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Production of deuterons by coalescence has an important influence on the moments of the ob-
served proton number distribution. Therefore, this effect must be taken into account when physics
conclusions about baryon number fluctuation are drawn from the measurement of proton number
fluctuations. We also show that a measurement of the third and fourth moments of the deuteron
number distribution would allow to distinguish whether deuterons are produced statistically or by
coalescence.
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1. Introduction

Moments of the proton number distribution are measured in ultrarelativistic nuclear collisions
up to fourth order. The prime reason is the study of the QCD phase diagram, because they are
used as a proxy for the higher order baryon number susceptibilities. The purpose of this paper is
twofold. Firstly, we investigate how the skewness and kurtosis of the proton number distribution are
influenced by coalescence which takes some of the protons and puts them into deuterons. Secondly,
we point out that the measurement of the higher moments of deuteron number distribution can help
to resolve the mechanism of deuteron production, whether it is coalescence or direct statistical
production.

Higher order susceptibilities with respect to baryon number are being calculated on the lattice
with increasing accuracy, as we have also witnessed at this conference [1, 2]. They can be used for
a more precise mapping of the QCD phase diagram because their values are very sensitive to the
vicinity of the crossover from the confined to the deconfined state. For practical measurement they
are related to the higher moments of the (net) baryon number distribution. Unfortunately, baryon
number is actually not measurable at least because one cannot detect and count neutrons (and
antineutrons). Therefore, the measurement must be based on protons only. Arguments exist that
the proton number measurement is a good proxy for the full measurements of the baryon number
[3, 4]. However, the measured results for the moments of the proton number distribution may be
influenced by other effects. Among them there are the conservation of baryon number, final state
hadronic interactions [5], as well as issues like detector efficiency and acceptance limitations. It is
important to realise that by going to as high as third and fourth moments of a number distribution
the measurement becomes sensitive to rather fine details of the distribution.

Production of deuterons is among the processes which can affect the observed number of
protons. With the binding energy of 2.2 MeV a deuteron is too fragile to survive in an environment
with the temperature of more than 100 MeV. Thus it is widely believed that the deuterons are made
by coalescence of protons and neutrons. Their average number is usually well reproduced if one
assumes that it is given as Bn2

p, where np is the number of protons and B is the coalescence factor.
Here we will push the idea of proportionality further and assume that in each event the number of
deuterons is proportional (up to fluctuations) to the actual number of protons to the second power.
Subtracting in each event the protons which disappear in deuterons from the number of all protons
will modify the number distribution of observed protons. At low energy deuteron production is a
non-negligible effect. However, even if this effect becomes small at higher energies, it still could
show up in the higher moments of proton distribution. We have formulated a model in this spirit and
calculated the expected influence on the skewness and kurtosis of the proton number distribution.

Coming back to the mechanism of deuteron production, higher moments of their number dis-
tribution could help resolve the question how the deuterons are actually produced. Although the
coalescence scenario seems quite natural, the mean yields can also be interpreted in terms of the
statistical model. Clear difference between the two mechanisms of deuteron production appears
in higher moments of deuteron number distribution. Statistical model should lead to Poissonian
number distribution while coalescence couples the deuteron number distribution with that of pro-
tons (and neutrons). Once we have formulated the model of how this coupling is actually realised
it is straightforward to use it not only for proton number fluctuations but also for the description of
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deuteron number fluctuations. We shall see the differences between results of the two models.

2. The observables

In this paper we will evaluate moments of the proton number distributions. In the second part
we shall also study the distribution of the deuteron number nd . Averages over events are denoted
with angular brackets, so that 〈np〉 and 〈nd〉 stand for the mean proton number and mean deuteron
number, respectively.

We shall look at the variance

σ
2 =

〈
(np−〈np〉)2

〉
(2.1)

the skewness

S =

〈
(np−〈np〉)2

〉
σ3 (2.2)

and the kurtosis

κ =

〈
(np−〈np〉)2

〉
σ4 −3 (2.3)

of the number distributions.

3. The model

We formulate here the simplest model which takes into account that deuteron number scales
with the square of the proton number.

We start by assuming that the number of all initial protons ni fluctuates according to a Poisson
distribution with the mean λp

Pi(ni) = λ
ni
p

e−λp

ni!
. (3.1)

It is important to realise that ni is not measurable, since it also includes those protons which become
parts of deuterons. Thus also λp is not directly observable and will have to be obtained from
common analysis of proton and deuteron yields.

Production of deuterons is random process, as well. We assume that the actual number of
deuterons in every event is drawn from a Poisson distribution. The mean of that distribution in an
event with ni initial protons is

λd = Bn2
i , (3.2)

as dictated by the coalescence model. The coalescence parameter B is to be determined from
experimental data. Then, the conditional probability to have nd deuterons in an event with ni initial
protons is

Pd(nd |ni) = λ
nd
d

e−λd

nd!
=
(
Bn2

i
)nd e−Bn2

i

nd!
. (3.3)

Combining this distribution with that of initial protons given by eq. (3.1) we can obtain the
distribution for the number of observed protons np. We recall that those protons are observed which
do not disappear from the balance as parts of deuterons. Thus

np = ni−nd , (3.4)
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and the corresponding distribution is obtained as

P(np) = ∑
ni≥np

Pi(ni)Pd(ni−np|ni) . (3.5)

The sum on the right-hand side can be evaluated and thus we know the whole distribution. From
this all moments can be calculated via equations (2.1-2.3).

In order to obtain the observed number of deuterons we have to sum the conditional probability
Pd(nd |ni) for all possible values of ni. Thus we arrive at the folding

Pd(nd) = ∑
ni≥nd

Pd(nd |ni)Pi(ni) . (3.6)

This distribution can be evaluated straightforwardly. Again, all its moments can be calculated, as
well.

In summary, we have two parameters in our model: the mean initial number of protons λp and
the coalescence parameter B. They have to be determined separately for every collision energy.
The two observables that are used to determine them are the mean observed proton number and the
mean deuteron number

〈np〉 = ∑
np

npPp(np) (3.7)

〈nd〉 = ∑
nd

ndPd(nd) . (3.8)

In order to get the deuteron number at all energies that we need, we have fitted the collision energy
dependence of the deuteron-to-proton ratio

〈nd〉
〈np〉

= 0.8
[√

sNN

1GeV

]−1.55

+0.0036 . (3.9)

The quality of the fit can be inspected from Fig. 1.
Using these formulas we have calculated the higher moments of the proton number distribu-

tion. At higher collision energies, antiprotons also have to be taken into account. In principle, they
can also make the antideuterons and this is expressed via the same type of distributions as we have
had for protons and deuterons. In this case, however, we made Monte Carlo simulations of proton
and antiproton production according to the formulated model. At lower energies we have checked
that the MC simulation and the direct calculation lead to the same results.

4. Results for net proton number fluctuations

With the help of the derived model we have determined the values of the scaled skewness Sσ

and scaled kurtosis κσ2 as functions of the mean observed proton number 〈np〉 and the coalescence
parameter B. The results are plotted in Fig. 2. First of all we see that if no deuterons are produced,
i.e. at B = 0, we recover the trivial values for the Poisson distribution: Sσ = κσ2 = 1. On the
other hand, many deuterons are produced if the number of protons is large or for large value of the
coalescence parameter B. Then the scaled moments are modified dramatically. In most extreme
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Figure 1: Fit to the deuteron yields at midrapidity based on the parametrisation (3.9). Experimental data
from Au+Au collisions are plotted for protons, antiprotons [6], and deuterons [7].NET-PROTON-NUMBER KURTOSIS AND SKEWNESS IN . . . PHYSICAL REVIEW C 92, 064908 (2015)

FIG. 2. Scaled skewness Sσ as a function of the mean observed
proton number and the coalescence parameter B in the region of
values relevant for AGS and SPS collision energies.

We also see a strong deviation from unity for large values of
⟨np⟩ and B. In fact the scaled kurtosis may take values which
are both smaller or larger than unity.

For a medium value of proton multiplicity and/or coa-
lescence parameter the obtained deuteron number limits the
possible observed proton number fluctuation. Since the mean
deuteron number scales with the square of proton number,
if the proton number becomes large in an event, the number
of deuterons makes even larger relative deviation from the
mean. This limits the fluctuations of the observed protons
mainly on the upper side of the distribution and the tails of
the distribution are below a comparable Poisson distribution.
When the deuteron number grows further, it starts pushing the
observed proton number down [in agreement with Eq. (5)].
This increases the deviations of the proton number from the
mean to lower values. The left tail of the distribution is above

FIG. 3. Same as Fig. 2 but for the scaled kurtosis κσ 2.

FIG. 4. (Color online) Analytic results for the skewness and
kurtosis for Au + Au collisions in the energy range where antiproton
production is not important.

Poissonian and the kurtosis grows. The skewness becomes
clearly smaller.

Figure 4 shows the results for the beam energy dependence
of the scaled skewness and kurtosis, using as input measured
midrapidity yields of protons and deuterons. We observe
a clear deviation from unity for all beam energies under
consideration.

IV. RESULTS INCLUDING ANTIPROTONS

In order to extend our investigations to beam energies
higher than

√
sNN ≈ 10 GeV, we need to include the effects of

antiprotons and antideuterons into our study. This extension
of our approach is straightforward. As the measured mean
proton and antiproton numbers are known we can assume that
both the proton and antiproton number separately follow a
Poisson distribution. From this assumption, the initial proton
and antiproton number can be sampled independently and
according to their measured multiplicities, as described in the
previous section. Since the fluctuations of both are described
by uncorrelated Poisson distributions the fluctuations of the
initial net-proton number should be described by a Skellam
distribution. Assuming that the coalescence parameter for
antideuterons is identical to that of deuteron formation we
can numerically determine the final net-proton number in a
given event as

np−p = (ni − nd ) − (ni − nd ), (12)

as well as the corresponding net-proton number distributions.
To obtain the mean final net-proton number and its cumulants
we perform a numerical sampling of the initial proton and
antiproton number as well as the corresponding (anti)deuteron
numbers in each event. To achieve satisfactory statistics we
sample 109 events per beam energy. The resulting scaled
cumulants of the proton number distributions, Sσ and κσ 2,
are shown in Fig. 5 as functions of energy for central Au + Au
reactions over a broad range of energies. We compare our
numerical results including antiprotons and antideuterons with
the analytical results obtained in the previous section. For
the lower SPS energies only small variations are observed.

064908-3

Figure 2: Scaled skewness Sσ (left) and scaled kurtosis κσ2 (right) as functions of mean observed proton
number 〈np〉 and the coalescence parameter B.

cases they go down as low as to 0.2. The values of 〈np〉 and B in that figure are realistic and the
highest values can be attained in nuclear collisions at lower BNL-AGS energies. We thus stress
that the effect of the deuteron production on the shape of the proton number distribution may play
an important role and definitely must be taken into account.

In order to better understand where the large modification of the values comes from, we have
also plotted the proton and deuteron number distributions (Fig. 3). They have been calculated
for values of 〈np〉 and B relevant for central Au+Au collisions at

√
sNN = 2.6 GeV. In general,
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Figure 3: Number distribution of observed protons (left) and of deuterons (right) calculated for 〈np〉= 83.4
and B= 1.6×10−3. These parameter values describe proton and deuteron production from Au+Au collisions
at
√

sNN = 2.6 GeV. For comparison, dashed curves show the Poisson distribution with the same mean value
as the calculated distributions.

we observe that for the proton number distribution, production of deuterons cuts from the high-
multiplicity end because there coalescence is more pronounced, since it is proportional to the square
of the proton number. Hence, in general, the observed proton number distribution is narrower than
the Poisson. The overall effect is that the resulting Pp(np) has smaller tails and is more skewed
towards lower proton numbers than the Poisson distribution. This is quantified by the calculated
skewness and kurtosis.

On the obtained deuteron distribution the effect is just opposite. Since the mean deuteron
number is proportional to n2

i , the high multiplicity tail of the distribution is enhanced and really
heavy. It is clearly heavier than the reference Poisson distribution. This will result in significantly
larger values for the skewness and kurtosis later in this paper.

After we have understood the results qualitatively, we are ready to plug in phenomenologically
relevant values of the parameters and calculate the collision energy dependence of the skewness
and kurtosis. Recall that we want to study the fluctuations of the net proton number. However,
at energies below

√
sNN ≈ 10 GeV antiproton production can be neglected and we can just look

at proton number distribution. In this interval we have calculated the higher moments with the
formulas from Section 3. As a cross-check, Sσ and κσ2 have been determined by Monte Carlo
simulations for all collision energies. The results are plotted in Fig. 4.

When also antiprotons are produced, Skellam distribution is expected if both proton and an-
tiproton numbers follow the Poisson distribution. Therefore, for the skewness we also plot the
ratio of our result to the expectation due to Skellam distribution. This is important. Our results
show a dramatic decrease of Sσ as the collision energy increases to top RHIC energies of 130 and
200 GeV pre nucleon pair. However, when divided by the value due to Skellam distribution we
see that the ratio converges towards 1, so that the result is trivial. Nevertheless, we see that the
results for collision energies below 10 GeV per nucleon pair are strongly influenced by formation
of deuterons.
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Figure 4: Scaled skewness Sσ and scaled kurtosis κσ2 as functions of collision energy for central Au+Au
collisions. In the left panel no antiprotons are taken into account and results are calculated with the help of
formulas from Section 3. In the right panel antiproton production has been taken into account and results
are obtained from Monte Carlo simulations.

5. Thermal production vs coalescence of deuterons

If deuterons are produced simply according to the statistical model, then their number distri-
bution should be Poissonian and Sσ = κσ2 = 1. As it was illustrated in Fig. 3 right, coalescence
leads to skewness and kurtosis which are much increased with respect to that expectation. However,
we note that this result was based on rather strong assumption that the mean number of deuterons
scales with n2

i . As a matter of fact, deuterons are bound states of a proton and a neutron and so it
would be more natural to expect that

λd = Bnin j , (5.1)

where n j is the initial number of all neutrons, analogically to initial number of all protons ni. The
number of neutrons fluctuates according to Poisson distribution for which we assume the same
mean value as we did for initial proton number distribution. The conditional probability that nd

deutrons are observed in case where ni initial protons and n j initial neutrons were produced is

P(nd |ni,n j) = λ
nd
d

e−λd

nd!
= (Bnin j)

nd
e−Bnin j

nd!
. (5.2)

Consequently, the distribution of deuteron number is

Pd(nd) = ∑
ni,n j≥nd

Pd(nd |ni,n j)Pi(ni)Pj(n j) . (5.3)

For later reference, we call the two models that we have formulated here as

Model A given by eqs. (3.2), (3.3), and (3.6);

Model B given by eqs. (5.1), (5.2), and (5.3).
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Figure 5: Deuteron number distributions determined for model parameters which correspond to Au+Au
collisions at

√
sNN = 2.6 GeV. All distributions have the same mean.

6. Results for deuteron number fluctuations

We first inspect the difference between the individual models in Fig. 5. It shows the deuteron
number distributions with parameters suitable for the description of proton and deuteron production
in Au+Au collisions at

√
sNN = 2.6 GeV. It is seen that both Model A and Model B lead to number

distributions which are clearly more skewed and have heavier tails than the reference with the
same mean which is provided by the Poisson distribution. While Poisson distribution leads to
σ2/〈nd〉 = Sσ = κσ2 = 1, we obtain for Model A: σ2/〈nd〉 = 1.609, Sσ = 2.218, κσ2 = 6.915;
and for Model B: σ2/〈nd〉= 1.308, Sσ = 1.616, κσ22 = 3.422.

Encouraged by this result we can now determine Pd(nd) for all collision energies and calculate
the higher moments. The results are plotted in Fig. 6 for Model A (left) and Model B (right).
In general, we can summarise that going to lower energies makes the effect of coalescence more
visible. It is also more visible in the higher moments of the distribution. The difference with respect
to Poissonian result is visible in case of both Model A a Model B, although it is about twice as big
for Model A than it is for Model B. We thus offer a good motivation for a measurement of higher
moments of deuteron distribution.

7. Conclusions

Proton number fluctuations are nowadays being widely studied because of their connection to
baryon number fluctuations.

Here we have shown that the production of deuterons must be taken into account if any physics
conclusions are to be drawn from the measurement. The disappearance of some protons into
deuterons has an important effect on the proton number distribution [8].
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Figure 6: Collision energy dependence for σ2/〈nd〉, Sσ , and κσ2 for the model with deuteron produc-
tion depending on proton number squared (Model A, left) and the model assuming independent proton and
neutron number fluctuations (Model b, right).

We have also shown that by studying higher moments of the deuteron number distribution one
will be able to decide if the deuterons are produced according to the statistical model or if their
production is rather described by coalescence [9].
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