
P
o
S
(
C
P
O
D
2
0
1
7
)
0
5
9

Net-baryon number fluctuations at finite density

Michał Marczenko∗

Institute of Theoretical Physics, University of Wrocław, Plac Maksa Borna 9, PL-50204
Wrocław, Poland
E-mail: michal.marczenko@ift.uni.wroc.pl

Krzysztof Redlich
Institute of Theoretical Physics, University of Wrocław, Plac Maksa Borna 9, PL-50204
Wrocław, Poland

Chihiro Sasaki
Institute of Theoretical Physics, University of Wrocław, Plac Maksa Borna 9, PL-50204
Wrocław, Poland

Niels-Uwe Friedrich Bastian
Institute of Theoretical Physics, University of Wrocław, Plac Maksa Borna 9, PL-50204
Wrocław, Poland

One of the most significant aspects of QCD thermodynamics is understanding how the transition
from hadrons to their constituents—quarks and gluons—relates to the underlying deconfinement
and chiral dynamics. This is of major relevance for heavy-ion collisions, as well as in the study
of cold and dense systems, such as compact stars. The latter, however, is often studied exclu-
sively in models of either hadron or quark degrees of freedom. In this contribution, we present
the mean-field thermodynamics of an effective hybrid quark-meson-nucleon (HQMN) model for
QCD phase transitions at low temperatures and finite baryon densities. In this framework, the
chiral dynamics is described within the linear sigma model, whereas the deconfinement transition
is driven by a medium-dependent modification of the particle distribution functions, where an ad-
ditional scalar field is introduced. The structure of the net-baryon number fluctuations along with
its higher order cumulants is discussed as possible probes for the chiral and deconfinement phase
transitions. A qualitative comparison of the results obtained in the nucleonic (parity doublet) and
quark (Nambu–Jona-Lasinio) models is also discussed.
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1. Introduction

Recent lattice QCD (LQCD) findings [1, 2] suggest the parity doubling structure in the bary-
onic sector around the chiral crossover temperature. It is found that the masses of the groundstates
with positive parity are rather independent of temperature, while the masses of those with nega-
tive parity drop significantly towards the transition point, and the two states become degenerate in
the vicinity of the transition. This might suggest the chiral symmetry restoration in the baryonic
sector of QCD, and should occur also in cold dense matter. This phenomenon can be realized in a
schematic framework with chiral symmetry, the parity doublet model [3, 4, 5]. It has been already
applied in many aspects of the QCD phenomenology, as well as astrophysical studies of neutron
stars [6, 7, 8, 9, 10, 11, 12, 13, 14].

In this contribution, we consider an extension of the parity doublet model for cold and dense
strongly interacting matter, namely the Hybrid Quark-Meson-Nucleon (HQMN) model [13, 14].
Along with hadrons, the model includes quark degrees of freedom in a standard linear sigma frame-
work. To prevent the unphysical quark population at low density, the HQMN model considers an
auxiliary scalar field to which the fermions are coupled to. This field serves as a momentum cutoff
in the Fermi-Dirac distribution function, in a way that quarks are suppressed at low density, and
likewise, the hadron degrees of freedom at high density.

We study the bulk equation of state and the phase diagram of the HQMN model. We also put
our focus on the the behavior of the second- and higher-order cumulants of the net-baryon number
density up to the fourth order in the vicinity of the chiral and deconfinement transitions, and discuss
their critical behavior.

This paper is organized as follows. In Sec. 2, we introduce the HQMN model setup in the
mean-field approximation. In Sec. 3, we discuss obtained numerical results on the equation of
state, as well as model phase diagram. In Sec. 4, the structure of the net-baryon number density
cumulants is discussed. Finally, Sec. 5 is devoted to the summary and conclusions.

2. Hybrid Quark-Meson-Nucleon model

In this section, we introduce the Hybrid Quark-Meson-Nucleon (HQMN) model for the QCD
phase transitions at finite temperature and density, following Refs. [13, 14]. Throughout this con-
tribution we consider an isospin-symmetric system of two flavors, N f = 2, in the mean-field ap-
proximation. Instead of the conventional Gel-Mann–Levy model, where the mass of the nucleon
is generated through the non-vanishing sigma expectation value, the model considers another real-
ization, where an introduction of a finite mass term does not break the chiral symmetry [3, 4, 5].
Hence, the sigma condensation generates only the mass difference between two chiral partners.
The quark sector, on the other hand, is modeled in the standard linear-sigma model.

The thermodynamic potential of the HQMN model in the mean-field approximation is given
by the following

Ω =Vσ +Vω +Vb + ∑
x=±,q

Ωx, (2.1)

with

Ωx = γx

∫ d3 p
(2π)3 T [ln(1−nx)+ ln(1− n̄x)] , (2.2)
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Figure 1: (Color online) Thermodynamic pressure in the HQMN model as function of the net-baryon density
for αb0 = 390 MeV at temperature T = 10 MeV.

where the subscripts ± denote positive and negative parity nucleons, and q denotes quark. The
degeneracy factors γ± = 4 denote the spin-flavor degeneracy for nucleons, γq = 12 denotes the
spin-color-flavor degeneracy factor for quarks. The mean-field potentials read

Vσ =−λ2

2
(
σ

2 +π
2)+ λ4

4
(
σ

2 +π
2)2− εσ , (2.3a)

Vω =−1
2

m2
ωωµω

µ , (2.3b)

Vb =−
1
2

κ
2
b b2 +

1
4

λbb4. (2.3c)

The parameters λ2, λ4 and ε can be connected to the vacuum meson masses and the pion decay
constant as

λ2 =
m2

σ −3m2
π

2
, λ4 =

m2
σ −m2

π

2 f 2
π

, ε = m2
π fπ , (2.4)

where the pion mass mπ = 138 MeV, the pion decay constant fπ = 93 MeV. The mass of the sigma
meson, mσ , is treated as a free parameter. In the mean-field approximation, rotational invariance
requires that the spatial component of the ωµ field vanishes, namely 〈ω〉 = 01, while 〈π〉 = 0
follows from parity conservation.

One particular feature of the HQMN model is that it realizes the concept of statistical con-
finement through a medium-dependent modification of the Fermi-Dirac distribution functions for
particles and antiparticles, where an auxiliary scalar field b is introduced, namely

n± = θ
(
α

2b2− p2) f±, nq = θ
(

p2−b2) fq,

n̄± = θ
(
α

2b2− p2) f̄±, n̄q = θ
(

p2−b2) f̄q,
(2.5)

1In this contribution we denote ω0 ≡ ω .
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Figure 2: (Color online) The phase diagram of the HQMN model in the (α,µB)-plane at temperature T =

10 MeV. The first-order transition lines are indicated as black solid lines, while the chiral crossover line is
shown as black dash-dotted line. The red circle in the chiral transition line correspond to the critical point.

where α is a dimensionless model parameter. The functions f± and fq are standard Fermi-Dirac
distribution functions, defined as

fx =
1

1+ eβ (Ex−µx)
, f̄x =

1
1+ eβ (Ex+µx)

, (2.6)

where, for the nucleons, E± =
√

m2
±+ p2 and µ± = µB− gωω , and for quarks, the dispersion

relation is Eq =
√

p2 +m2
q, and the quark chemical potential µq =

1
3 µB. The b field is generated

through the potential Vb (see Eq. (2.3)). The expectation value of the field serves as an infrared
momentum cutoff for quarks and ultraviolet for nucleons. The potential Vb develops a non-trivial
vacuum expectation value, and is chosen in a way that it develops non-monotonic behavior that
triggers the suppression of quarks at low densities, and nucleon suppression at high densities. The
additional α parameter in Eq. (2.5) is a model parameter, whose role is to be studied in the following
sections.

The masses of the parity doublers are given by the following relation

m± =
1
2

[√
(g1 +g2)

2
σ2 +4m2

0∓ (g1−g2)σ

]
, (2.7)

where the couplings g1, g2 are the chiral couplings of the fermionic fields in the original parity
doublet Lagrangian [6, 13, 14]. The mass of quark is given by

mq = gσ σ . (2.8)

From Eq. (2.7) and (2.8), it is clear that the chiral symmetry breaking generates only the splitting
between the masses of nucleons. When the symmetry is restored, the masses become degenerate
according to m±(σ = 0) = m0. Quark mass, on the other hand, is completely generated through
the condensation of the σ meson.
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Figure 3: (Color online) The phase diagram of the HQMN model in the (α,ρB)-plane at temperature T =

10 MeV. The first-order transition are depicted as black areas, and correspond to the induced jump in density.
The chiral crossover line is shown as black dash-dotted line. The red circle in the chiral transition line
correspond to the critical point.

We identify the hadronic states with the nucleon N(938) (positive-parity state) and its reso-
nance N(1535) (negative-parity state). Their vacuum masses are set to be m+ = 938 MeV and
m− = 1500 MeV. Following previous studies [6, 7, 11, 13], we choose the chirally invariant mass
to be m0 = 790 MeV. The model parameters used in this contribution are fixed as in Ref. [14]. The
thermal values of the mean fields are determined by extremizing the thermodynamic potential with
respect to the mean-fields.

3. Equation of state

In this contribution we consider a particular choice of the parameter α , namely αb0 = 390 MeV,
where b0 is the vacuum expectation value of the b field, and study the thermodynamic quantities at
finite temperature T = 10 MeV. In this section we focus on the bulk equation of state and the phase
diagram of the HQMN model.

In Fig. 1, we show the resulting thermodynamic pressure plotted against the net-baryon density
ρB in the units of nuclear saturation density ρ0. The softening of the equation of state around
ρB = 4ρ0 is due to a smooth chiral crossover phase transition. The transition point is extracted from
the peak of ∂σ/∂ µB and is located at µB = 1305 MeV. At higher densities the system undergoes
a first-order deconfinement transition, which is triggered by the non-monotonic behavior of the
b-field expectation value. The transition happens at µB = 1868 MeV. The jump in density is of the
order of 4ρ0. From the figure it is evident that the two transitions are separated. Hence, the model
predicts a phase in which quarks are still confined but the chiral symmetry is restored.

In Fig. 2, we show the model phase diagram in the (α,µB)-plane at T = 10 MeV. From the
figure it is evident that the chiral and deconfinement transitions are always separated. For higher
values of the parameter α , the chiral phase transition is a smooth crossover shown as the dash-
dotted line. At lower values of α it develops a critical point (red circle), and eventually turns into
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Figure 4: (Color online) Second-order cumulant of the net-baryon number density at temperature T =

10 MeV. Shown are results obtained in three models, NJL (blue solid line), parity doublet (red dashed line)
and HQMN model for αb0 = 390 MeV (black dash-dotted line). Parametrization for the NJL and parity
doublet model is from [14]

a 1st-order transition indicated as a solid line. The deconfinement transition is always of 1st order,
irrespectively of the choice of the parameter α .

In Fig. 3, we show the phase diagram as a function of the net-baryon number density. We
observe that the two transitions are always separated by roughly 3− 5ρ0. At low values of α ,
the first-order chiral phase transition causes a finite density jump of roughly 2ρ0. The strength
of the transition shrinks towards the critical point and becomes smooth above it. The jump in
density connected with the deconfinement transition is on the other hand roughly of the same
order for all choices of α , namely 3− 4ρ0. We note that the phase structure obtained at different
temperatures is qualitatively similar to the one studies here [14]. We also remark that in principle,
it is possible to modify the phase structure, so that the two transitions happen simultaneously. The
transitions would be then of the first order, given by the finite jump in b-field expectation value at
low temperature [14].

In the next section we study the behavior of the higher-order cumulants of the net-baryon
number density.

4. Net-baryon number density cumulants

The fluctuations of conserved charges are important quantities because they reveal more infor-
mation about the matter composition, and are used as probes for the phase transitions. In principle,
the critical behavior of chiral models should be universal and follow that of QCD. Namely, at high
temperatures, the chiral transition belongs to the O(4) universality class, which at some value of
baryon chemical potential is followed by the critical point, which turns into a first-order transition.
This is naturally encoded in chiral models, as well as in quark models. Here, we put our focus
on the influence of the statistical confinement on the behavior of the higher-order cumulants in the
vicinity of phase transitions.

5
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Figure 5: (Color online) Third- (left panel) and fourth-order (right panel) cumulants of the net-baryon
number density at T = 10 MeV. The blue solid lines correspond the the first-order transition, red dashed
line to the second-order transition, and the black dash-dotted line to the crossover transition. The x-axis is
normalized by the chiral transition value µc

B in each scenario.

In the grand canonical ensemble, the cumulants are realized as higher-order derivatives with
respect to an external parameter. The cumulants net-baryon number are defined as

χn =−
∂ nΩ

∂ µn
B

. (4.1)

Unlike in the lattice QCD studies, for the propose of this study, it is more convenient to consider
cumulants normalized by the baryon chemical potential [14], namely

χ
µB
n = µ

n−4
B χn. (4.2)

We compare the results obtained in the HQMN model, with the results obtained in the parity
doublet model, as well those in the Nambu–Jona-Lasinio (NJL) model. The parity doublet model
is a model with only hadronic degrees of freedom, while the NJL consists solely of quarks. The
parametrization used here can be found in Ref. [14].

In Fig. 4 we show the second-order cumulants, normalized by the baryon chemical potential,
in all three models. The result obtained in the NJL model (blue solid line), undergoes a chiral
crossover. This is seen as a peak in the second-order cumulant. At higher baryon chemical po-
tential it approaches the Stefan Boltzmann limit. The parity doublet and HQMN results, develop
a jump around µB = 917 MeV. This is so because both models are fixed to reproduce the nuclear
groundstate properties at T = 0. The parity doublet model develops the chiral peak at higher values
of the baryon chemical potential and continuously go to zero in the high-density limit. When the
momentum suppression of the nucleon degrees of freedom starts to be non-negligible due to change
in the b-field expectation value, the HQMN result starts to deviate from the result obtained in the
parity doublet model.

The HQMN model shows the chiral peak at much lower values of µB. The strength of the
transition is also much stronger than that obtained in the parity doublet model. The pronounced
transition is the result of the suppression of the nucleon degrees of freedom through Eq. (2.5).

6
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Eventually at high values of baryon chemical potential the HQMN model result features a dis-
continuity due to the jump in the deconfinement transition. At this point the degrees of freedom
change from nucleons to quarks. In the high-density limit, the model restores the proper asymptotic
behavior.

While the second-order cumulant shows large sensitivity to the chiral phase transition, it is
much less sensitive to the first-order deconfinement transition. This is because the transition is
strictly connected to the potential Vb and is driven by the expectation value of b. By construction,
the potential is only symmetric with respect to a discrete symmetry. This is so because additional
massless Goldstone modes would spoil the known low-energy chiral phenomenology of QCD.

In Fig. 5, we compare the third-order (left panel) and the fourth-order (right panel) cumulants
of the net-baryon number density in the HQMN model. Shown are the results for three different
values of α parameter, namely for the crossover (black dot-dashed line), second-order transition at
the critical point (red dashed line), first-order transition (blue solid line). The x-axis is normalized
by corresponding critical value of the baryon chemical potential, µc

B. Note that while the second-
order cumulant was positive at all values of µB, the higher-order cumulants can in principle both
turn negative. In the case of the first-order transition, the third- and fourth-order cumulants are
discontinues.

The third- and fourth-order cumulants for the second-order transition diverges at both sides of
the transition point. The former one changes sign from positive to negative at the chiral transition
point. In the case of the crossover, χ

µB
3 rapidly increases in the chirally broken phase, then drops and

exhibits a dip at negative value in the chirally restored phase. The fourth-order cumulant exhibits
similar structure, but develops a smaller secondary peak in the chirally restored phase. Note that
these results are qualitatively similar to the results obtained in other chiral models incorporating
the statistical confinement as, e.g., [15].

5. Conclusions

We have discussed the mean-field-approximation thermodynamics of the Hybrid Quark-Meson-
Nucleon (HQMN) model at low temperature and finite baryon chemical potential. The model con-
siders nuclear matter in the parity-doublet fashion, and quark matter in the standard quark-meson
one. These are coupled together via an additional non-dynamical scalar field, whose role is to
suppress quarks at low, and nucleons at high, values of temperature and baryon chemical potential.

We have studied the equation of state and the phase diagram in the HQMN model. We have
shown that the chiral and deconfinement transitions are always separated. The found that the α

parameter plays a role in changing the order of the chiral phase transit on. Namely, for low values,
the transition is of first order, then at some value the model exhibits a critical point and the transition
is of second order, and eventually becomes a smooth crossover at high values of the parameter. On
the other hand, the deconfinement transition is always a first-order transition. We emphasize that the
separation might of these two transitions might indicate the existence of the quarkyonic phase [16].

We have also studied the higher-order cumulants of the net-baryon number. We find that due
to the suppression of the nucleon degrees of freedom through the momentum cutoff, the model
yields much stronger chiral phase transition, when compared to the purely hadronic parity doublet

7
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model. The deconfinement transition, on the other hand, is found to be much less sensitive and less
pronounced in the higher-order cumulants.

In this contribution, we considered an isospin-symmetric system of two flavors. In order to
make the HQMN model suitable to astrophysical applications, such as neutron stars [17] or super-
novae [18], it has to be extended to an arbitrary isospin asymmetry. Moreover, the appearance of
heavier flavors, i.e., strangeness, must also be taken into account. Such extension within the parity-
doublet model was recently formulated [19]. However, the role of strange degrees of freedom in
astrophysics is still speculative, and is a matter of current investigation [20].
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