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1. Introduction

The study of the QCD phase structure at large baryon density has been a difficult problem,
partly because the lattice Monte Carlo simulations based on the QCD action are not at work, and
partly because many-body problems with strong interactions are very complex in theoretical treat-
ments. Currently the best source of information for dense QCD is the physics of neutron stars from
which one can extract useful insights into QCD equations of state and transports beyond the nuclear
regime [1]. The physics of neutron stars include the structure of neutron stars of low temperature
matter in β -equilibrium, and supernovae as well as neutron star mergers which contain hot QCD
matter with various lepton fractions and neutrinos. The domain relevant for these physics is the
baryon density of nB ∼ 1− 10n0 (n0 ≃ 0.16fm−3: nuclear saturation density) or baryon chemical
potential of µB ∼ 1−2GeV, and the temperature of T ∼ 0−100MeV.

In this talk I discussed on-going attempts to delineate the properties of dense QCD matter
using the astrophysical constraints. There are remarkable progress in observations that constrain
our understanding on the nature of matter. They include the discoveries of two-solar mass (2M⊙)
neutron stars [2], the constraints for the neutron star radii from X-ray analyses [3, 4], and most
remarkably, the detection of the gravitational waves [5] and the electromagnetic signals [7] from
neutron star mergers found on August 17 just after this CPOD meeting.

The first part of this talk is devoted to the discussions of neutron star structure and its implica-
tions for the properties of QCD matter at zero temperature. In particular we set up a quark model
description for the high density part. Then we apply the model to descriptions of matter at finite
temperature, which is the second topic in this talk.

2. QCD matter at zero temperature in β -equilibrium

Neutron star observations give us useful constraints on equations of state through the neutron
star mass-radius (M-R) relations. The mass and radius become larger for stiffer (larger pressure P
at given energy density ε) equations of state since the pressure pushes back matter attracted by the
gravity. In principle, a precisely determined M-R relation can be used to directly reconstruct the
neutron star equations of state [6]. While the precision at present is not good enough for the direct
inversion procedure to determine the equations of state, it has been known [8] that the shape of
M-R curves can be characterized by equations of state at three characteristic regions in nB (Fig.1)
At low density, nB ≲ 2n0, R rapidly decreases as M increases, and around ∼ 2n0, the M-R starts to
go vertically without much change in R. Then the curve reaches the maximum in M at nB ≳ 5n0.
Using these correlations between M-R and nB, one can focus on the radius constraint for the low
density equations of state, or for the high density part one can focus on the maximum mass.

One of the established constraint is the existence of two-solar mass (2M⊙) neutron stars [2],
which tells us that high density equations of state at nB ≳ 5n0 should be stiff enough to prevent
stars at M ≃ 2M⊙ from collapsing to a blackhole. Another important constraint comes from the
estimate of R, most typically R1.4 for 1.4M⊙ stars, and it tells us whether low density equations of
state are stiff or not. There have been many predictions for R1.4 which ranges from ≃ 10 km to
≃ 16 km. Below equations of state giving R1.4 ≲ 13 km will be called soft low density equations
of state, otherwise regarded as stiff one. The estimate of R, which has been based on spectroscopic
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Figure 1: The correlation between the M-R relation and equations of state.

analyses of the X-rays from the neutron star surface, includes more systematic uncertainties than
in the mass determination. But the current trend on these analyses converges toward the estimate
R = 11−13 km, which is consistent with microscopic nuclear calculations at low density [12, 13].
Moreover, as we will discuss later, the analyses of gravitational waves from neutron star mergers
favor soft low density equations of state.

Figure 2: The pressure v.s. energy density for soft-stiff and stiff-stiff equations of state. The slope is given by ∂P/∂ε =

c2
s , the sound speed square, which must be smaller than 1. The soft-stiff combination of low and high density equations

of state disfavors the strong 1st order phase transition and has the radius smaller than the stiff-stiff combination.

These somewhat independently constrained high and low density equations of state must be
put together, and at this stage the causality constraint plays a very important role, especially when
we try to construct soft-stiff equations of state in which P(ε) is small at low density but large at
high density. In order to connect the soft equations of state to stiff ones, there must be a domain
such that ∂P/∂ε = c2

s , the sound speed square, is large, but it should not exceed the light velocity.
This constrains the structure of P(ε) for 2n0 ≲ nB ≲ 5n0, and the strength of possible 1st order
phase transitions in particular. Indeed if we try to put the 1st order phase transition by hand in the
intermediate region (Fig.2), there is a jump in ε for fixed P, therefore after the phase transitions we
need even larger ∂P/∂ε to get the connection to the high density part in P(ε). For this reason below
we will focus on the equations of state which do not contain any strong 1st order phase transitions
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from 2n0 to 5n0, although small 1st order phase transitions are still not excluded in principle. More
systematic analyses are given in Ref.[9].

Here we note that at nB ≳ 5n0 the baryons start to touch each other provided that the core radius
is ∼ 0.5fm. The Fermi momentum of quarks in 3-flavor matter at nB = 5n0 corresponds to pF ≃
400MeV which is larger than the QCD nonperturbative scale ΛQCD ≃ 200MeV. Meanwhile, purely
hadronic calculations are not under theoretical control beyond nB ≳ 2n0, due to large corrections
from higher order effects such as rapidly growing many-body forces in nuclear calculations, the
appearance of new degrees of freedom other than nucleons, etc. Thus we expect the importance of
quark substructure effects in neutron star matter for nB ≳ 2n0, and further imagine the formation
of quark matter around nB ≃ 5n0. Combining this microscopic insights with the assumptions on
the absence of strong 1st order phase transitions, we view the QCD matter from the picture of
hadron-quark continuity [10, 11], in which hadronic matter smoothly transforms into quark matter.

Figure 3: The 3-window modeling of the QCD matter.

Based on the picture of the hadron-quark continuity, we construct QCD equations of state by
a 3-window approach (Fig.3) [14, 15]. At low density, nB ≲ 2n0, the matter is dilute and baryons
are well-defined objects, so the equations of state are described by nuclear ones. We use here
the Akmar-Phandheripande-Ravenhall (APR) equation of state as a representative [12]. At high
density, nB ≳ 5n0, the matter is dense enough for a quark Fermi sea to form, so the equations of
state are described by quark matter ones. This domain is parameterized by microscopic interac-
tion parameters in a schematic Nambu-Jona-Lasinio (NJL) type quark model for hadron physics.
In between there is a matter for which neither purely hadronic nor quark matter descriptions are
appropriate, so, applying the hadron-quark continuity picture, we interpolate the APR and quark
model equations of state. Specifically our interpolation is done with polynomials

P(µB) =
5

∑
n=0

cnµn
B . (2.1)

To determine the coefficients cn’s, we first compute nB = ∂P/∂ µB, and then demand, at nB = 2n0

and 5n0, the interpolating function to match with the APR and quark equations of state up to the
second derivative.

In this phenomenological modeling, we need to choose a quark model for nB ≳ 5n0. Guided by
the continuity picture, the form of effective models is inspired from those for hadron physics. Here
relatively short range interactions are important as the quark matter regime observes the contents
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inside of hadrons. Those include the physics of chiral symmetry breaking and color-magnetic
interactions whose relevant scales, 0.2 − 1GeV, are a bit larger than the scale of confinement,
ΛQCD ∼ 0.2GeV ∼ 1fm−1. Our effective Hamiltonian is (µq = µB/3)

H = q̄(iγ0⃗γ · ∂⃗ +m−µqγ0)q−
Gs

2

8

∑
i=0

[
(qτiq)2 +(q̄iγ5τiq)2]+8K(detfq̄RqL +h.c.)

+H 3q→B
conf − H

2 ∑
A,A′=2,5,7

(
q̄iγ5τAλA′Cq̄T )(qTCiγ5τAλA′q

)
+

GV

2
(qγµq)2 . (2.2)

The first line is the standard NJL model with u,d,s- quarks and responsible for the chiral symme-
try breaking. We use the Hatsuda-Kunihiro parameter set [16] with which the constitutent quark
masses are Mu,d ≃ 336MeV and Ms ≃ 528MeV. The second line includes the confining interactions
which trap 3-quarks into a baryon, the color magnetic interaction for color-flavor-antisymmetric S-
wave interaction which is attractive, and phenomenological vector repulsive interactions which are
inspired from the ω-meson exchange in nuclear physics. Actually we will not explicitly treat the
confining term; instead we restrict the use of this model to the high density region where baryons
overlap.

We note that while the form of the Hamiltonian is obtained by extrapolating the description of
hadron and nuclear physics, in principle the range of parameters (Gs,K,gV ,H) at nB ≳ 5n0 can be
considerably different from those used in hadron physics. We use the neutron star constraints to
examine the range of these parameters and from which we delineate the properties of QCD matter
at nB ≳ 5n0. Below we vary (gV ,H), while assume that (Gs,K) do not change from the vacuum
values appreciably; this assumption will be checked posteriori. The medium modifications of bare
coupling was demonstrated in Ref.[17].

Our Hamiltonian for quarks, together with the contributions from leptons, is solved within the
mean field (MF) approximation. The neutrality conditions for electric and color charges, as well as
the β -equilibrium condition, are imposed. In the MF treatments we find that the chiral and diquark
condensates coexist at nB ≳ 5n0. For the range of parameters we have explored, the diquark pairing
always appears to be the color-flavor-locked (CFL) type at nB ≳ 5n0; other less symmetric pairings
such as the 2SC type appear only at the lower density where the confining effects are not negligible.

Now we examine the roles of effective interactions by subsequently adding gV and then H to
the standard NJL model. First of all, in order to make equations of state stiff, (Gs,K)@5n0 should
remain comparable to the size of its vacuum values; the large reduction of these parameters accel-
erates the chiral restoration that yields contributions similar to the bag constant, i.e., the positive
(negative) contributions to energy (pressure). As a result the significant softening takes place in
equations of state. Actually even if we fix (Gs,K)@5n0 to the vacuum values, the strong 1st order
chiral transition takes place at nB ∼ 2−3n0 in the standard NJL model, so the equations of state at
nB ≳ 5n0 is too soft to pass the 2M⊙ constraint.

This situation is changed by adding gV . It stiffens the equations of state in two-fold ways.
Firstly the repulsive interactions obviously contribute to the stiffening. Secondly, it delays the
chiral restoration by tempering the growth of baryon density as a function of µB, so that there are
no radical softening associated with the chiral restoration. In fact the 1st order transition turns into a
crossover in the range of gV we explored. The value of gV large enough to pass the 2M⊙ constraint,
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however, causes another kind of problem in connecting the APR and quark model pressure, see
the left panel of Fig. 4. ; with larger gV quark pressure P(µB) tends to appear at higher µB with
the less slope, and as a consequence the pressure curve in the interpolation region tends to contain
an inflection point at which ∂ 2P/(∂ µB)

2 is negative. Such region is thermodynamically unstable
so must be excluded. Therefore while larger value of gV is favored to pass the 2M⊙ constraint, it
generates more mismatch between the APR and quark pressure in the µB direction.

Figure 4: The impacts of the vector and color-magnetic interactions.

Here the color magnetic interactions improve the situation, see the right panel of Fig. 4. We
note that the onset chemical potential of the APR pressure is the nucleon mass µB ≃ 939MeV,
while for the NJL pressure it is µB ≃ 3Mu,d ≃ 1018MeV. In conventional picture of quark models,
the nucleon and ∆ masses are split by the color-magnetic interaction, and the nucleon mass is
reduced from 3Mu,d . From this viewpoint, the color magnetic interactions induce the overall shift
of the NJL pressure toward the lower chemical potential, thus make the matching between the APR
and quark pressure curves much better.

The M-R relations are shown in Fig.5 for the parameter sets (gV ,H)/Gs = (0.5,1.4),(0.8,1.5),
and (1.0,1.6). For all these sets, the radius of a neutron star at the canonical mass 1.4M⊙ is
11.3 − 11.5km, mainly determined by our APR equations of state. In these sets, only the set
(0.8,1.5) fulfils the all constraints; the set (0.5,1.4) is slightly below the 2M⊙ constraint, while
(1.0,1.6) slightly violates the causality bound. More exhaustive parameter surveys [1] show that
gV should be ≳ 0.7Gs, and H ≳ 1.4Gs which are comparable to the vacuum scalar coupling. For
given gV the value of H is fixed to ∼ 10%; in fact we do not have much liberty in our choice when
we connect the APR and quark matter pressures.

With such strong effective couplings, we expect that gluons in the non-perturbative regime
still survive in spite of the presence of quark matter, as discussed in Ref.[18] by using the picture
of 1/Nc expansion. In two space-time dimensions such a state of matter is indeed possible [19].

3. Toward equations of state for neutron star mergers

The zero temperature equations of state constructed in our framework is a result of fits to
neutron star constraints, with (gV ,H) as parameters. To check the validity of the descriptions, it
is desirable to calculate quantities which sensitively depend on the microscopic picture. Below we
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Figure 5: The mass-radius relations from the 3-window equations of state for sets of parameters, (gV ,H)/Gs =

(0.5,1.4),(0.8,1.5),(1.0,1.6). Only the set (0.8,1.5) satisfies the 2M⊙ and causality constraints.

consider the quantities sensitive to the excitations as good measures for the phase structure and the
symmetry breaking patterns.

The thermal equations of state are such example, and have impacts on the dynamics of super-
novae explosions and neutron star merger events. Of particular concern in our framework is the
quark matter part which has been most uncertain. The supernovae matter [20] is probably not dense
enough to study the impact of quark matter, since the maximum density is likely to be nB ≃ 2−3n0

close to the nuclear regime. In neutron star mergers [21] we have more chances; the maximum
baryon density can be as high as ∼ 5n0. The temperature distributions calculated in dynamical
simulations with hadronic equations of state suggest that the hottest domain of matter is ∼ 2n0,
having the temperature of ∼20-100 MeV, while the densest part has the lower temperature of ∼10-
20 MeV. We note that all these estimates depend on equations of state and therefore may vary if we
consider equations of state with very different thermal properties.

Figure 6: The time evolution of a neutron star binary.

Here we briefly outline the time evolution of neutron star mergers (Fig.6). Each stage offers
us different information through the gravitational wave (GW) emissions and electromagnetic (EM)
signals. Neutron star binary systems can be regarded as the time varying quadratic poles that are the
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sources of gravitational waves. When two neutron stars are largely separated, the two neutron stars
can be treated as point particles and the amplitudes of GWs are small. This stage is called inspiral
phase. GWs from the inspiral can be precisely calculated by the post-Newtonian approximation,
in which v/c (v: the velocity of relative motion) is treated as a small expansion parameter. In
principle one can study not only the masses of two neutron stars but also the spins since the spin-
orbit and spin-spin interactions appear in higher orders of the expansion [22]. As two neutron stars
approach, the inspiral phase changes into the tidal deformed phase, where the internal structure of
each neutron star starts to be relevant in the waveform of GWs [23]. The particularly important
characteristic quantity is the tidal deformability of a star whose value is strongly correlated with
the compactness M/R of the star. By measuring the mass of the star from the inspiral phase, one
can then constrain the size of the radius. Therefore the inspiral and tidal deformed phases tell us a
lot about the structure of neutron stars at zero temperature before the coalescence.

Eventually two neutron stars coalesce. The produced object either promptly collapses into a
blackhole, or remains for ∼ 10ms as a hypermassive neutron star with large differential rotation and
the thermal pressure. The physics in the coalescence regime is a highly dynamical problem which
requires sophisticated numerical simulations [21] on general relativistic effects and transports for
given equations of state. The major uncertainty arises from the QCD equations of state at nB ≳
2n0 at finite temperature and various lepton fractions. The temperature of the matter is raised by
absorbing the heat generated through the friction of two neutron stars.

As for finite temperature equations of state, the standards have been the Lattimer-Swetsy (LS)
[24] and Shen equations of state [25]. Nowadays more equations of state are constructed, reflecting
the recent progress in astrophysical constraints [13, 26]. On the other hand, almost all of them
are based on the hadronic descriptions, so the extrapolation of those equations of state beyond
∼ 2−3n0 may be questionable. There are few finite temperature quark equations of state, and they
are based on a bag model, or perturbative QCD calculations [27], or a 3-window modeling with
a quark model [28]. In these treatments the most relevant excitations are gapless quarks whose
contributions to equations of state are much larger than those from gluons, because the larger phase
space, ∝ 4π p2

F , is available for quarks near the Fermi sphere. A quark model study based on the 3-
window approach suggests that for a supernova matter in the isentropic condition, the temperature
of the matter in quark matter description can be 3-4 times smaller than purely hadronic descriptions
since quarks with large phase space can carry large entropy even at low temperature.

Considering the pairing effects, however, one can imagine alternative scenarios in which ther-
mal properties are qualitatively different from the gapless quark matter. In the CFL phase quarks
and gluons are both massive so that thermal contributions appear much more suppressed than in
the gapless quark matter [29]. For our parameter sets used for the zero temperature equations of
state, we have the CFL phase at nB ≳ 5n0 and the size of diquark gaps are ∼ 200 MeV. So almost
no quarks absorb heat. Other possible candidates of thermal excitations are lepton pairs, neutrinos,
and collective modes. The leptons do not enjoy the Fermi surface enhancement because the CFL
has equal number of u,d,s quarks and no electrons are necessary for charge neutrality. So they
appear only as lepton-antileption pairs.

As for the contributions of collective modes, the leading contributions should be the Nambu-
Goldstone (NG) bosons [30]. If the current masses and electric charges for (u,d,s)-quarks were zero,
there would be SU(3)L×SU(3)R×SU(3)c×U(1)B×U(1)em symmetry, broken into SU(3)c+L+R×

7
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Figure 7: The excitation energies of NG modes at rest. The bold line part is given for nB ≳ 5n0.

U(1)Q′ in the CFL phase. The resulting NG modes are 9 massless modes and 8 gluons are massive.
If U(1)A explicit breaking is suppressed by medium effects, then one can view U(1)A as if an
ordinary symmetry plus the small violation for which the picture of one more pseudo-NG mode is
at work. In neutron stars, however, the explicit breaking associated with the current quark masses
and charges are important; only one NG mode associated with U(1)B is massless while the others
are all pseudo-NG modes. Shown in Fig.7 are the spectra of π+,K+, and K− for (gV ,H)/Gs =

(0.5,1.4),(0.8,1.5),(1.0,1.6) for the set (I), (II), and (III). They were computed within the random
phase approximation (RPA) on top of the MF background used for the zero temperature neutron
star equations of state [33]. We found that the isospin remains good symmetry so here do not show
π−,K0, K̄0. We also computed the 3-neutral NG modes which are linear combinations of π0,η ,η ′

quantum numbers.
The overall tendency is that (i) as we increases the coupling, the resulting spectra of NG

modes appear at higher energies; (ii) the typical excitation energies are ∼ 50− 200 MeV, except
K+ and K0 modes; (iii) K+ and K0 are anomalously light because of the effective chemical potential
associated with the imbalance for u,d and s -quarks; (iv) at weaker coupling there may be a kaon-
condensation at nB ≳ 5n0, while in our setup for neutron stars it did not occur. Earlier calculations
based on the NJL model can be found in Ref.[31], while our study updated the results taking the
recent constraints into account.

From these analyses, we expect that thermal contributions from NG modes are like those in
the zero density case where the lightest hadrons are pions with the masses ≃ 140 MeV. On the
other hand, recent studies on the hadron resonance gas around T ≃ 150 MeV suggest that, even
when the massive thermal excitations are suppressed by the Boltzmann factors, the sum of those
contributions may give significant contributions [32]. So it is desirable also at finite density to
include not only the lightest modes but also excitations at higher energies into thermodynamic
potentials.

For this reason we evaluate the thermal contributions using the phase shift representation [34,
35, 36], which summarizes the correlations from low to high energies. Specifically we consider
2-body channels, including the correlated pairs made of particles, holes, antiparticles. They are
computed at the level of the RPA. For a channel with a quantum number X ,

Ω2−body
X =

∫ dp⃗
(2π)3

∫ ∞

−∞

dω
2π

[
|ω|
2

+T ln
(

1− e−|ω|/T
)] dδX(ω, p⃗)

dω
, (3.1)
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where the all information in the channel X (including chemical potentials) is encoded in the phase
shift φX , which appears in the ratio of full (G ) and disconnected (G0) 2-particle Green’s functions,

G /G0 = |G /G0|eiδX . (3.2)

The phase shift representation of the thermodynamic potential looks the same as the hadron reso-
nance gas if we substitute the phase shift for a bound state, δX(ω, p⃗) = πθ (ω −EX(p⃗)), in which
the phase shift jumps by π at the bound state energy.

Figure 8: An example of the phase shift and its derivative as a function of ω .

As we noted, the phase shift representation includes the resonating continuum, but a part
of continuum contributions are already taken into account when we calculate the single particle
contributions. So we have to be sure that the double counting is correctly avoided. The double
counting is absent when the phase shift must satisfy the Levinson’s theorem,

TrδX(ω = ∞)−TrδX(ω = 0) = 0 , (3.3)

where the trace runs over all possible 2-body states. This constraint follows from the conservation
of the total number of states with and without interactions,

0 =
∫ ∞

0
dωTr [ImG − ImG0] =

∫ ∞

0
dω∂ωTr

[
ImlnG −1/G −1

0

]
, G =

1
E −H

, (3.4)

where ImG counts the number of states, and the integration of them remains invariant after interac-
tions are added. The constraint from the Levinson’s theorem requires that the phase shift at ω → ∞
must return to the original value at ω = 0. This means that at the bound state energies the phase
shifts jump by π with the positive values for the derivative of δX , while at higher energies there
must be a region where the derivative of δX takes the negative value, hence giving the negative con-
tribution to Eq.(3.1), see Fig.8. These contributions are particularly important when we consider
the physics around the transition temperature; they tend to cancel the resonance gas contributions
at low energies in the two-body part of the thermodynamics potential, and as a result single particle
contributions such as those from quarks and gluons saturate the thermodynamics, as one intuitively
expects.

To complete the above mentioned descriptions for the thermodynamics, we need to calculate
the distributions of the phase shift for ω-|p⃗| plane. This is an on-going subject. For now we
are working on the 3-flavor limit in which quark bases can be analytically constructed and the
calculations of the RPA are much simpler than the realistic setup. Some results on the distributions
are shown in Fig.9.
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Figure 9: An example of the phase shift distributions for pseudo-scalar channel in the ω −|p⃗| plane, at quark chemical
potential µ = 0,0.4,0.5 GeV. The first line gives the particle-antiparticle result and the second for the particle-hole
contributions.

4. Summary

The physics of neutron stars are now giving significant constraints on the QCD equations of
state. More observational constraints will come in next 10 years through the timing analyses of X-
rays in the NICER program [37] and the GW detection by currently operating aLIGO, Virgo, GEO
[38], and also KAGRA [39] under construction which will be ready soon. The electromagnetic
counterparts associated with the GWs give the information about the ejecta, from which one can
learn the dynamics at the coalescence regime. It is desirable to utilize all these information to
improve our understanding on dense QCD matter.

The author thanks G. Baym, K. Fukushima, T. Hatsuda, P. Powell, Y. Song, T. Takatsuka for
collaboration, and D. Blaschke for discussions about the phase shift representation. This work is
supported by NSFC grant 11650110435.
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