conserved charges the agreement between the lattice and HRG

is no longer good for temperatures close to the chiral transition. It has been argued that this is

due to repulsive baryon-baryon interactions [4, 5, 6]. As the baryon density increases the role of

repulsive interactions will increase. Therefore in order to extend HRG to non-zero baryon density

repulsive interactions have to be included in the description. In this contribution we will do this

using the virial expansion and the mean field approach. In the next section we will review the virial

expansion for the nucleon gas and the repulsive mean-field. In section 3 we will study the equation

of state at non-zero baryon density within the repulsive mean field approach. Finally in section 4

our conclusions will be presented.
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Figure 1: The pressure normalized by the ideal HRG pressure for µS = 0 (left) and nS = 0 (right) as function

of the temperature for different values of µB in MeV

2. Nucleon gas with repulsive mean-field and virial expansion

Using the virial expansion the pressure of the nucleon gas can be written as [7]

p(T,µ) = p0(T )cosh(β µ)+2b2(T )T cosh(2β µ), β = 1/T. (2.1)

Here

p0(T ) =
4M2T 2

π2
K2(βM) (2.2)
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Figure 2: The energy density normalized by the ideal HRG energy density for µS = 0 (left) and nS = 0

(right) for different values of µB in MeV

is the pressure of free nucleon gas at zero chemical potential and the second virial coefficient can

be written as

b2(T ) =
2T

π3

∫ ∞

0
dE(

ME

2
+M2)K2

(

2β

√

ME

2
+M2

)

1

4i
Tr

[

S† dS

dE
−

dS†

dE
S

]

, (2.3)

with S being the scattering S-matrix and E is the kinetic energy in the lab frame. Furthermore, M

is the nucleon mass and K2(x) is the Bessel function of second kind. Using the parameterization of

the S-matrix in terms of the phase shifts and their numerical values the virial coefficient b2(T ) can

be calculated, and it turns out that b2(T ) is negative [7]. For the comparison with the mean-field

approach discussed below it is convenient to write the above expression for the pressure in the

following form

p(T,µ) = p0(T )(cosh(β µ)+ b̄2(T )K2(βM)cosh(2β µ)), (2.4)

with

b̄2(T ) =
2T b2(T )

p0(T )K2(βM)
. (2.5)

being the reduced virial coefficient.

In the mean field approach the pressure can be written as [7].

p(T,µ) = T (nb + n̄b)+
K

2
(n2

b + n̄2
b), (2.6)

where nb and n̄b are the densities of nucleon and anti-nucleons, respectively, defined by the follow-

ing self-consistent relations:

nb = 4

∫

d3 p

(2π)3
e−β (Ep−µ+U), n̄b = 4

∫

d3 p

(2π)3
e−β (Ep+µ+Ū), E2

p = p2 +M2. (2.7)

Here U = Knb and Ū = Kn̄b are the mean-field potentials for nucleons and anti-nucleons. The

chemical potential corresponding to the net nucleon density is denoted by µ . The above form
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of the pressure ensures thermodynamic consistency, i.e. ∂ p/∂ µ = nb − n̄b. Since we are mostly

interested in the region of not too high baryon densities one can expand the above expressions in

βU = βKnb and Ū = Kn̄b and keep only the leading order terms in K. Then we get

p(T,µ) = T (n0
b + n̄0

b)−
K

2

(

(

n0
b

)2
+
(

n̄0
b

)2
)

, (2.8)

with n0
b (n̄0

b) being the free nucleon(anti-nucleon) densities. The above equation can also be written

as

p(T,µ) =
4T 2M2

π2
K2(βM)cosh(β µ)−4K

T 2M4

π4
K2

2 (βM)cosh(2β µ). (2.9)

Now we see that the virial expansion and the expanded mean-field approach give very similar

results. From the comparison of these two results one can determine the value of K in a limited

temperature range. Since b̄2(T ) turns out to be negative, K > 0, i.e. the mean-field is repulsive. In

what follows we will use the value K = 450 MeV/fm3, which is consistent with b̄2(T ) at the highest

temperatures [7]. It is straightforward to generalize the mean-field approach described above to a

multicomponent system, e.g. HRG if one assumes that the repulsive mean-field is the same for

all baryons [7]. Within this approach one can estimate the difference between the second order

fluctuations and correlations of conserved charges and the fourth and sixth order fluctuations and

correlations. The model can explain these differences reasonably well [7] if one assumes that only

ground state octet and decuplet baryons are affected by the repulsive interactions.

3. Equation of state and the freeze-out temperature

Using extension of the mean-field approach to the multicomponent hadron gas as discussed

above it is possible to calculate the equation of state at non-zero baryon chemical potential, µB and

strangeness chemical potential, µS. We calculate the pressure using HRG with repulsive mean-field

at non-zero baryon and strangeness chemical potentials. We use all the strange and non-strange

states from particle data group (PDG) summary tables in HRG calculations. As in Ref. [7] we only

include the repulsive mean-field for the ground state octet and decuplet baryons. We will consider

temperatures up to 170 MeV and moderate values of the baryon chemical potential µB ≤ 400 MeV.

For these values the meson pressure is larger than the baryon pressure. Therefore, we will use the

expanded version of the mean field approach, as discussed above. For µB > 400 MeV the matter

become baryon dominated. For non-zero µB the net strangeness nS is also non-zero. By adjusting

the strange chemical potential we get nS = 0. We calculate the pressure for µS = 0 as well as for

nS = 0.

Our results are shown in Fig. 1 in terms of the ratio of the pressure to the pressure of free

HRG, i.e. HRG with no repulsive interactions. For µB = 0 this ratio is smaller than one by a

few percent. As we increase the baryon chemical potential this ratio is decreasing, i.e. the effects

of repulsive interactions become more important and increase with increasing temperature. For

baryon chemical potential of 400 MeV the effect of repulsive interactions are about 14− 20% at

the highest temperature. The effect of repulsive interactions is somewhat smaller for the case of

net zero strangeness.

In Fig. 2 we show our results for the energy density as the functions of the temperature for

µS = 0 and nS = 0. The energy density is normalized by the free HRG result. As in the case of
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Figure 3: The freeze-out temperature (left) and the net baryon density (right) corresponding to energy

density 330 MeV/fm3 as function of µB. The results are shown for the effect of the repulsive mean-field

included or excluded and for µS = 0 and nS = 0.

the pressure the effect of the repulsive interactions is few percent for µB = 0 and increases with

increasing the baryon chemical potential. However, the effect of the repulsive interactions is larger

than in the case of the pressure. At the highest temperature the effect of repulsive interactions are

as large as 30%. Again the effect of the repulsive interactions is smaller for the nS = 0 case than

for the µS = 0 case.
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Figure 4: The freeze-out temperature obtained in HRG with repulsive mean-field (blue line) compared to

lattice QCD results [8] shown as a band. The width of the band correspond to the uncertainty of the lattice

result.

It is reasonable to assume that the freeze-out in heavy ion collisions happens at fixed energy

or entropy density as the collision energy is varied. Lower collision energies typically correspond

to lower smaller µB. Therefore, one can define a line of constant energy density that character-

izes the freeze-out condition [8]. We assume that freeze-out corresponds to the energy density of

330 MeV/fm
3
. The freeze-out temperature corresponding to this energy density is shown in Fig.

3 as function of the baryon chemical potential. Here we consider the case of µS = 0 and the case

of nS = 0. The latter being more relevant for the heavy ion collisions. As one can see from the
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Fig. 3 the later corresponds to larger freeze-out temperature. The repulsive mean-field increases

the freeze-out temperature a bit. This effect is larger for larger values of µB reaching about 3 MeV

at the highest µB. We also calculated the baryon density corresponding to the freeze-out condition.

The results are shown in Fig. 3 (right). The repulsive mean field decreases the net baryon density

of the freeze-out by about 15% for µS = 0 and by about 10% for nS = 0. Finally we compare

the freeze-out temperature calculated in our repulsive mean field model with the results of recent

lattice QCD calculations in Fig. 4. The lattice results are shown as band. We see that the freeze-

out temperature obtained in our model agrees with the lattice given the uncertainties of the latter.

Therefore, the repulsive baryon interactions play an important role in the freeze-out in heavy ion

collisions.

4. Conclusion

In this contribution we considered the role of repulsive interactions in the hadron resonance

gas. We compared the virial expansion and the mean-field approach for the treatment of the repul-

sive interactions and showed that at relatively low densities the two approaches are similar. From

this comparison we could determine the size of the mean field. We have used the mean field ap-

proach to calculate the equation of state for T ≤ 170 MeV and µB ≤ 400 MeV. We have found that

for the baryon chemical potential µB = 300−400 MeV the effect of the effects of the repulsive in-

teractions are quite significant. To consider thermodynamics at larger µB it will be necessary to go

beyond the expanded version of the mean-field approach considered here. We also plan to extend

the mean-field approach for excited baryons. Finally, the effect of hadrons that are predicted by

quark models and lattice QCD on the thermodynamic quantities should also be considered.
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