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1. Introduction

Transport coefficients of matter under extreme conditions of temperature, density or external
fields are interesting and important for several reasons. In the context of relativistic heavy ion
collisions, these properties enter as dissipative coefficients in the hydrodynamic evolution of the
quark gluon plasma. They are also important for the cooling of neutron stars. The cooling of
neutron stars at short time scales constrains the thermal conductivity [12] while the cooling through
neutrino emission on a much larger time scales constrains the phase of the matter in the interior of
the compact star [14]. Apart from these, the temperature and chemical potential dependence of the
transport coefficients may actually reveal the location of phase transitions [18].

Transport coefficients for QCD matter in principle can be calculated using Kubo formulation
[19]. However, QCD is strongly interacting for both at energies accessible in heavy ion colli-
sion experiments as well as for the densities expected to be there in the core of the neutron stars
making the perturbative estimations unreliable. Calculations using lattice QCD simulations at fi-
nite chemical potential is also challenging and is limited only to the equilibrium thermodynamic
properties at small chemical potentials. This has motivated to estimate the transport coefficient
in various effective models of strong interaction physics. These include chiral perturbation the-
ory [30], quasi-particle models [52], linear sigma model [31] and the Nambu- Jona-Lasinio model
[24, 26]. The general temperature dependence of the viscosity coefficients turns out to be similar
with the ratio of shear viscosity to entropy density (η/s) exhibiting a minimum at the transition
temperature. The numerical value of η at the minimum however differ by order of magnitude.
Similarly, the bulk viscosity shows a maximum near the critical temperature. The numerical values
of these coefficients however, vary over a large range of values e.g. ζ varies from 10−5 GeV3 [33]
to 10−2 GeV3 around the critical temperature [24].

The other transport coefficient that is important at finite baryon density is the coefficient of
thermal conductivity λ [34, 35, 36]. This coefficient has been evaluated in various effective models
like Nambu Jona Lasinio model using Green-Kubo approach [38], relaxation time approximation
[26] and the instanton liquid model [39]. The results, however, vary over a wide range of values,
with λ = 0.008 GeV−2 as in Ref. [40] to λ ∼ 10 GeV−2 as in Ref. [41] for a range of temperatures
(0.12 GeV <T< 0.17 GeV), which has been nicely tabulated in Ref. [42].

We shall here attempt to estimate these transport coefficients within an effective model of
strong interaction, the Polyakov loop extended quark meson (PQM) model that incorporates the
aspects of chiral symmetry breaking in strong interaction and takes care of confinement deconfine-
ment transition partially while explicitly keeping pionic degrees of freedom at low temperature.

The transport coefficients are evaluated within the relaxation time approximation of Boltzmann
equation which is a reasonable approximation for quasi particles [52, ?]. The relaxation time is
calculated from the scattering of the particles that constitute the dynamical degrees of freedom
of the model - namely the meson scattering, as is considered in Ref.[31] with medium dependent
meson masses; quark scattering through meson exchanges similar to as considered in Ref.s [24, 26,
41] with medium dependent quark and meson masses and quark meson scattering. As we shall see
in the following, each of these processes bring out distinct features for the transport coefficients.
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2. Thermodynamics of PQM model

The thermodynamic potential in PQM model is given by[44, 46, 47, 48]

Ω(T,µ) = Ωq̄q +Uχ +UP(φ , φ̄) (2.1)

The fermionic (quark) part of the thermodynamic potential is given as

Ωq̄q = −2N f T
∫ d3 p

(2π)3

[
ln
(

1+3(φ + φ̄e−βω−)e−βω−+ e−3βω−
)

+ ln
(

1+3(φ̄ +φe−βω+)e−βω+ + e−3βω+

)]
(2.2)

modulo a divergent vacuum part. In the above, ω∓ = Ep∓ µ , with the single particle quark/anti-
quark energy Ep =

√
p2 +M2. The constituent quark/anti-quark mass is defined to be

M2 = g2
σ (σ

2 +π
2). (2.3)

In Eq.(2.7), potential Uχ(σ ,π) is the mesonic potential that essentially describes the chiral sym-
metry breaking pattern in strong interaction and is given by

Uχ(σ ,π) =
λ

4
(σ2 +π

2− v2)− cσ (2.4)

while, the last term in Eq.(2.7) is the Polyakov loop potential that essentially describes the confine-
ment deconfinement transition. polynomial parametrization [44]

UP(φ , φ̄) = T 4
[
−b2(T )

2
φ̄φ − b3

2
(φ 3 + φ̄

3)+
b4

4
(φ̄φ)2

]
, (2.5)

with the temperature dependent coefficient b2 given as

b2(T ) = a0 +a1(
T0

T
)+a2(

T0

T
)2 +a3(

T0

T
)3 (2.6)

The numerical values of the parameters are a0 = 6.75,a1 = −1.95,a2 = 2.625,a3 = −7.44,b3 =

0.75,b4 = 7.5 The parameter T0 corresponds to the transition temperature of Yang-Mills theory.
However, for the full dynamical QCD, there is a flavor dependence on T0(N f ). For two flavors we
take it to be T0(2) = 192 MeV as in Ref.[44]. The parameters of potential Uχ ,are so chosen that the
chiral symmetry is broken spontaneously in vacuum with 〈σ〉= fπ , and 〈π〉= 0 with fπ = 93MeV
is the pion decay constant. The coefficient of symmetry breaking term is fixed from PCAC so that
c = f 2

π m2
π ; v2 = f 2

π −m2
π/λ , with λ determined from mass of the σ meson leading to λ = 19.7

and gσ = 3.3 so that the constituent quark mass in the vacuum is about 300 MeV[49]. The mean
fields are obtained by minimizing Ω with respect to σ , φ , φ̄ , and π . For example, extremising the
effective potential with respect to σ field leads to

λ (σ2 +π
2− v2)− c+gσ ρs = 0 (2.7)

where, the scalar density ρs =−〈ψ̄ψ〉 is given by

ρs = 6N f gσ σ

∫ dp
(2π)3

1
EP

[ f−(p)+ f+(p)] . (2.8)
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In the above, f∓(p) are the distribution functions for the quarks and anti-quarks, with ω∓ = E(p)∓
µ , given as

f−(p) =
φe−βω−+2φ̄e−2βω−+ e−3βω−

1+3φe−βω−+3φ̄e−2βω−+ e−3βω−
, (2.9)

and,

f+(p) =
φ̄e−βω+ +2φe−2βω+ + e−3βω+

1+3φ̄e−βω+ +3φe−2βω+ + e−3βω+
. (2.10)

It can be shown that for vanishing chemical potential, φ = φ̄ and the distribution functions become

fφ (p) =
φe−βE−+2φe−2βE + e−3βE

1+3φe−βE +3φe−2βE + e−3βE , (2.11)

where, E(p) is the single particle energy for the quarks.
The meson masses for σ and π are determined by the curvature of Ω at the global minimum

M2
σ =

∂ 2Ω

∂σ2 |σ=σ0,π=0, M2
πi
=

∂ 2Ω

∂π2
i |σ=σ0,π=0

. (2.12)

The energy density ε = Ω−T ∂Ω/∂T +µρq is given by

ε =
6

π2

∫
p2d pE(p)( f−(p)+ f+(p))+Uχ −3UP(φ , φ̄)+

T 5

2
db2(T )

dT
φ̄φ (2.13)

In Fig.1(a), we have plotted the constituent quark mass, and the meson masses in the model as a
function of temperature for vanishing baryon density. In the chirally broken phase, mπ , being the
mass of an approximate Goldstone mode is protected and varies weakly with temperature. On the
other hand, the mass of σ , Mσ , which is approximately twice the constituent quark mass,M drops
significantly near the crossover temperature. At high temperature, being chiral partners, the masses
of σ and π mesons become degenerate and increase linearly with temperature. In Fig. 1b, we have
plotted the order parameters σ and φ as a function of temperature for vanishing quark chemical
potential. We also note that for µ = 0, the order parameters φ and φ̄ are the same. Because of
the approximate chiral symmetry, the chiral order parameter decreases with temperatures to small
values but never vanishes. The Polyakov loop parameter on the other hand grows from φ = 0 at
zero temperature to about φ = 1 at high temperatures. We might mention here that at very high
temperature exceeds unity, the value in the infinite quark mass limit.

Next, in Fig 2a, we show the dependence of the trace anomaly (ε − 3p)/T 4 on temperature.
The conformal symmetry is broken maximally at the critical temperature. Further finite chemical
potential enhances this breaking as it breaks scale symmetry explicitly. As we shall see later this
will have its implication on the bulk viscosity coefficient.

The other thermodynamic quantity that enters into the transport coefficient calculation is the
velocity of sound. The same at constant density is defined as

c2
s =

(
−∂P

∂ε

)
n
=

sχµµ −ρχµT

T (χT T χµµ −χ2
µT )

(2.14)

where, P,the pressure, is the negative of the thermodynamic potential given in Eq.(2.7). Further,
s =− ∂Ω

∂T is the entropy density and the susceptibilities are defined as χxy =− ∂ 2Ω

∂x∂y . This is plotted
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Figure 1: (Fig 1 a) Temperature dependence of the masses of constituent quarks (M), and pions (Mπ ) and
sigma mesons (Mσ ) and (Fig1-b) the order parameters σ and φ as a function of temperature for µ = 0 MeV
.

in Fig. 2b. The velocity of sound shows a minimum near the crossover temperature. Within the
model, at low temperature when the constituent quarks start contributing to the pressure, their con-
tribution to the energy density is significant compared to their contribution to the pressure leading
to decreasing behavior of velocity of sound till the crossover temperature beyond which it increases
as the quarks become light and approach the massless limit of c2

s =
1
3 . Such a dip in the velocity

of sound is also observed in lattice simulation [51]. As we shall observe later this behavior will
have important consequences for the behavior of bulk viscosity as a function of temperature. We
might mention here that such a dip for the sound velocity was not observed for two flavor NJL [26].
For in the linear sigma model calculations such a dip was observed only for a large sigma meson
mass[31].

3. Transport coefficients in relaxation time approximation

Within a quasi-particle approach, a kinetic theory treatment for estimation of transport co-
efficients can be a reasonable approximation [52]. To solve the relativistic Boltzmann equation,
we shall further use the relaxation time approximation where the particle masses are medium de-
pendent. Such attempts were made earlier for σ -model[31] as well as NJL model to compute the
shear and bulk viscosity coefficients. Such an approach was also made to estimate the viscosity
coefficients of pure gluon matter[52]. The expressions for the viscosity coefficients were put on
a firmer ground by deriving the expressions when there are mean fields and medium dependent
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Figure 2: (Fig 2 a)Temperature dependence of the scaled trace anomaly ε−3p
T 4 and (Fig2 b)Temperature

dependence of the velocity of sound at constant density.

masses in a quasi particle picture [53]. The resulting expressions for the transport coefficients were
manifestly positive definite as they should be. These expressions were derived explicitly for NJL
model in Ref.[26]. However, a direct generalization of the expressions for the transport coefficients
in presence of background gluon fields is not straight forward. The reason being the equilibrium
distribution functions for the quarks and antiquarks as given in Eq.s (2.12) and (2.13) are not Fermi
distribution function. To make the discussion simpler let us consider the case of vanishing baryon
chemical potential which we discuss in the following.

Let us first note that the background gluon field couple to quarks through covariant derivative
as Dµ = ∂µ −δµ0A0. In the Polyakov gauge, the Wilson line is L is in the diagonal representation
in the color space and therefore, the background gluon field act as an imaginary chemical potential
for the colored particles. The corresponding color dependent equilibrium distribution function for
the quarks and the anti-quarks are given by [54]

fi(E) =
1

eβ (E−iQi)+1
; f̄i(E) =

1
eβ (E+iQi)+1

(3.1)

where, we have written Ai j
0 = 1

g δ i jQi, without any summation over the index i. As A0 is
traceless, ∑i Qi = 0. The Polyakov loop φ is thus related to Qi as φ = 1

3 ∑i eiβQi . Further, for
vanishing baryon density, one can choose φ to be real and parameterize Qi = 2πT (−q,0,q) with q
as the dimension less condensate variable. The Polyakov loop variable Φ is therefore given by

φ =
1
3
(1+2cos2πq). (3.2)
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It is easy to check that the the distribution function of Eq.(2.12) is the color averaged distribu-
tion function .i.e fφ (E) = 1

3 ∑i fi(E).
One can write down a Boltzmann kinetic equation for the color dependent the single particle

distribution function φi of Eq.(3.1) as

d fia

dt
=

Pµ

Ea
∂µ f ia− M

Ea

∂M
∂xi

∂ fia

∂ pi =−Cai( fia). (3.3)

To estimate the transport coefficient, one is interested in small departure from equilibrium and
one writes fia=f0

ia+f1
ia, where f0

ia is the equilibrium distribution function, f0
ia = [exp(β )uν(x)∓

iβQi(x)]−1. Within the relaxation time approximation, in the collision term, all the distribution
functions are given by the equilibrium distribution function except for fia. The collision term then,
upto first order in deviation from the equilibrium distribution function, will be proportional to f 1

ia

as C( f 0
ia) = 0 by local detailed balance. The collision term is then given by

C( fia) =−
f 1
ia

τia
. (3.4)

where, τia is the color dependent relaxation time and is in general a function of energy. One
can follow he same procedure as in Ref.[53, 26] to calculate e.g. the shear viscosity coefficient η

and the expression for the same is given by

η =
1

45T ∑
i,a

∫ dp
(2π)3

p4
a

E2
a

τi,a(Ea) f 0
ia(1− f 0

i,a) (3.5)

In the following we shall replace τi,a(Ea) by its color averaged relaxation time τa(Ea) which
for Nc=3 is given as

τ
−1
a =

1
3 ∑

i
τia(Ea) =

1
3 ∑

i, j,k,l

∫
dΓ

bdΓ
cdΓ

dWia, jb→kc,ld
[

f 0
jb(1− f 0

kc)(1− f 0
ld)
]

(3.6)

where, dΓa =
dpa

(2π)32Ea
, and,

Wia, jb→kc,ld = (2π)4
δ

4(pa + pb− pc− pd)|Mia, jb→kc,ld |2 (3.7)

with |M|2 being the corresponding square of the matrix element for the scattering process. Now,
within the model, since we do not have dynamical gluons and we consider scattering through meson
exchanges, the interactions are are color preserving and, Wia, jb→kc,ld ∝ δ ikδ jl so that,

τ
−1
a (Ea) =

1
3 ∑

i, j

∫
dΓ

bdΓ
cdΓ

dWia, jb→ic, jd
[

f 0
jb(1− f 0

ic)(1− f 0
jd)
]

(3.8)

The color sum of the distribution functions become

F (Ea,Ec) ≡ ∑
i

f 0
i (Ea)(1− f 0

i (Ec)) = 3 fφ −
1

D(Ea)D(Ec)

[
3e−3β (Ea+Ec)+3φ(3φ −2)e−β (Ea+Ec)

+ 3φ

(
e−β (Ea+3Ec)+ e−β (Ec+3Ea)

)
+6φ

−2β (Ea+Ec)

+ 3φ(3φ −1)
(

e−β (Ea+2Ec)+ e−β (Ec+2Ea)
)]

, (3.9)

6
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where, D(E) is the denominator of the Polyakov loop distribution function Eq.(2.14), D(E) =
1+3φe−βE +3φe−2βE +3e−3βE . Eq.(3.10) then reduces to

τ
−1
a (Ea) =

∫
dΓ

bdΓ
cdΓ

dWia, jb→ic, jd(1− f 0c
φ )F (Eb,Ed) (3.10)

The expression for η , Eq.(3.7) using Eq.(3.11), becomes

η =
1

45T ∑
a

∫ dp
(2π)3

p4
a

E2
a

τa(Ea)F (Ea,Ea) (3.11)

One can further approximate the expression for η by replacing the distribution functions in
Eq.(3.7) or equivalently in Eq.(3.11) by their color averaged value so that η reduces to more famil-
iar expression as η becomes

η =
1

15T ∑
a

∫ dp
(2π)3

p4
a

E2
a

τ(Ea) f 0
a (1± f 0

a ) (3.12)

where, the sum is over all the different species contributing to the viscosity coefficients includ-
ing the antiparticles, and, τa is the energy dependent relaxation time given in Eq.(3.8) which we
shall estimate in the following subsection. Let us note that while such a replacement of the color
averaged distribution function is exact in the Boltzmann limit, the leading term for difference be-
tween replacing the colored distribution function and their color averaged one in the expression
∑i fia(1− fia) is proportional to φ(φ −1)e−2βE . This difference is small both below and above the
critical temperature while it can be relevant around the critical temperature. We have verified nu-
merically that such a difference does not change the quantitative values for the transport coefficients
except near the critical temperature.

The coefficient of bulk viscosity is given by

ζ =
1

27T ∑
a

∫ dp
(2π)3

τa

Ea
2 F (Ea,Ea)

[
p2 (1−3vn

2)−3vn
2
(

M2−T M
dM
dT
−µM

dM
dµ

)
+ 3

(
∂P
∂n

)
ε

(
M

dM
dµ
−Eata

)]2

(3.13)

The thermal conductivity on the other hand is given by

λ =
1
3

( w
nT

)2
∑
a

∫ dp
(2π)3

p2

3E2
a

τa(Ea)

(
ta−

nEa

w

)2

F (Ea,Ea) (3.14)

In the above, ta is the quark charge (1/3rd baryonic charge) of the constituent particles i.e. ta =+1,
-1, 0 for the quarks, the anti-quarks and the mesons respectively and w = ε + p is the enthalpy
density.

3.1 Relaxation time estimation- meson scattering

In the following we shall first estimate the relaxation times involving meson scattering similar
to Ref[31]. The scattering amplitudes involving meson propagators yield divergent integrals due to
poles in the s and u channels. So in these amplitudes, we have taken the limits when the Mandelstam

7



P
o
S
(
C
P
O
D
2
0
1
7
)
0
8
0

Transport coefficients in PQM model Hiranmaya Mishra

variables are taken to be infinity so that the scattering amplitudes reduce to constants. The energy
dependent relaxation time for the meson species ′a′ arising from a scattering process a,b→ c,d is
given by, with dΓi =

dpi
2Ei(p)(2π)3 , [26]

τ(Ea)
−1 =∑

b

1
1+δab

∫
dΓbdΓcdΓd fM(Eb)(2π)4

δ
4(pa+ pb− pc− pd)|M|2(1+ fM(Ec))(1+ fM(Ed))

(3.15)
In the above, the summation is over all the particles except the species a with a,b as the initial state
and fM(Ea) is the Bose distribution for the meson.

In the limit of constant |M|2, Eq.(3.21), the relaxation time for species ’a’ reduces to

τ(Ea)
−1 =

1
256π3Ea

∑
b

∫
∞

mb

dEb

√
E2

b −m2
b fM(Eb)|M|2

∫ 1

−1

dx
1+δab

√
λ (s,m2

a,m2
b)λ (s,m

2
c ,m2

d)

pabs3/2 .

(3.16)
In the above, pab(s) = 1/(2

√
s)
√

λ (s,m2
a,m2

b), and the kinematic function λ (x,y,z) = x2 + y2 +

z2−2xy−2yz−2zx. The center of mass energy s is given as

s = 2EaEb

(
1+

m2
a +m2

b
2EaEb

− pa pb

EaEb
x
)

3.2 Relaxation time estimation- quark scattering

We next consider the quark scattering within the model through the exchange of pion and
sigma meson resonances. The approach is similar to Ref.s[26, 25, 41] performed within NJL
model to estimate the corresponding relaxation time for the quarks and anti-quarks. The transition
frequency is again given by Eq.(??), with the corresponding Wab given as

W q
ia, jb→ic, jd(s) =

2
√

s(s−4m2)

3(1+δab)

∫ 0

tmin

dt
(

dσ

dt
|ia, jb→ic, jd

)
F (

√
s

2
,

√
s

2
) (3.17)

where,
dσ

dt
=

1
16πs(s−4m2)

1
p2

ab
|M̄|2ia, jb→ic, jd (3.18)

For the quark scattering, in the present case for two flavors we consider the following twelve
possible scattering processes: uū→ uū, ud̄→ ud̄, uū→ dd̄, uu→ uu, ud→ ud, ūū→ ūū,
ūd̄→ ūd̄, dd̄→ dd̄, dd̄→ uū, dū→ dū, dd→ dd, d̄d̄→ d̄d̄, One can use i-spin symmetry,
charge conjugation symmetry and crossing symmetry to relate the matrix element square for the
above 12 processes to get them related to one another and one has to evaluate only two independent
matrix elements to evaluate all the 12 processes. We choose these, as in Ref. [25], to be the
processes uū→ uū and ud̄→ ud̄ and use the symmetry conditions to calculate the rest. The square
of the matrix elements for these two processes are given explicitly in Refs[26, 25] in terms of
Mandelstam variables and the meson propagators. In the present model, the meson propagators
Da(
√

s,0), (a = σ ,π) are given by

Da(
√

s,0) =
i

s−M2
a − iImΠMa(

√
s,0)

(3.19)
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In the above, the masses of the mesons are given by Ma’s which are medium dependent masses
for mesons determined by the curvature of the thermodynamic potential. Further, in Eq.(3.33),
ImΠ(

√
s,0) which is related to the width of the resonance as Γa = ImΠa/Ma is given as [25]

ImΠa(ω,0) = θ(ω2−4m2)
NcN f

8πω

(
ω

2− ε
2
a
)√

ω2−4m2 (1− f−(ω)− f+(ω)) (3.20)

with εa = 0 for pions and εa = 2m for sigma mesons.

3.3 Quark pion scattering and relaxation time

Next, we compute the contribution of quark meson scattering to the relaxation times for both
mesons as well as quarks. In the following we consider the quark pion scattering only as the sigma
meson contribution is negligible. The Lorentz invariant scattering matrix element can be written as
Ū(p2)TbaU(p1), with ŪU = 2mq and with p1, p2 denoting the initial and final the quark momenta
respectively and q1,q2, being the momenta of the pions.

Tba = δba
1
2
(q1 +q2)

µ
γµ(δabB(+)+ iεabcτcB(−)) (3.21)

where,

B(+) = g2

(
1

u−m2
q
− 1

s−m2
q

)
, (3.22)

and

B(−) =−g2

(
1

u−m2
q
+

1
s−m2

q

)
. (3.23)

Averaging over the spin and isospin factors, the matrix element square for the quark pion
scattering is given by

|M̄|2 = g4
σ

6
(
(s−u)2− t(t−4m2

π)
)(

3B2
++2B2

−
)

(3.24)

The contribution to quark relaxation time from the quark pion scattering is given by, Eq,Eπ being
the center of mass energies of outgoing quark and pion respectively.

τq(Eq)|qπ =
1

32πEq

∫
dπb fπ(Eb)

1√
sp0

∫
dt|M̄q−π |2(1− fφ (Eq))(1+ fπ(Eπ)) (3.25)

In the above, p2
0 = (s+m2

q−m2
π)

2/(4s)−m2
q. On the other hand, the contribution to the pion

relaxation time arising from quark pion scatterings is given by

τπ(Eπ)|qπ =
1

96πEπ

∫
dπb

1√
sp0

∫
dt|M̄q−π |2(1+ fπ(

√
s/2))F (Eb,Eq) (3.26)

Let us note that there are poles in the u channel in the quark pion scattering term beyond the
critical temperature when the pion mass become larger than the quark mass. However, this is taken
care of once we include the imaginary part of the quark self energy in the propagators for the quarks
in the calculation of the amplitude in Eq.s(3.37)-(3.38). [56]
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Figure 3: Different contributions for specific viscosity coefficients. η/s is shown in the left while ζ/s is
shown on the right. In both the figures, contributions from the quarks arising from quark quark scattering
( red solid line) and including quark meson scattering time for (blue dotted line) is shown as a function
of temperature. The contribution of the mesons due to meson meson scattering (green dashed curve) and
including meson quark scattering (orange short dashed curve) is also shown. The total contribution from the
quarks and mesons are is shown by the black long dashed curve. All the curves correspond to µ = 0 case.

4. Results

We now discuss about the contribution of different scatterings to the relaxation time and hence
their contribution to the specific shear viscosity η/s. This is shown in Fig.8a for vanishing chemical
potential. The contribution from the mesons to the shear viscosity is arising from the meson -meson
scattering only is shown by the green dashed curve while the effect of including the meson quark
scattering in the relaxation time estimation is shown by the orange dotted curve. Similarly the quark
contribution to this ratio η/s with a relaxation time arising from quark quark scattering is shown
by the red solid line while the quark contribution to the viscosity with a relaxation time estimated
including the quark pion scattering is shown by the blue dotted line. This also demonstrates the
importance of the scattering of quarks and mesons to the total viscosity coefficient. The total
contributions from both the quarks and mesons is shown as the black dashed curve in Fig.8a.
Considering the contribution from the mesons, as may be see, including only the meson meson
scattering the specific shear viscosity shows a minimum at the critical temperature with a numerical
value η/s ∼ 0.053which is lower than the KSS bound of 1/4π . Inclusion of meson scattering
with quarks however increase this value. With regards to the quark contributions (the red solid
line in Fig 8a), the dominant contribution here comes from quark antiquark scattering through
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s-channel meson exchange. The masse of the σ -meson decreases with temperature becoming a
minimum at Tc leading to an enhancement of the cross section. Beyond Tc, the meson masses
increase leading to a decrease of the cross section. This leads to a minimum of the relaxation time
and hence the shear viscosity arising from quark quark scattering. Further, the effect of Polyakov
loop lies in suppressing the cross section below the critical temperature as compared to e.g. Nambu
JoanaLasinio models[26] leading to s sharp increase of the relaxation time and hence the viscosity
below the Tc. However, when the quark meson scattering effects are included for one would have
expected this contribution from the quark meson scattering would be suppressed due to increasing
meson masses beyond Tc. However, beyond the critical temperature, there are poles in the u-
channels for q− π scattering as the Mπ become larger than the quark masses. This is however,
regulated by the finite width of the quarks. None the less, the contribution of q− π scatterings
to the quark relaxation time remains non-negligible beyond Tc. The total contribution to the ratio
η/s is shown as black dashed curve. Clearly, the meson contributions to this ratio dominate at
temperatures below Tc while, the quark contribution dominate this ratio above Tc as one would
expect.

In a similar manner, various contributions to the specific bulk viscosity (ζ/s) coefficient is
shown in Fig8b. The notation regarding different contributions to ζ/s is same as in Fig.8a. As may
be noted, while a peak structure is seen for the contribution arising from meson-meson scattering
( green dashed curve) at the critical temperature, such a peak is somewhat reduced when meson
quark scattering is included. Similarly, for the q−q scattering contribution, no such peak structure
is seen and such a result is similar to what is seen in NJL models [26]. On the other hand, when
one includes the contribution of quark meson scatterings, a peak structure is seen for ζ/s. The total
effect is shown as the black dashed curve which shows a small peak structure near Tc.
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λ T
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Figure 4: Thermal conductivity in units of T 2 as a
function of temperature for µ = 100MeV.

In Fig.12, we have shown the results for
thermal conductivity. We have plotted here
the dimensionless quantity λ/T 2 as a func-
tion of temperature for µ = 100MeV. As is
well known, thermal conductivity for rela-
tivistic particles actually diverges for µ = 0
and the heat conduction vanishes. However,
for situations where e.g. pion number is con-
served heat conductivity can be sustained by
pions which themselves have zero baryon
number. What we have shown in Fig.(12)
is the thermal conductivity arising only from
quark scattering. Similar to the behavior of
relaxation time, the specific thermal conduc-
tivity has a minimum at Tc. This behavior of
having a minimum at Tc is similar to Ref.[26]
for NJL model. The sharp rise of λ/T 2 can
be understood by performing a dimensional argument to show that at very high temperature when
chiral symmetry is is restored the integral increases as T 3 while the prefactor w/(nT ) grows as
T 2 for small chemical potentials. Apart from this kinematic consideration, as the integrand fur-
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ther is multiplied by τ(E) which itself is an increasing function of temperature beyond Tc, leads to
the sharp rise of the ratio λ/T 2 beyond the critical temperature. Below, the critical temperature,
however, the ratio decreases which is in contrast to NJL results of Ref.[26]. The reason is two
fold. Firstly the magnitude of relaxation time decrease when quark meson scattering is included
as compared to quark quark scattering. This apart, in the integrand,the distribution functions are
suppressed by Polyakov loops as compared to NJL model.

Summary

Transport coefficients of hot and dense matter are important inputs for the hydrodynamic evo-
lution of the plasma that is produced following a heavy ion collision. In the present study, we have
estimated coefficients taking into account the the non-perturbative effects related to chiral symme-
try breaking and the confinement properties of strong interaction physics within an effective model,
the Polyakov loop extended quark meson coupling model. These coefficients are estimated using
relaxation time approximation for the solutions of the Boltzmann kinetic equation.

We first calculated the medium dependent masses of the mesons and quarks within a mean
field approximation. The contribution of the mesons to the transport coefficients has been cal-
culated through estimating the relaxation time for the mesons arising both from meson meson
scattering and meson quark scattering. The contribution to the transport coefficients arises mostly
from the meson scatterings at temperatures below the critical temperature while above the critical
temperature the contributions arising from the quark scatterings become dominant. In particular,
quark meson scattering contribute significantly to the relaxation time for the quarks both below
and above the critical temperature. The quark pion scattering above the critical temperature gives
significant contribution due to the pole structure of the corresponding scattering amplitude.

In general, the effect of Polyakov loops lies in suppressing the quark contribution below the
critical temperature. This leads to, in particular, the suppression of thermal conductivity at lower
temperature arising from quark scattering. The effect of Polyakov loop also is significant near
and above the critical temperature. Indeed, both the quark masses as well as Polyakov loop order
parameter remain significantly different from their asymptotic values near the critical temperature.
It will be interesting to examine the consequences of such non-perturbative features on the transport
coefficients of heavy quarks as well as on the collective modes of QGP above and near the critical
temperature. Some of these works are in progress and will be reported elsewhere.

. .
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