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The holographic connection between strongly-coupled gauge theories and extra-dimensional
gravitational theories has succeeded in describing many features of non-perturbative QCD. Phe-
nomenological models called AdS/QCD use a five-dimensional AdS black hole to study ther-
modynamic properties of the quark-gluon plasma. In this talk, we focus on the phase transition
that occurs as chiral symmetry is restored at high temperature and chemical potential. Using a
Reissner-Nordström metric for a charged black hole, we find a critical temperature around 150
MeV and a critical quark chemical potential around 560 MeV. We qualitatively reproduce the
Columbia plot, showing the dependence of the phase transition order on the light and strange
quark masses. We show that the introduction of a chemical potential does not affect the order of
the phase transition, implying the absence of a critical point in this simple model.
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1. Introduction

The investigation of the phase diagram for quark matter is a major project of nuclear physics.
The heavy-ion community is interested in mapping out the phase transition between hadronic mat-
ter and the quark-gluon plasma as a function of temperature and baryon chemical potential. In
particular, the search for the expected critical point in this phase boundary is the focus of the next
run at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. A robust
theoretical description of the phase boundary is thus a worthy goal.

Results from lattice QCD have demonstrated that the deconfinement phase transition at zero
quark chemical potential (µ) is a rapid crossover. Extending lattice results to finite chemical po-
tential is prevented by a well-known obstacle known as the sign problem. Techniques exist for
extending lattice QCD to finite but relatively small values of µ , results which show no evidence of
a critical point [1, 2, 3].

Phenomenological models inspired by the AdS/CFT correspondence [4, 5, 6] have succeeded
in describing some aspects of the quark-gluon plasma [7, 8]. Previous work has mapped the chiral
phase transition as a function of temperature and quark chemical potential [9, 10, 11]. In two-flavor
models, the phase transition is a crossover for zero quark mass and second order for nonzero quark
mass, consistent with lattice QCD models, which find the order of the order of the chiral phase
transition to be dependent on the light and strange quark masses. More general arguments also show
that the chiral phase transition depends on the number of quark flavors and their masses [12], as
summarized in the Columbia plot, which indicates that a first-order transition is achievable in 2+1-
flavor models. Different holographic models have shown evidence of a critical point by examining
baryon susceptibilities [13, 14], but these models do not examine chiral symmetry restoration,
which is the focus of this work.

We present the results on the chiral dynamics and meson melting of a flavor-symmetric soft-
wall AdS/QCD model first published in [9]. We extend our analysis to consider the effects of
strange quarks on the chiral phase transition. By considering heavy quarks we further our explo-
ration of the QCD phase diagram, specifically the Columbia Plot which characterizes the phase
transition as a function of mu,d and ms [15]. We explore a 3-flavor symmetric model (ml = mu,d =

ms) and a 2+1-flavor model (ml = mu,d 6= ms), extending the work of [16] to finite quark chemical
potential.

2. 2-Flavor Model

To consider the thermodynamics of AdS/QCD, we use an asymptotically anti-de Sitter 5-D
black hole metric

ds2 =
L2

z2

(
− f (z)dt2 +dx2

i +
dz2

f (z)

)
. (2.1)

Following the procedure of our published work [9] and established in [17, 18, 19], we model finite
temperature and chemical potential with a charged black hole described by the 5D AdS–Reissner-
Nordström metric

f (z) = 1− (1+Q2)

(
z
zh

)4

+Q2
(

z
zh

)6

, (2.2)
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where Q = qz3
h and 0 < Q2 < 2. The quark chemical potential and temperature are determined by

the charge and horizon position

µ = κ
Q
zh
, (2.3)

T =
1

πzh

(
1− Q2

2

)
. (2.4)

Note that this is the quark chemical potential, with a value one third of the baryon chemical poten-
tial. As in [11] we take κ = 1. Any combination of temperature and chemical potential uniquely
determines a combination of zh and q.

The matter fields of the theory are described by the following action

S =
1
2k

∫
d5x
√
−ge−Φ(z) Tr

[
|DX |2 +Vm(X)+

1
2g2

5

(
F2

A +F2
V
)]

. (2.5)

where X contains the scalar and pseudoscalar meson fields. The scalar potential is

Vm(X) = m2
5|X |2 +4v4|X |4, (2.6)

where m2
5 = −3 is the mass of the scalar field and v4 = 8 for good phenomenology. The scalar

meson field has a z-dependent vacuum expectation value (VEV) that describes the chiral symmetry
breaking of the model. In a 2-flavor symmetric model, the VEV becomes

〈X〉= χ(z)
2

I, (2.7)

where I is the N f ×N f identity matrix.
A quadratic IR dilaton Φ(z→ ∞)∼ z2 is required for linear confinement [20, 21]. In order to

dynamically solve for the chiral field, the dilaton must become negative quadratic in the UV limit
[22]. One example of a dilaton profile that produces good meson spectra in the zero-temperature
limit is

Φ(u) =−µ
2
1 z2

hu2 +
(
µ

2
0 +µ

2
1
)

z2
hu2 [1− exp

(
−µ

2
2 z2

hu2)] , (2.8)

with µ0 = 430 MeV, µ1 = 830 MeV, and µ2 = 176 MeV. We use this dilaton parameterization for
both the two-flavor and 2+1-flavor models.

2.1 Vector and Axial-Vector Meson Melting

We present the analysis of the vector and axial-vector mesons as representative cases of the
behavior of the meson spectral function[10]. The equation of motion for the vector field is obtained
by varying the action

√
−ge−Φ

∂ν∂
νVµ(x,z)+∂z

(√
−ge−Φgzz

∂zVµ(x,z)
)
= 0. (2.9)

We perform the Kaluza-Klein decomposition of the Fourier-transformed fields Ṽµ(q,z)= ṽ(q,z)Ṽ 0
µ (q)

and set momentum q = 0 to obtain

ṽ′′−
(

f (u)−u f ′(u)+u f (u)Φ′(u)
u f (u)

)
ṽ′+

(
ω2z2

h
f (u)2

)
ṽ = 0, (2.10)
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where u = z/zh.
The equation of motion for the axial sector is found similarly. The coupling of the axial field

to the scalar VEV χ(z) results in an additional term that is responsible for the vector-axial mass
splitting. The equation of motion for the axial meson reads

ã′′−
(

f (u)−u f ′(u)+u f (u)Φ′(u)
u f (u)

)
ã′+

(
ω2z2

h
f (u)2 −g2

5
χ(u)2

u2 f (u)

)
ã = 0. (2.11)

The equations of motion are put into a Schrödinger-like form through a Bogoliubov transfor-
mation of the fields. For the purposes of demonstration we choose the axial sector. The equation
of motion (2.11) becomes

∂
2
r∗a+ω

2a =Vs a, (2.12)

with the effective potential

Vs = f (z)2
(

ω ′2a

4
− ω ′′a

2

)
+ f (z)g2

5
χ2

z2 , (2.13)

where ωa ≡Φ(z)+ log(z) and the tortoise coordinate r∗ satisfies ∂r∗ =− f (z)∂z. Additional details
are found in [9].

Near the black hole horizon, the potential in (2.12) vanishes, yielding free-particle in-falling
(ψ−) and out-going (ψ+) solutions

ψ± = (1−u)±i ωzh
4 . (2.14)

These wavefunctions can be written as linear combinations of the UV solutions (ψ1, ψ2) as

ψ− = A−ψ1 +B−ψ2 (2.15)

ψ+ = A+ψ1 +B+ψ2. (2.16)

Here, ψ1 represents the normalizable solution. The spectral function is proportional to Im(A−/B−)
[23, 24, 9]. The peaks in this function can be visualized as the mass values ω that allow the
normalizable UV solution to be connected to the in-falling solution, which is the correct boundary
condition at the horizon.

The results plotted in Figure 1 show the first three states for the vector and axial-vector mesons
at a range of temperatures. The peaks become less pronounced at higher temperatures, representing
the melting of the bound states, beginning with the excited states. The bound states are seen to
melt at a temperature below the chiral phase transition. In addition, the mass splitting between the
two meson types stays constant, which is consistent with broken chiral symmetry. Increasing the
chemical potential produces a melting process that is qualitatively similar.

2.2 Chiral Phase Transition

We solve for χ(u) for each combination of T, µ with a numerical shooting method, varying σ

to determine the value that yields a function χ(u) that does not diverge at the horizon. These results
are shown in Figure 2. The chiral phase transition is second-order in the for mq = 0, becoming
crossover at the physical quark mass. Upon inspection, we find that the chiral transition remains of
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Figure 1: Spectral functions for (a) vector and (b) axial-vector mesons. The peaks correspond to
bound states, which melt at higher temperatures, beginning with the excited states.

μ=0.21 GeV

μ=0.33 GeV

μ=0.45 GeV

μ=0.56 GeV

0.00 0.05 0.10 0.15
0.00

0.01

0.02

0.03

0.04

T (GeV)

σ
(G
e
V
3
)

(a)

μ=0.21 GeV

μ=0.33 GeV

μ=0.45 GeV

μ=0.56 GeV

0.00 0.05 0.10 0.15 0.20 0.25
0.00

0.01

0.02

0.03

0.04

T (GeV)

σ
(G
e
V
3
)

(b)

Figure 2: Dependence of σ on temperature for varying µ values with (a) mq = 0 MeV and (b)
mq = 9.75 MeV. The transition is second-order in the chiral limit and a crossover for mq 6= 0.

the crossover type for small but nonzero quark mass. The effects of T and µ on chiral symmetry
restoration are qualitatively similar.

The quartic term in the scalar potential (2.6) is necessary to achieve the second-order chiral
phase transition [20, 25, 26]. Without this term, the sources of spontaneous and explicit chiral
symmetry breaking are not independent, causing σ to vanish at zero quark mass. Producing a
first-order phase transition requires a cubic term in the scalar potential, as investigated in Section
3.

3. 2+1-Flavor Model

A t’Hooft determinant term in the scalar potential provides mixing between light and heavy
flavors [22]. The potential becomes

Vm(X) = m2
5|X |2 +4v4|X |4 + γ Re [det(X)] , (3.1)
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Figure 3: Values of T and µ for which the quark condensate σ goes to zero. The transition is
second-order, corresponding to the chiral limit mq = 0.

where γ = 6
√

2 v3. As above, we take v4 = 8, and in the following set v3 =−3. In this 2+1 flavor
model, the scalar VEV takes the form

〈X〉= 1√
2

diag(χl(z),χl(z),χs(z)) (3.2)

where the normalization factor is chosen to give the kinetic term its canonical form. Thus, the
chiral potential becomes

V (χ) = 〈Tr[Vm(X)]〉= m2
5

(
χ

2
l +

1
2

χ
2
s

)
+3v3χ

2
l χs + v4(2χ

4
l +χ

4
s ). (3.3)

Varying 2.5 with respect to χl and χs respectively yields the following equations of motion,

χ
′′
l −

(
3 f (u)−u f ′(u)+u f (u)Φ′(u)

u f (u)

)
χ
′
l +

1
u2 f (u)

(
3χl−3v3χlχs−4v4χ

3
l
)
= 0, (3.4)

χ
′′
s −

(
3 f (u)−u f ′(u)+u f (u)Φ′(u)

u f (u)

)
χ
′
s +

1
u2 f (u)

(
3χs−3v3χ

2
l −4v4χ

3
s
)
= 0. (3.5)

The UV behavior of the chiral fields are determined by the AdS/CFT dictionary

χl(u→ 0) = mlζ zhu+
σl

ζ
z3

hu3, χs(u→ 0) = msζ zhu+
σs

ζ
z3

hu3, (3.6)

where ml = mu,d is the light quark mass, ms is the strange quark mass, and σl, σs are the chiral
condensates. In Section 3.1 we analyze the chiral phase transition in the SU(3) case where ml =ms,
and in Section 3.2 treat the 2+1-flavor case where ml 6= ms.

3.1 Flavor-Symmetric Chiral Phase Transition

We begin our analysis with the flavor-symmetric case. By setting ml = ms we find χl = χs, so
that (3.4) and (3.5) reduce to the single equation of motion

χ
′′−
(

3 f (u)−u f ′(u)+u f (u)Φ′(u)
u f (u)

)
χ
′+

1
u2 f (u)

(
3χ−3v3χ

2−4v4χ
3)= 0, (3.7)
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subject to the UV boundary condition 3.6 set by the AdS/CFT dictionary. Using a numerical
shooting method, we tune the chiral condensate σ , finding solutions to (3.7) that are normal at the
black hole horizon. At values of T,µ where such solutions do not exist, the trivial solution χ = 0 is
realized, signifying chiral symmetry restoration. As pointed out in [22], the inclusion of the cubic
t’Hooft determinant term in the scalar potential breaks the χ ↔ −χ symmetry, giving energetic
preference to positive chiral fields. As a result, the σ ↔−σ symmetry found in the two-flavor case
is also broken, allowing first-order phase transitions.

For a given quark mass, we solve for the chiral condensate as a function of temperature and
baryon density. Figure 4 shows examples of first-order, second-order, and crossover transitions for
representative values of the quark mass and chemical potential. The critical value of the quark mass
separating first-order and crossover phase transitions is mq = 35 MeV. This critical quark mass is
found to be independent of µ . This implies that there is no critical point in the T −µ plane in this
flavor-symmetric model.
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Figure 4: Dependence of σ on T , for zero and non-zero values of µ and (a) ml = ms = 10 MeV,
(b) ml = ms = 35 MeV, and (c) ml = ms = 45 MeV. In all cases, chemical potential has no effect on
the order of the phase transition.

3.2 2+1-Flavor Chiral Phase Transition

Finding no critical point in the flavor-symmetric case, we extend the model to 2+1 flavors. We
use the shooting method to solve (3.4, 3.5), searching for values of σl and σs that yield regular
solutions for both chiral fields. A representative case is shown for ml = 40 MeV, ms = 70 MeV.
From Figure 5 it is clear that σl and σs do not coincide. In fact, by examining the case where
ml = 0 MeV, ms = 200 MeV, we find that σl undergoes a second-order transition at all values of
µ whereas the phase transition for σs is first-order. Thus we find that the order of the transition is
not necessarily the same for the two flavors, though no combination of quark masses produces a
first-order transition for one flavor and crossover for the other. In the case that the orders do not
agree, we characterize the transition as second-order.

As a summary of our analysis, we plot the phase structure of the mass plane for µ = 0 MeV
and µ = 300 MeV. As shown in Figure 6, when ms is small we identify slight discrepancies on the
order of 1 MeV which we deem insignificant. We find that the order of a transition is unchanged at
finite chemical potential.
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Figure 5: Dependence of σl and σs on T with ml = 40 MeV, ms = 70 MeV and (a) µ = 0 MeV and
(b) µ = 300 MeV.
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Figure 6: The Columbia Plot produced by the 2+1-flavor model for (a) µ = 0 MeV and (b) µ = 300
MeV.

4. Conclusion and Discussion

In this work, we investigate the chiral phase transition in soft-wall AdS/QCD at finite tem-
perature and quark chemical potential. The scalar VEV is modified to include strange quarks, and
higher order terms in the scalar potential are including in the action. A quartic term allows for
independent sources of explicit and spontaneous chiral symmetry breaking, while a cubic t’Hooft
determinant term allows for flavor mixing and first-order phase transitions. All analysis is per-
formed in the finite chemical potential regime, using the AdS–Reissner-Nordström metric. Using
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the shooting method we numerically solve for the chiral field and extract the dependence of the
chiral condensates on temperature and baryon density.

We first present the degenerate case where mq = mu/d = ms, and find that the value mq = 35
MeV separates first-order from crossover transitions. In agreement with lattice results and other
nonperturbative methods, we find the second-order curve that separates first-order from crossover
transitions by allowing ms 6= ml . When ms is large, our results are consistent with the two flavor
model, where the transition is second-order in the chiral limit.

This paper presents improvements upon earlier results in this area by incorporating finite
chemical potential to a three flavor model, enabling rich exploration of chiral dynamics. This
holographic model admits no critical point in the T − µ plane. Finite baryon number density has
no effect on the order of the transition, regardless of quark mass. In particular this model couples
all quarks to the quark chemical potential, and is qualitatively symmetric between T and µ . Future
work in this area should provide qualitative differences at finite quark chemical potential. One
possibility is to couple quark chemical potential to the light quarks only. In addition, the dilaton
and metric should be solved dynamically from the gravity action, rather than being parameterized
by hand.
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