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We develop a set of kinetic equations for a correlator of thermal fluctuations which are equiva-
lent to nonlinear hydro-dynamics with noise. We first show that the kinetic response precisely
reproduces the one-loop renormalization of the shear viscosity for a static fluid previously dis-
cussed by Kovtun, Moore and Romatschke. We then use the hydro-kinetic equations to analyze
thermal fluctuations for a Bjorken expansion. The rapid Bjorken expansion of a medium drives
the hydrodynamic fluctuations out of equilibrium prescribed by the fluctuation-dissipation the-
orem. The steady state solution to the kinetic equations determine the coefficient of the first
fractional power of the gradient expansion (∝ 1/(τT )3/2 ), which was computed for the first time
for Bjorken expansion. Away from the conformal limit, such non-linear noise corrections also
induce a non-vanishing bulk viscosity. The formalism of hydro-kinetic equations can be applied
to more general background flows, non-conformal systems and coupled to existing viscous hydro-
dynamic codes to incorporate the physics of hydrodynamic fluctuations, which become dominant
near the critical point.
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1. Introduction

The Quark-Gluon Plasma (QGP) created in heavy ion collisions can be remarkably well de-
scribed by relativistic viscous hydrodynamics. The successful heavy-ion modelling requires study-
ing event-by-event fluctuations of the initial state and then propagating these fluctuations using
viscous hydrodynamic codes, which include second order terms in the gradient expansion [3, 4, 5,
6, 7]. However thermal fluctuations, which formally contribute at the intermediate order, are not
typically included in heavy ion simulations, with some notable exceptions [8, 9, 10, 11, 12, 13, 14].

Thermal fluctuations are always present in a dissipative system as dictated by the fluctuation
dissipation theorem. The same microscopic degrees of freedom responsible for energy loss are
exciting macroscopic-hydrodynamic fluctuations in the system. This results in a non-vanishing
two point correlation functions of hydrodynamic fields, e.g. for momentum density in thermal
equilibrium gi = T 0i [15, 16]

Ngg(t,k)≡ 〈gi(t,k)g j∗(t,k)〉= (e+ p)T δ
i j. (1.1)

In expanding system, the two point-correlation functions are no longer in equilibrium and one
needs to calculate the out-of-equilibrium evolution of noise correlators. Such statistical fluctua-
tions are potentially important for small systems like heavy ion collisions, where the number of
constituents are order of thousands to tens of thousands. Dominance of stochastic fluctuations is
also a prominent feature of the QCD critical point, which is the focus of the beam energy scan
search at RHIC [20]. Therefore understanding the effects of perturbative hydrodynamic fluctua-
tions in current heavy-ion simulations is an important step for studies of stochastic fluctuations
close to the critical point.

In this work we present the effective kinetic description of hydrodynamic fluctuations [1, 2].
First we determine the scale k∗ at which out-of-equilibrium hydrodynamic fluctuations dominate
and then we proceed to derive the effective hydro-kinetic equations for the two point correlators
of noise. We find the steady state solution of hydro-kinetic equations for the phenomenologi-
cally interesting case of Bjorken expansion and we compute the modification of the expectation
of the energy-momentum tensor caused by the non-linear noise contributions. Finally, we apply
this framework to non-conformal systems and we find the universal corrections to the QCD bulk
viscosity.

2. Separation of scales and hydro-kinetic equations

The effective kinetic description of hydrodynamic fluctuations is based on the separation of
scales of long wavelength hydrodynamic modes (which are never in thermal equilibrium and are
determined by initial conditions), and short (but still macroscopic) hydrodynamic modes, which
are damped and excited at the comparable rate to the background expansion.

In a dissipative system the modes with wavenumber k are damped and excited at the rate
proportional to viscosity ∼ ηk2. In Bjorken expanding system, the external driving is given by the
expansion rate ∂µuµ = 1/τ . These two rates are approximately equal at k ∼ k∗, where

k∗ ∼
1√
γητ
∼ 1

csτ
√

ε
. (2.1)
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Figure 1: The separation of long-wavelength hydrodynamic modes 1/(csτ), the dominant out-of-
equilibrium hydrodynamic modes k∗ ∼ 1/(csτ

√
ε) and the microscopic modes 1/lmfp ∼ 1/(csτε), where

lmfp is the mean free path in the system, 1/τ the Bjorken expansion rate and ε = lmfp/(csτ)� 1 is the
hydrodynamic gradient expansion parameter.

Here ε stands for the hydrodynamic expansion parameter, which is equal to the ratio between mi-
croscopic relaxation time (characterized by the mean free path lmfp) and the system expansion. The
hydrodynamic expansion is valid for ε = lmfp/(cτ)� 1, therefore k∗ is parametrically separated
from the long hydrodynamic modes and the microscopic scales as shown in Fig. 1. Wavenum-
bers much higher than the scale k� k∗ remain in thermal equilibrium, while the long wavelength
modes k� k∗ are phase space suppressed. Therefore k∗ represents the scale of the dominant out-
of-equilibrium hydrodynamic fluctuations.

The equation of motion in relativistic hydrodynamics with noise is given by the conservation
of the energy-momentum tensor

DµT µν = 0, (2.2)

and constitutive equations, which can be written as a sum T µν = T µν

ideal+T µν

visc.+Sµν of ideal, viscous
and a stochastic noise term Sµν with non-zero two-point expectation value 〈SµνSρσ 〉 [15, 16, 17].
Linearising hydrodynamic fluctuations around homogeneous boost invariant background

e = e0 +δe, ~g = 0+(e0 + p0)~v (2.3)

one can derive the Langevin type equation [1, 2]

DµδT µν = 0⇔−φ̇a(τ,~k) = iLabφb︸ ︷︷ ︸
ideal

+Dabφb︸ ︷︷ ︸
viscous

+ ξa︸︷︷︸
noise

+Pab(τ)φb︸ ︷︷ ︸
expansion

(2.4)

for an euclidean 4-vector of perturbations

φa(τ,~k)≡ (csδe,~g). (2.5)

Fluctuations φa can be decomposed into four components in terms of eigenvectors (eA)a of the ideal
evolution operator Lab. Those correspond to the two sound modes φ+ and φ−, and two transverse
diffusive modes φT1 and φT2 with corresponding eigenvalues λ± = ±csk and λT1 = λT2 = 0. Then
we can write the governing equations for the two point correlation function of modes φA ≡ φa (eA)a
in eigenvector basis with A =+,−,T1,T2. We define the correlator NAB as

〈φA(t,~k)φB(t,−~k′)〉 ≡ NAB(t,~k)(2π)3
δ (~k−~k′). (2.6)
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and the resulting equations for NAB from Eq. 2.4 (for a conformal fluid) are

∂τN±± =

equilibration︷ ︸︸ ︷
−4

3
γηK2

[
N±±−

T (e0 + p0)

τ

]
−

expansion︷ ︸︸ ︷
1
τ

(
2+ c2

s + cos2
θK
)

N±±, (2.7)

∂τNT1T1 =−2γηK2
[

NT1T1−
T (e0 + p0)

τ

]
− 2

τ
NT1T1 , (2.8)

∂τNT2T2 =−2γηK2
[

NT2T2−
T (e0 + p0)

τ

]
− 2

τ

(
1+ sin2

θK
)

NT2T2 . (2.9)

where γη = η/(e0 + p0) and we use the wavenumber vector ~K ≡ (kx,ky,kη/τ) in spherical coor-
dinates K̂ ≡ ~K/|~K| = (sinθK cosϕK ,sinθK sinϕK ,cosθK). Only the diagonal terms of correlation
matrix survive, because the off-diagonal terms of NAB either vanish by orthogonality or can be
neglected due to rapidly oscillating phase in rotating wave approximation [1].

We see that the two point correlations are relaxing to the instantaneous thermal equilibrium
value with the rate ∼ γηK2 and driven away from the equilibrium by the expansion term ∼ 1

τ
.

For |~K| � k∗ the two point functions are close to thermal equilibrium and the deviations are well
described by 1/(γηK2τ) expansion, e.g. for N++

N++(τ,~k)
T (e0 + p0)/τ

= 1+
c2

s − cos2 θK
4
3 γηK2τ

+ . . . (2.10)

3. Modification of energy momentum tensor

In the presence of hydrodynamic noise, the effective long wavelength energy momentum ten-
sor is modified by the contributions coming from the two-point correlatios of out-of-equilibrium
noise at scale k ∼ k∗. Specifically, the energy and longitudinal pressure are increased by the non-
linear contributions of momentum fluctuations~g = (T τx,T τy,τT τη)

〈T ττ〉= e+
〈~g2〉
e+ p

, (3.1)

〈T zz〉= c2
s e− 4η

3τ
+
〈(gz)2〉
e+ p

. (3.2)

The non-linear noise expectation can be written as an integral over the phase space of hydrodynamic
modes [1], e.g.

〈(gz)2〉= τ

∫ d3K
(2π)

[
N+++N−−

2
cos2

θK +NT2T2 sin2
θK

]
. (3.3)

The integral is divergent due to the equilibrium expectation value of NAB and the leading large K2

expansion term, see Eq. 2.10. Regulating the integral by a UV cutoff Λ, the universal divergent
terms can be computed explicitly and agrees with previous computations using diagrammatic ap-
proaches [18]. The divergent contributions reflect the fact that the initial bare pressure and viscosity
are also cut-off dependent, but their sum is independent of Λ.

〈T zz〉= p0(Λ)+
Λ3T
6π2︸ ︷︷ ︸

≡ pphys

− 4
3τ

[
η0(Λ)+

17ΛT
120π2

e0 + p0

η0

]
︸ ︷︷ ︸

≡ ηphys

+ finite. (3.4)
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After absorbing divergent terms in the physical pressure and viscosity, the remaining finite term for
longitudinal pressure is

〈T zz(τ)〉
e+ p

=
p

e+ p
− 4γη

3τ
+

1.08318
s(4πγητ)3/2 . (3.5)

The finite correction (also known as long time tail) comes with the characteristic fractional power,
which can be understood from the simple estimate of the phase space of modes around the critical
scale k∗ and the equipartition of energy 1

2 kBT

〈T zz〉fluct. ∼ 1
2 kBT︸ ︷︷ ︸

equipart

∫ k∗
d3k︸ ︷︷ ︸

# of modes

∼ T k3
∗ ∼ T

(
1

γητ

)3/2

(3.6)

The numerical factor in front of the fractional power is expansion specific. We found the steady
state solutions of Eqs. 2.7, 2.8 and 2.9, and calculated the precise coefficient of the long-time tail
for the Bjorken expanding background [1]. A realistic estimate of the long time tail contributions in
heavy ion collisions shows that it is comparable in size to the second order gradient terms, which are
usually included in hydrodynamic simulations [1]. Therefore the inclusion of hydrodynamic noise
contributions is necessary for the faithful description of dynamics at second order in gradients.

In addition to the long time tail corrections, the energy and transverse pressure acquire contri-
butions sensitive to transverse momentum fluctuations at initial times [1].

4. Noise induced bulk viscosity

The QCD equations of state obtained from lattice simulations is not conformal and the realistic
description of QGP fluid involves a non-vanishing bulk viscosity ζ and temperature dependent
speed of sound cs(T ) [19].

The hydro-kinetic equations can be equally well applied to non-conformal systems [2]. Sim-
ilarly to the conformal case, we expect modifications to the transport coefficients due to hydrody-
namic fluctuations. In particular, we are interested in the cut-off dependent, but universal correc-
tions to the bulk viscosity ζ , similar to those for shear viscosity η (see Eq. 3.4). To find the bulk
renormalization terms, it is enough to look at small perturbations around the equilibrium. Such
perturbations can be conveniently introduced by applying a bulk metric perturbation

ds2 =−dt2 +(δi j +hi j)dxidx j, hi j(t) = hδi je−iωt . (4.1)

Following the steps we did for conformal case, we arrive at the two point correlator equations
similar to Eqs. 2.7, 2.8 and 2.9, but now the expansion rate is characterized by the time derivative
of hi j(t) and there are additional terms due to bulk viscosity ζ and non-constant speed of sound
cs(T ) [2].

After calculating the non-linear noise corrections to the constitutive equations, we find that the
divergent terms can be absorbed by the suitable definition of physical energy, pressure and transport
coefficients. Specifically, the cut-off independent bulk viscosity ζ is given by

ζ = ζ0(Λ)+
ΛT 2

2π2

[(
1
3
+

T
2

dc2
s

dT
− c2

s

)2 s
ζ0 +

4
3 η0

+

(
1
3
− c2

s

)2 2s
η0

]
. (4.2)
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Figure 2: The QCD bulk viscosity induced by hydrodynamic noise fluctuations, Eq. 4.2, for η/s = 1/(4π)

and a UV cut-off scale Λ = 2T − 4T . We use lattice QCD entropy density s(T ) and speed of sound cs(T ),
and neglect the bare viscosity ζ0(Λ) [19]

Note that the bulk renormalization depends on conformality breaking factors, e.g. (1
3 − c2

s )
2,

and the shear viscosity η0. The QCD transport coefficients are not easily calculable using lattice
techniques, however the thermodynamic quantities like entropy density s(T ) and speed of sound
cs(T ) are well known [19]. The hydrodynamic modelling of heavy ion collisions indicates that
the shear viscosity over entropy ratio is of order η/s ∼ 1/(4π) [3, 5] and we can use Eq. 4.2 to
estimate the QCD bulk viscosity due to hydrodynamic fluctuations for a UV cut-off Λ= 2T−4T of
our theory. The result shown in Fig. 2 indicates a small, but conceptionally important contribution
to bulk viscosity due non-equilibrium hydrodynamic fluctuations.

5. Summary

The presented framework of hydro-kinetic equations is a general and extendable way of calcu-
lating the physics of out-of-equilibrium noise in expanding systems. We successfully reproduced
the universal renormalizations of bare energy, pressure and shear viscosity η in agreement with
previous diagrammatic calculations for conformal systems. We also calculated (for the first time)
corrections to bulk viscosity ζ in non-conformal systems due to hydrodynamic fluctuations. We
estimated the noise induced bulk viscosity for realistic parameters of QCD fluid.

The hydro-kinetic equations can be applied not only to systems close to equilibrium, but also
in expanding backgrounds. We calculated the precise coefficient of fractional power corrections (or
long time tails) due to out-of-equilibrium noise for the case of Bjorken expansion and found that it
is comparable to second order gradients for typical system parameters in heavy ion collisions.

The hydro-kinetic equations is an alternative way of studying hydrodynamics with noise and
can be profitably applied to a versatile range of hydrodynamic systems, e.g. with non-conformal
equation of state or non-static backgrounds.
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