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1. Introduction

The thermodynamic properties of the quark-gluon plasma (QGP)–as produced in relativistic

heavy-ion collisions–are rather well determined within lattice QCD (lQCD) calculations at vanish-

ing quark chemical potential µq [1, 2]. Whereas the results from different collaborations in the past

have led to different equations of state (EoS) of partonic matter even at µ q = 0 the present status can

be considered as a consensus (within error bars). Nevertheless, the physical interpretation of the

lattice ’data’ remains a challenge since the EoS as well as transport coefficients from lQCD indicate

that the partonic system cannot be viewed as a weakly interacting medium of quark, antiquarks,

and gluons. This holds especially true for temperatures close to the critical temperature T c where

the entropy density s(T ) (and pressure P(T )) differ substantially from the Stefan Boltzmann limit.

The lQCD results on the EoS can conveniently be interpreted within quasiparticle models with

massive partons [3, 4, 5, 6] that are fitted to the equation of state (EoS) from lQCD and also allow

for extrapolations to finite µq, although with some ambiguities. However, in these effective models

the spectral function of the degrees of freedom is taken as a δ - function (on-shell limit) which

implies that these partons in principle are non-interacting. An extension of the simple quasiparticle

model has been proposed in Refs. [7, 8, 9] where a finite width of the partonic spectral functions

is introduced, which corresponds to the interaction rate of the parton in the medium at finite tem-

perature T and chemical potential µq. The latter can be directly employed for the calculation of

transport coefficients such as shear and bulk viscosities of the partonic medium in the relaxation

time approximation [10] and be compared to corresponding correlators from lQCD. An interpreta-

tion in terms of quasiparticles, however, is constraint to effective propagators with a spectral width

that is substantially smaller than the dynamical pole mass.

Furthermore, at non-zero quark chemical potential µq 6= 0, the primary quantities of interest

are the “pressure difference ∆P”, the quark number density n B and quark susceptibility χ q since

these quantities are available from lQCD [11, 12]. The quark number susceptibilities are additional

quantities to further quantify the properties of the partonic degrees of freedom ( d.o.f.) especially

in the vicinity of the QCD phase transition or crossover. It turns out that the standard quasiparticle

models, that fit the partonic EoS, severely underestimate the quark susceptibilities. Nevertheless,

the challenge of describing simultaneously both the lQCD pressure and quark susceptibilities as

well as transport coefficients is out of reach in these models [13]. Especially the quark suscepti-

bilities are very sensitive to the quark masses used as inputs and solely determined by the quark

degrees of freedom. On the other hand both light quark and gluon masses contribute to thermody-

namic quantities like the entropy density s and pressure P. Therefore, reconciling all observables

from lQCD within a single effective model is a challenge.

In this contribution we will consider the QGP as a dynamical quasi-particle medium of massive

off-shell particles with partonic propagators incorporating complex selfenergies which explicitly

depend on the three-momentum p with respect to the partonic matter at rest in order to match

perturbative QCD (pQCD) at high momenta. We will show that within the extended dynamical

quasiparticle model – denoted by DQPM∗ – we reproduce the lQCD equation of state at finite

temperature T and chemical potential µq. Moreover, we simultaneously describe the quark number

density and susceptibility χq from lQCD. In the same approach, we also compute the shear and

bulk viscosities (η and ζ ) of the QGP at finite temperature T and chemical potential µq in order to
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probe some transport properties of the partonic medium in comparison to lQCD.

2. Parton properties in the DQPM∗

In the DQPM∗ the entropy density s(T ), the pressure P(T ) and energy density ε(T ) are cal-

culated in a straight forward manner by starting with the entropy density in the quasiparticle limit

from Baym [9, 14],

sdqp =−dg

∫

dω

2π

d3 p

(2π)3

∂ fB

∂T

(

ℑ ln(−∆−1)+ℑΠℜ∆
)

−dq

∫

dω

2π

d3 p

(2π)3

∂ fF((ω −µq)/T )

∂T

(

ℑ ln(−S−1
q )+ℑΣq ℜSq

)

−dq̄

∫

dω

2π

d3 p

(2π)3

∂ fF((ω +µq)/T )

∂T

(

ℑ ln(−S−1
q̄ )+ℑΣq̄ ℜSq̄

)

, (2.1)

where fB(ω/T ) = (exp(ω/T )− 1)−1 and fF((ω − µq)/T ) = (exp((ω − µq)/T ) + 1)−1 denote

the Bose and Fermi distribution functions, respectively, while ∆ = (P2 −Π)−1, Sq = (P2 −Σq)
−1

and Sq̄ = (P2 −Σq̄)
−1 stand for the full (scalar) quasiparticle propagators of gluons g, quarks q

and antiquarks q̄. In Eq. (2.1) Π and Σ = Σq ≈ Σq̄ denote the (retarded) quasiparticle selfener-

gies. In principle, Π as well as ∆ are Lorentz tensors and should be evaluated in a nonperturbative

framework. The DQPM∗ treats these degrees of freedom as independent scalar fields with scalar

selfenergies which are assumed to be identical for quarks and antiquarks. Note that one has to treat

quarks and antiquarks separately in Eq. (2.1) as their abundance differs at finite quark chemical po-

tential µq. In Eq. (2.1) the degeneracy for gluons is dg = 2(N2
c −1)=16 while dq = dq̄=2NcN f =18 is

the degeneracy for quarks and antiquarks with three flavors. In practice one also has to differentiate

between (u,d) and s quarks due to their mass difference.

As a next step one writes the complex selfenergies as Π(q) = M 2
g (q)−2iωγg(q) and Σq(q) =

Mq(q)
2 − 2iωγq(q) with a mass (squared) term M2 and an interaction width γ , i.e. the retarded

propagators (∆,Sq) read,

GR(ω ,q) =
(

ω2 −q2 −M2(q)+2iγ(q)ω
)−1

, (2.2)

and are analytic in the upper half plane in the energy ω since the poles of G R are located in the

lower half plane. The imaginary part of G R (2.2) then gives the spectral function of the degree

of freedom (except for a factor 1/π). In the standard DQPM [9] the masses had been fixed in the

spirit of the hard thermal loop (HTL) approach with the masses being proportional to an effective

coupling g(T/Tc) which has been enhanced in the infrared. In the DQPM∗ the selfenergies depend

additionally on the three-momentum p with respect to the medium at rest, while the dependence on

the temperature T/Tc and chemical potential µq are very similar to the standard DQPM [9].

2.1 Masses, widths and spectral functions of partons in DQPM∗

The functional forms for the parton masses and widths at finite temperature T , quark chemical

potential µq and momentum p = |p| are assumed to be given by

Mg(T,µq, p) =

(

3

2

)

[

g2(T ⋆/Tc(µq))

6

[

(

Nc+
N f

2

)

T 2 +
Nc

2
∑
q

µ2
q

π2

]

]1/2

×h(Λg, p)+mχg ,

2
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Mq,q̄(T,µq, p) =

[

N2
c −1

8Nc

g2(T ⋆/Tc(µq))
[

T 2 +
µ2

q

π2

]

]1/2

×h(Λq, p)+mχq ,

γg(T,µq, p) = Nc

g2(T ⋆/Tc(µq))

8π
T ln

(

2c

g2(T ⋆/Tc(µq))
+1.1

)3/4

×h(Λg, p) ,

γq,q̄(T,µq, p) =
N2

c −1

2Nc

g2(T ⋆/Tc(µq))

8π
T ln

(

2c

g2(T ⋆/Tc(µq))
+1.1

)3/4

×h(Λq, p) , (2.3)

with the momentum-dependent function

h(Λ, p) =
[ 1

1+Λ(Tc(µq)/T ⋆)p2

]1/2

, (2.4)

where T ⋆2 = T 2 +µ2
q/π2 is the effective temperature used to extend the DQPM∗ to finite µq, while

Λg(Tc(µq)/T ⋆) = 5 (Tc(µq)/T ⋆)2 GeV−2 and Λq(Tc(µq)/T ⋆) = 12 (Tc(µq)/T ⋆)2 GeV−2. Further-

more, mχg ≈ 0.5 GeV is the gluon condensate and mχq is the light-quark chiral mass (mχq = 0.003

GeV for u, d quarks and mχq = 0.06 GeV for s quarks). Since the effective quark masses in the

QGP are large compared to the chiral masses the latter can in practice be neglected. In Eq. (2.3)

mχg (mχq) gives the finite gluon (light quark) mass in the limit p → 0 and T = 0 or for p → ∞. As

mentioned above the quasiparticle masses and widths (2.3) are parametrized following hard ther-

mal loop (HTL) functional dependencies at finite temperature as in the default DQPM [9] in order

to follow the correct high temperature limit. The essentially new elements in (2.3) are the multi-

plicative factors h(Λ, p) (2.4) specifying the momentum dependence of the masses and widths with

additional parameters Λg and Λq and the additive terms mχg and mχq. The momentum-dependent

factor h(Λ, p) in the masses (2.3) is motivated by Dyson-Schwinger studies in the vacuum [15] and

yields the limit of pQCD for p → ∞.

The effective gluon and quark masses are a function of T ⋆ at finite µq. Here we consider

three light flavors (q = u,d,s) and assume all chemical potentials to be equal (µu = µd = µs = µq).

Note that alternative settings are also possible to comply with strangeness neutrality in heavy-ion

collisions. The coupling (squared) g 2 in Eq. (2.3) is the effective running coupling given as a

function of T/Tc at µq = 0. A straight forward extension of the DQPM∗ to finite µq is to consider

the coupling as a function of T ⋆/Tc(µq) with a µq-dependent critical temperature Tc(µq),

Tc(µq) = Tc(µq = 0)
√

1−αµ2
q ≈ Tc(µq = 0)

(

1−α/2 µ2
q + . . .

)

(2.5)

with α ≈ 8.79 GeV−2. We recall that the expression of Tc(µq) in Eq. (2.5) is obtained by requiring

a constant energy density ε for the system at T = Tc(µq) where ε at Tc(µq = 0) ≈ 0.158 GeV is

fixed by a lattice QCD calculation at µq = 0. The coefficient in front of the µ2
q -dependent part can

be compared to lQCD calculations at finite (but small) µ B which gives [16]

Tc(µB) = Tc(µB = 0)

(

1−κ

(

µB

Tc(µB = 0)

)2

+ . . .

)

(2.6)

with κ = 0.013(2). Rewriting (2.5) in the form (2.6) and using µ B ≈ 3µq we get κDQPM ≈ 0.0122

which compares well with the lQCD result.
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Using the pole masses and widths (2.3), the spectral functions for the partonic degrees of

freedom are fully determined, i.e. the imaginary parts of the retarded propagators. The real part

of the retarded propagators then follows from dispersion relations or directly from Eq. (2). Since

the retarded propagators show no poles in the upper complex half plane in the energy ω the model

propagators obey micro-causality. The imaginary parts are of Lorentzian form and provide the

spectral functions [8, 9],

ρi(ω ,p) =
γi(p)

Ẽi(p)

(

1

(ω − Ẽi(p))2 + γ2
i (p)

− 1

(ω + Ẽi(p))2 + γ2
i (p)

)

(2.7)

with Ẽ2
i (p) = p2 +M2

i (p)− γ2
i (p) for i ∈ [g,q, q̄]. These spectral functions (2.7) are antisymmetric

in ω and normalized as

∫ +∞

−∞

dω

2π
ω ρi(ω ,p) =

∫ +∞

0

dω

2π
2ω ρi(ω ,p) = 1, (2.8)

where Mi(T,µq,p), γi(T,µq,p) are the particle pole mass and width at finite three momentum p,

temperature T and chemical potential µq, respectively.

In contrast to previous DQPM studies we employ here a new method for the determination

of the effective coupling which is more flexible and can be directly extracted from the lQCD data

on the entropy density s(T ). For details we refer the reader to the review [17] and focus on the

actual results. Figs. 1 (a)-(b) show the gluon and light quark masses and widths, respectively,

at finite temperature and chemical potential for a momentum p = 1 GeV/c. Furthermore, Fig.

1 (c) shows the gluon and light quark masses as a function of momentum (squared) p2 at finite

temperature T = 2Tc and different µq. Note that for p = 0 we obtain higher values of the gluon and

light quark masses (as a function of T and µq) since for finite momenta the masses decrease (at a

given temperature and chemical potential), especially for the light quarks as seen in Fig 1 (c). The

extension T/Tc → T ⋆/Tc(µq) for finite µq in the functional form for the strong coupling leads to

lower values for the parton masses and widths at finite µq as compared to µq = 0 near Tc(µq).
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Figure 1: The DQPM∗ gluon (a) and light quark (b) masses and widths given by (2.3) for different quark

chemical potentials as a function of the temperature T . (c) Gluon and light quark masses as a function of

the momentum squared for T = 2Tc and µq = 0,0.2,0.3 GeV. The figures are taken from Ref. [18].
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2.2 Thermodynamics of the QGP from DQPM∗

The expressions for the equation of state (energy density ε , entropy density s and pressure P)

of strongly interacting matter have been given for finite temperature and chemical potential in Ref.

[10] for on-shell partons and in Ref. [9] for the case of off-shell partons using the relations based on

the stress-energy tensor T µν . We recall that the approach for calculating the equation of state in the

DQPM∗ is based on thermodynamic relations (see below). The procedure is as follows: One starts

from the evaluation of the entropy density s from (2.1) employing the masses and widths obtained

from the expressions in Section 2.1. Then using the thermodynamic relation s = (∂P/∂T )µq
(for a

fixed quark chemical potential µq) one obtains the pressure P by integration of the entropy density

s over T while the energy density ε can be gained using the relation,

ε(T,µB) = T s(T,µB)−P(T,µB)+µBnB(T,µB), (2.9)

where nB is the net baryon density.

Figure 2: Scaled energy density ε , entropy density s, pressure P and trace anomaly (I = ε − 3P) as a

function of temperature T at µ B = 0 (a) and at µ B = 400 MeV (b) from DQPM∗ compared to lQCD data

from Ref. [11]. The figures are taken from Ref. [18].

The energy density ε , entropy density s, pressure P and the interaction measure [I(T,µq) =

ε(T,µq)− 3P(T,µq)] –known in lQCD as the trace anomaly– in the DQPM∗ are shown in Fig. 2

(a), (b) as a function of temperature T for two values of the baryon chemical potential µ B = 0 and

µ B = 400 MeV, respectively (where µ B = 3µq in our study). We, furthermore, compare our results

with lattice calculations from Ref. [11] and notice that our results are in a very good agreement

with the lattice data for µB = 0 (a) and in case of µB = 400 MeV (b) for temperatures larger than

1.2 Tc(µq). In the latter case we observe (for temperatures just above Tc(µ)) some deviations which

are expected to result from additional hadronic degrees of freedom in the crossover region.

At finite baryon chemical potential, i.e. µB = 400 MeV, the maximum of the trace anomaly is

shifted towards lower temperatures. We notice also the proper scaling of our DQPM∗ description

of QGP thermodynamics, when moving from zero to finite quark chemical potential (cf. Fig.2 (a)

and (b)).
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3. Quark number density and susceptibility from DQPM∗

3.1 Baryon number density in the DQPM∗

The equation of state for vanishing chemical potential µq=0 is defined fully by the entropy

density s; for finite chemical potential µq 6= 0 one has to include the particle density n. In the

DQPM∗ the quark density ndqp in the quasiparticle limit is defined in analogy to the entropy density

(2.1) as [19],

ndqp = −dq

∫

dω

2π

d3 p

(2π)3

∂ fF((ω −µq)/T )

∂ µq

(

ℑ ln(−S−1
q )+ℑΣq ℜSq

)

−dq̄

∫

dω

2π

d3 p

(2π)3

∂ fF((ω +µq)/T )

∂ µq

(

ℑ ln(−S−1
q̄ )+ℑΣq̄ ℜSq̄

)

. (3.1)

In case of the Lorentzian spectral function the density ndqp in Eq. (3.1) can be split into the

following two terms n
(0)
q and ∆nq as:

n
(0)
q = dq

∫

d3 p

(2π)3
f
(0)
q −dq̄

∫

d3 p

(2π)3
f
(0)
q̄ , (3.2)

∆nq = dq

∫

dω

(2π)

d3 p

(2π)3

∂ fq((ω −µq)/T )

∂ µq

ξ (ω , p)

+dq̄

∫

dω

(2π)

d3 p

(2π)3

∂ fq̄((ω +µq)/T )

∂ µq

ξ (ω , p), (3.3)

with

ξ (ω , p) =

(

2γω
ω2 −p2 −M2

(ω2 −p2 −M2)2 +4γ2ω2
− arctan

(

2γω

ω2 −p2 −M2

)

)

(3.4)

where f
(0)
q = (exp((

√

p2 +M2−µq)/T )+1)−1, f
(0)
q̄ = (exp((

√

p2 +M2 +µq)/T )+1)−1 denote

again the Fermi distribution functions for the on-shell quark and anti-quark, with M corresponding

to the pole mass.

Finally, note that the quark number density (3.1) follows from the same potential as the entropy

density [14] which ensures that it fulfills the thermodynamic relation n = (∂P/∂ µ q)T (for fixed

temperature T). To be fully thermodynamically consistent the entropy and the particle density have

to satisfy the Maxwell relation (∂n/∂T )µq
= (∂ s/∂ µq)T . This provides further constraints on the

effective coupling g2(T,µq) at finite chemical potential which we neglect in the current approach.

Nevertheless, it was checked that the violation of the latter Maxwell relation is generally small (up

to µB ≈ 500 MeV) and most pronounced around Tc. The baryon number density nB, finally, is

related to the quark number density by the simple relation nB = ndqp/3.

3.2 Susceptibilities in the DQPM∗

From the densities nB one may obtain other thermodynamic quantities like the pressure differ-

ence ∆P and the quark susceptibilities χq, which can be confronted with lattice data for N f = 2 from

Alton et al. [20, 21] and for N f = 3 from Borsanyi et al. [11]. We recall that the quark-number

6
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susceptibility measures the static response of the quark number density to an infinitesimal variation

of the quark chemical potential. From Eqs. (3.2)-(3.4) we calculate ∆P and χq as

∆P(T,µB)≡ P(T,µB)−P(T,0) =
∫ µB

0
nB dµB ; (3.5)

χq(T ) =
∂nq

∂ µq

∣

∣

∣

∣

µq=0

; χq(T,µq) = 9
∂nB

∂ µB

. (3.6)

Furthermore, for small µq a Taylor expansion of the pressure in µq/T can be performed which

gives

P(T,µq)

T 4
=

∞

∑
n=0

cn(T )
(µq

T

)n

, cn(T ) =
1

n!

∂ n(P(T,µq)/T 4)

∂ (µq/T )n

∣

∣

∣

∣

∣

µq=0

, (3.7)

where cn(T ) is vanishing for odd n and c0(T ) is given by c0(T ) = P(T,µq = 0). As shown above

the DQPM∗ compares well with lattice QCD results for c0(T ). Since χq at finite µq is related to

the pressure by

χq(T,µq)/T 2 = ∂ 2(P/T 4)/∂ 2(µq/T ),

one can define the susceptibility χ i j
2 at vanishing quark chemical potential as [11]

P(T,µi)

T 4
=

P(T,0)

T 4
+

1

2
∑
i, j

µiµ j

T 2
χ i j

2 , with χ i j
2 =

1

T 2

∂n j(T,µi)

∂ µi

∣

∣

∣

∣

∣

µi=µ j=0

, (3.8)

which in case of 3 flavors with µu = µd = µs becomes

χ2(T ) = 9
1

T 2

∂nq(T,µq)

∂ µq

∣

∣

∣

∣

∣

µq=0

= 9
χq(T )

T 2
. (3.9)

3.3 nB and χq: DQPM∗
vs lQCD

Using the masses and widths (2.3) we calculate the baryon number density nB (3.2)-(3.3) and

quark susceptibility χ2 including the finite width of the parton spectral functions. The results for

nB and χ2 for N f = 3 are displayed in Fig. 3 (a) and (b), respectively. The comparison with

the lattice data from Ref. [11] is rather good which is essentially due to an extra contribution

arising from the momentum dependence of the DQPM∗ quasiparticles masses and widths. Such a

momentum dependence in mq,q̄,g and γq,q̄,g decreases the ’thermal average’ of light quark and gluon

masses which improves the description of lQCD results for the susceptibilities. For comparison

we also show the result for χq from the conventional DQPM, i.e. with momentum independent

masses, which substantially underestimates the lattice data. The small difference between lQCD

and DQPM∗ for nB and χ2 close to Tc is related to a possible excess of light quarks and antiquarks

which should combine to hadrons in the crossover region. We recall that the DQPM∗ describes

only the QGP phase and deals with dynamical quarks and gluons solely.
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Finally, we emphasize the challenge to describe simultaneously the entropy s and pressure P

on one side and nB and χ2 on the other side. Indeed, increasing the light quark mass and width

helps to improve the description of s and P (for µB = 400 MeV), but this leads to a considerable

decrease in nB and χ2. In other words, lighter quarks are favorable to improve the agreement with

lQCD data on nB and χ2, however, this leads to an increase of s and P, which can be only partially

counterbalanced by an increasing gluon mass and width (which do not enter n B and χ2).

Figure 3: (a) The baryon number density nB/T 3 from DQPM∗ as compared to lattice data from Ref. [11] for

N f = 3 for a quark chemical potential µq = 0. (b) The susceptibility χ2 from DQPM∗ as compared to lattice

data from Ref.[11] for N f = 3 and µq = 0 using Eq. (3.9). The lower (orange) line gives the result from the

conventional DQPM, i.e. with momentum independent masses. The figures are taken from Ref. [18].

4. Transport properties of the hot QGP from DQPM∗

4.1 Shear and bulk viscosities

In this Section we report on the transport coefficients of the QGP using the relaxation time

approximation (RTA). In the dilute gas approximation the relaxation time τi of the particle i is

obtained for on- or off-shell quasi-particles by means of the partonic scattering cross sections,

where the qq, qq̄, qg and gg elastic scattering processes as well as some inelastic processes in-

volving chemical equilibration, such as gg → qq̄ are included in the computation of τ i [22]. For

the DQPM∗ approach we do not need the explicit cross sections since the inherent quasi-particle

width γi(T,µq, p) directly provides the total interaction rate [9]. To this end we only have to evalu-

ate the average of the momentum dependent widths γ g(T,µq, p) and γq(T,µq, p) over the thermal

distributions at fixed T and µq, i.e. γ̄g(T,µq) and γ̄q(T,µq).

The shear viscosity η(T,µq) is defined in the dilute gas approximation for the case of the

DQPM∗ off-shell particles by [22, 23]

η(T,µq) =
2

15T
dg

∫

d3 p

(2π)3

∫

dω

2π
ω τ̄g(T,µq) fg(ω/T )×ρg(ω ,p)

p4

ω2
Θ(P2)

8
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+
2

15T

dq

6

∫

d3 p

(2π)3

∫

dω

2π
ω

[

u,d,s

∑
q

τ̄q(T,µq) fq((ω −µq)/T )ρq(ω ,p)

+
ū,d̄,s̄

∑
q̄

τ̄q̄(T,µq) fq̄((ω +µq)/T ) ρq̄(ω ,p)

]

p4

ω2
Θ(P2), (4.1)

where p is the three-momentum and P 2 the invariant mass squared. The functions ρg,ρq,ρq̄

stand for the gluon, quark and antiquark spectral functions, respectively, and fq ( fq̄) stand for the

equilibrium distribution functions for particle and antiparticle. The medium-dependent relaxation

times τ̄q,g(T,µq) in (4.1) are given in the DQPM∗ by:

τ̄q,g(T,µq) = (γ̄q,g)
−1(T,µq), (4.2)

with:

γ̄q,g(T,µq) = 〈γq,g(T,µq, p)〉p

=
(

noff
q,g (T,µq)

)−1

×
∫

d3 p

(2π)3

dω

(2π)
ω γq,g(T,µq, p)ρ f (ω) fq,g(ω ,T,µq)Θ(P2), (4.3)

where

noff
f ,g (T,µq) =

∫

d3 p

(2π)3

dω

(2π)
ω ρ f (ω) f f ,g(ω ,T,µq) Θ(P2)

denotes the off-shell density of quarks, antiquarks or gluons. We note in passing that the shear

viscosity η can also be computed using the stress-energy tensor and the Green-Kubo formalism

[24]. However, explicit comparisons of both methods in Ref. [24] have shown that the solutions

are rather close. This holds especially for the case of the scattering of massive partons where the

transport cross section is not very different from the total cross section as also pointed out in Ref.

[25]. Furthermore, we mention that the definition of the shear viscosity η is strictly valid only in

the on-shell limit, however, can be employed also in the DQPM∗ since the relaxation times τ̄i do

not depend on the masses.

We show the DQPM∗ results for η/s, where s is the DQPM∗ entropy density, in Fig.4 (a)

as a function of the temperature. The (upper) orange solid line represents the case of the standard

DQPM where the parton masses and widths are independent of momenta as calculated in Ref. [22].

The thick red solid line displays the result using Eqs. (4.1) and (4.2), where the parton masses

and width are temperature, chemical potential and momentum dependent. Finally, the black solid

line refers to the calculation of η/s in Yang-Mills theory from the Kubo formula using an exact

diagrammatic representation in terms of full propagators and vertices from Ref. [26].

Fig. 4 (a) shows that η/s from DQPM∗ is in the range of the lQCD data and significantly

lower than the pQCD limit. As a function of temperature η/s shows a minimum around Tc, similar

to atomic and molecular systems [27] and then increases slowly for higher temperatures. This

behavior is very much the same as in the standard DQPM (upper orange line) as shown in Ref.

[24]. Therefore, the produced QGP shows features of a strongly interacting fluid unlike a weakly

interacting parton gas as had been expected from perturbative QCD (pQCD). The minimum of η/s

at Tc = 158 MeV is close to the lower bound of a perfect fluid with η/s = 1/(4π) [28] for infinitely

9
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coupled supersymmetric Yang-Mills gauge theory (based on the AdS/CFT duality conjecture). This

suggests the ”hot QCD matter” to be the ”most perfect fluid” [27]. Furthermore, the ratio η/s in

DQPM∗ is slightly larger than in the pure gluonic system (solid black line) due to a lower interaction

rate of quarks and antiquarks relative to gluons.

The explicit dependencies of η/s on T and µq are shown in Fig. 4 (b) where η/s is seen

to increase smoothly for finite but small µq. We point out again that extrapolations to larger µq

become increasingly uncertain.

Figure 4: The shear viscosity to entropy density ratio η/s from different models as a function of temperature

T for µq = 0 (a) and η/s given by the DQPM∗ approach as a function of (T,µq) (b). The orange solid line

in (a) results from the standard DQPM where the parton masses and widths are independent of momenta

[22]. The thick red solid line shows the DQPM∗ result using Eqs.(4.1) and (4.2), where the parton masses

and width are temperature, chemical potential and momentum dependent. The lattice QCD data for pure

SU(3) gauge theory are taken from Ref. [33] (red spheres), from Ref. [29] (green pyramid and blue cubic),

and from Ref. [30] (black cylinder and pink penthagone). The orange dashed line gives the Kovtun-Son-

Starinets lower bound [28] (η/s)KSS = 1/(4π). Finally, the black solid line refers to the calculation of η/s

in Yang-Mills theory from Ref. [26]. The figures are taken from Ref. [18].

The bulk viscosity (defined in Ref. [23] for the on-shell case) reads in the relaxation time

approximation (RTA) for the case of off-shell DQPM∗ partons as:

ζ (T,µq) =
2

9T
dg

∫

d3 p

(2π)3

∫

dω

2π
ω τ̄g(T,µq) fg(ω/T ) ρg(ω ,p) Θ(P2)

1

ω2
Fg(ω ,p)

+
2

9T

dq

6

∫

d3 p

(2π)3

∫

dω

2π
ω

[

u,d,s

∑
q

τ̄q(T,µq) fq((ω −µq)/T )ρq(ω ,p)

+
ū,d̄,s̄

∑
q̄

τ̄q̄(T,µq) fq̄((ω +µq)/T ) ρq̄(ω ,p)

]

Θ(P2)
1

ω2
Fq(ω ,p), (4.4)

with

Fi(ω ,p) =

[

p2 −3c2
s

(

ω2 −T 2 dM2
i

dT 2

)]2

(4.5)
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and essentially depends on the mass derivatives ∂M2
i/∂T 2, the temperature T , and the speed of

sound squared c2
s . All these quantities are accessible within the DQPM∗ such that the results for

the bulk viscosity again do not imply any new parameter.

The bulk viscosity (divided by the entropy density s) from the DQPM∗ is displayed in Fig. 5

(a) and shows a very different temperature dependence than η/s. Indeed, for high temperatures

we find the limit ζ/s → 0. Moreover, the behavior around Tc shows a peak in lQCD as well

as in the DQPM and DQPM∗ which is essentially due to the derivative ∂M2
i/∂T 2 in Eq. (4.4).

Accordingly, the infrared enhancement in the DQPM∗ masses is mandatory to achieve a maximum

in the bulk viscosity ζ (T,µq) to entropy ratio ζ/s close to Tc in line with lQCD. This enhancement

close to Tc is lower in the DQPM∗ as in the DQPM probably due to a lower infrared enhancement

in the coupling squared. Note, however, that such an enhancement does not show up in the NJL

calculations for ζ/s from Ref. [10] (black solid line in (a)). The explicit dependencies of ζ/s on T

and µq from the DQPM∗ are shown in Fig. 5 (b).

Figure 5: The bulk viscosity to entropy density ratio ζ/s from DQPM∗ as a function of temperature T for

µq = 0 (a) and ζ/s given by the DQPM∗ approach as a function of T and µq (b). The orange solid line in

(a) results from the standard DQPM where the parton masses and widths are independent of momenta [22].

The lattice QCD data points for pure SU(3) gauge theory are taken from Ref. [33] (red spheres), [30] (blue

cubic) and from Ref. [29] (green pyramid). Finally, the black solid line in (a) refers to the calculation of ζ/s

from the Nambu-Jona-Lasinio model for SU(3) f from Ref. [10].

For DQPM∗ results in case of the electric conductivity σe(T,µq) we refer the reader to Refs.

[17, 31, 32].

5. Summary

In this contribution we have reported about an extended dynamical quasiparticle model (DQPM∗)

incorporating momentum-dependent selfenergies in the parton propagators which are reflected in

momentum-dependent masses and widths. Accordingly, the QGP effective degrees of freedom

(above the critical temperature Tc) appear as interacting off-shell quasi-particles with masses and

widths that depend on three-momentum p, temperature T and chemical potential µq as given in

11
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Eqs. (2.3). These expressions provide a proper high temperature limit (as in the HTL approxima-

tion) and approach the pQCD limit for large momenta |p|. As in the standard DQPM the effective

coupling is enhanced in the region close to Tc, which leads to an increase of the parton masses

roughly below 1.2 Tc (cf. Fig. 1 (a)).

The extended dynamical quasiparticle model DQPM∗ reproduces quite well the lQCD results,

i.e. the QGP equation of state, the baryon density nB and the quark susceptibility χq at finite tem-

perature T and quark chemical potential µq which had been a challenge for quasiparticle models so

far [13] (see also Fig. 4b). A detailed comparison between the available lattice data and DQPM∗

results indicates a very good agreement for temperatures above ∼ 1.2 Tc in the pure partonic phase

and therefore validates our description of the QGP thermodynamic properties. For temperatures

in the vicinity of Tc (and µB= 400 MeV) we cannot expect our model to work so well since here

hadronic degrees of freedom, which are discarded in the DQPM∗, mix in a crossover phase. Fur-

thermore, we have computed also the QGP shear viscosity η , the bulk viscosity ζ , and the electric

conductivity σe at finite temperature and chemical potential in order to probe some transport prop-

erties of the medium. The results from the DQPM∗ are found to be in line with the results from

lattice QCD and are closer to the present lQCD ’data’ than the standard DQPM [17].

In view of our results on the description of the QGP thermodynamics and transport properties

one can conclude that the DQPM∗ provides a promising approach to study the QGP in equilibrium

at finite temperature T and chemical potential µq. Moreover, we have demonstrated that one can

simultaneously reproduce the lQCD pressure, the quark susceptibility and the QCD transport prop-

erties using a dynamical quasi-particle picture for the QGP effective degrees of freedom that allows

for a transparent interpretation of the various results from lattice QCD. An implementation of the

parton properties from the DQPM∗ into the PHSD transport approach [34, 35, 36, 37] is forseen in

the near future.
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