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We summarize the new method for the correction of participant fluctuations in high energy
nucleus-nucleus collisions. It allows to estimate a fluctuation baseline in comparison to a use-
ful signal. In particular cases of a weak signal compared to baseline, it allows to cancel the
baseline contribution from participants.
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The way to probe the QCD phase diagram experimentally is to study interactions of various
nuclei at different energies. One of the main background effects in such a study is fluctuations of
participants - NP. This is the number of nucleons that interacted inelastically during a collision.
Several popular ways of reducing participant fluctuations exist:

1. the selection of narrow centrality bins,

2. the Centrality Bin Width Correction procedure [1],

3. the use of strongly intensive quantities [2, 3].

We checked the first two methods, and found that they still leave some participant fluctuations [4].
The third method requires an assumption that two measures e.g., pion and kaon multiplicities,
are produced in the same volume and with the same volume fluctuations. It may be a too strong
assumption. We propose a different approach - to cancel participant fluctuations in a combination
of several high fluctuation moments of a given quantity, e.g. particle type [4]. It may be possible,
because fluctuations of participants give related contributions in low and high moments of measured
distributions. It is similar to the third method, but we propose to use the moments from the same
particle species. We call our new method - multi moment cancellation of participant fluctuations
(MMCP).

Fluctuation measures. A multiplicity distribution, P(N), can be characterized by central mo-
ments, mn,

mn = ∑
N
(N−〈N〉)n P(N) , where 〈Nn〉 = ∑

N
Nn P(N) . (1)

which are related to cumulants, κn,

κ2 = m2 , κ3 = m3 , κ4 = m4 − 3m2
2 , . . . . (2)

Their special combinations - scaled variance, normalized skewness, and normalized kurtosis,

ω =
κ2

〈N〉
=

σ2

〈N〉
, Sσ =

κ3

κ2
, κ σ

2 =
κ4

κ2
, (3)

where σ =
√
〈N2〉−〈N〉2 =

√
κ2 is standard deviation, are used frequently, because they are re-

lated to the shape of a distribution, see Fig. 1 Note, that equivalence between Poisson and Gauss
(Normal) distribution is broken already for ω1. Therefore, selecting some baseline distribution
imposes a certain relation between moments, which might not exist. However, some assumptions
must be done in order to proceed in analytical modeling. A possible minimal requirement is inde-
pendent participant model. In this model the only assumptions are that participants are identical
and independent. Then a mean multiplicity N is the sum of contributions from NP participants,

N = n1 + n2 + . . . + nNP
, (4)

1For Poisson distribution ω = Sσ = κσ2 = 1, while for Gauss distribution ω is a free parameter, but Sσ = κσ2 = 0.
For another popular distribution - Log-Normal - one can select it’s parameters so that ω ∼ Sσ ∼ 〈N〉 and κσ2 ∼ 〈N〉2.
Therefore, the approach ‘just take Negative Binomial’ (Poisson, Gauss...) is not working for fluctuations.
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Figure 1: Relation of variance, skewness and kurtosis to the shape of a distribution.

The identical and independent means that, 〈ni〉= 〈n j〉= 〈n1〉= 〈nA〉, and 〈ni n j . . .nk〉= 〈nA〉k .
Then one can obtain [5]:

〈N〉 = 〈NP〉 〈nA〉 , (5)

ω = ωA + 〈nA〉 ωP , (6)

Sσ =
ωA SA σA + 〈nA〉 ωP [ 3ωA + 〈nA〉SP σP ]

ωA + 〈nA〉 ωP
, (7)

κ σ
2 =

ωA κA σ2
A + 〈nA〉 ωP

[
〈nA〉2 κP σ2

P + ωA ( 3ωA + 4SA σA + 6〈nA〉SP σP )
]

ωA + 〈nA〉 ωP
, (8)

see also [6, 7]. The values without index are those that can be measured. The A index labels the
values that we would like to measure - fluctuations from one participant (a source). The P index
labels participant fluctuations.

The MMCP method. Equations (5-8) can be rewritten in a more compact form [4]:

〈N〉 = 〈NP〉 〈nA〉 , (9)

ω = ωA(1+α) , (10)

Sσ = ωA
3α +δ +α β

1+α
, (11)

κ σ
2 = ω

2
A

3α + ε +α [ 6β + γ +4δ ]

1+α
. (12)

The same as in Eqs. (5-8), on the left we have four values that can be measured - 〈N〉, ω , Sσ ,
κσ2, and eight unknowns on the right - α , β , γ , δ , ε , 〈NP〉, 〈nA〉, ωA. However, in Eqs. (9-12)
we introduced the values that characterize the strength of participant fluctuations compared to the
fluctuations from a source,

α = 〈nA〉
ωP

ωA
, β = 〈nA〉

SP σP

ωA
, γ = 〈nA〉2

κP σ2
P

ω2
A

, (13)
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and the values which characterize the relative strength of high and low order fluctuations from one
source

δ =
SA σA

ωA
and ε =

κA σ2
A

ω2
A

(14)

It makes the analysis of Eqs. (5-8) easier. The relation,

α, |β |, |γ| � 1 , (15)

is the mathematical meaning of the phrase ‘small participant fluctuations’. For Gauss distribution
ε = δ = 0, while for Poisson distribution ε = δ = 1. In a hadron gas, i.e. in a system away from
critical point or phase transition, δ and ε are in between Gauss and Poisson limit [8]

0 ≤ δ = ε =
1

ω2
A
= tanh2(µB/T ) ≤ 1 , (16)

where µB is baryon chemical potential, and T - temperature of the system. Close to critical point
κn ∼ ξ

5(n−1)−1
2 , where ξ → ∞ is correlation length [9, 10], then

α ∼ 〈nA〉2
ωP

ξ 2 → 0 , |β | ∼ 〈nA〉2
|SP σP|

ξ 2 → 0 , |γ| ∼ 〈nA〉4
|κP σ2

P |
ξ 4 → 0 , (17)

while

δ ∼ 〈nA〉 ξ
0.5→ ∞ , and ε ∼ 〈nA〉2 ξ → ∞ . (18)

The non-observation of critical point suggests that ξ is not large enough for the realization of
approximations (17) and (18). Then, if they exist, the wanted ‘critical’ fluctuations are comparable
with the fluctuations of participants. For α, |β |, |γ| � 1, and neglecting either δ or ε , one can
solve the system (9-12). In case of δ � ε there is a simple analytic solution:

α ' Sσ

3ω−Sσ
, (19)

ωA ' ω − Sσ

3
, (20)

κA σ
2
A ' κ σ

2 − ωA Sσ , α, |β |, |γ| � 1, δ � ε . (21)

In this way one removes the fluctuations of participants and obtains the fluctuation from a source
using measured values.

Test of the MMCP. For the test of the above considerations we use the EPOS 1.99 model [11]
applied to the net-electric charge in 40

18Ar+45
21 Sc reactions at plab = 150 GeV/c and with yCMS > 0,

see Figs. 2-4. The centrality selection is (left to right): 20%, 17.5%, 15%, 12.5%, 10%, 7.5%,
5%, 2.5%, 1.5%, 1%, 0.75%, 0.5% and 0.2% with respect to zero centrality, i.e. from 0− 20%
to 0− 0.2%. The points correspond to the average number of participants in the corresponding
centrality bins. The ‘reference’ line is obtained for fixed NP, which is the closest integer number to
a given 〈NP〉. One can see that for the system that we study the condition α, |β |, |γ| � 1 is valid.
The |δ | � |ε| is not always satisfied. However, a weaker condition is valid, |δ |, |ε|< 3α , which
is also enough for neglecting either δ or ε in MMCP.
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Figure 2: The dependence on centrality bin width for α , β , γ , δ , ε (left), and 〈N〉, 〈nA〉 (right), see [4].
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Figure 3: The same as Fig. 2 right for scaled variance and normalized skewness, see [4].
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Figure 4: The same as Fig. 2 right for normalized kurtosis, see [4].
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Conclusions. The multi moment cancellation of participant fluctuations procedure works very
well for the scaled variance ω . It reproduces a source fluctuations in all considered centrality
bins. In case of normalized kurtosis, κσ2, the MMCP gives the values that are closer to a source,
compared to the values which are obtained by narrowing centrality bins.

The fluctuations from a source, SA σA and κA σ2
A, are almost zero in the considered exam-

ple. The largest contribution to the values that can be measured, Sσ and κ σ2, gave lower order
fluctuations of participants,

Sσ ' 3〈nA〉ωP > 0 , κ σ
2 ' 3〈nA〉ωA ωP > 0 , while SA σA ' 0 , κA σ

2
A ' 0 . (22)

Therefore, it is important to address participant fluctuations in details, at least for the third and the
fourth fluctuation moment. The average number of particles produced by a source, 〈nA〉, and it’s
fluctuations of the second, ωA, and the third order, SA σA, do not depend on centrality. However,
the fourth order fluctuations of a source, κA σ2

A, change non-monotonously for the bin width smaller
than 5% in the range from −1 to +1. This effect should be studied in more details.
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