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Bulk viscous corrections to screening and damping
in the deconfined phase at high temperature
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Non-equilibrium corrections in a hot QCD medium modify the “hard thermal loops” (HTL) which
determine the resummed propagators for gluons with soft momenta as well as the Debye screening
and Landau damping mass scales. We focus on bulk viscous corrections to a thermal fixed point.
The screening and damping mass scales are sensitive to the bulk pressure and perhaps to (pseudo-
) critical dynamical scaling of the bulk viscosity in the vicinity of a second-order critical point.
This would affect the properties of quarkonium bound states in the deconfined phase.
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1. Introduction, bulk viscosity in QCD

The bulk viscosity ζ (T ) in QCD at very high temperatures T � ΛQCD has been computed to
leading order in the coupling in Ref. [1]. They find that it is very small since ζ is proportional to
the square of the deviation from conformality given by the β -function. This leads to ζ/η ∼ α4

s

(neglecting logarithms of the inverse coupling) which is proportional to

(α2
s N2)2 ∼ (1−3c2

s )
2 . (1.1)

cs is the speed of sound. To see this write the trace anomaly in the pure glue theory in the form [2]

β (αR)
∂

∂αR
p(T,αR) = e−3p . (1.2)

Here, αR denotes the renormalized coupling at a scale µ and p(T,αR) is the pressure as a function
of T and αR. On the l.h.s. the derivative w.r.t. the renormalized coupling is performed at constant
T . In (pure glue) perturbation theory, up to first order in the running coupling αs(T ;αR):

p(T,αR)− p(T,0) =−N(N2−1)
144

αs(T )T 4 (1.3)

and eq. (1.2) turns into

e−3p = −N(N2−1)
144

T 4
β (αR)

∂

∂αR
αs(T ) ,

= −N(N2−1)
144

T 4
β (αs(T )) . (1.4)

Differentiate both sides w.r.t. the energy density; on the r.h.s. write this derivative as (∂e/∂T )−1 ∂/∂T
and note that to leading order this latter derivative w.r.t. T acts on the factor T 4 only:

1−3c2
s = −

N(N2−1)
36 T 3β (αs(T ))

∂e/∂T
. (1.5)

Thus, 1−3c2
s is indeed proportional to −Nβ (αs(T ))∼ α2

s (T )N2.
On the other hand, when (e− 3p)/T 4 exhibits a power law tail then the proportionality (1.1)

can be modified. For illustration consider a simple model where a non-perturbative contribution [3]
is added to the one-loop pressure while the two-loop pressure remains1 the one from eq. (1.3):

p(T ) = (N2−1)
π2

45
(
T 4−T 2T 2

c
)
− N(N2−1)

144
αs(T )T 4 . (1.6)

At order αs
0 this gives

e−3p = 2(N2−1)
π2

45
T 2T 2

c ≈ 0.44(N2−1)T 2T 2
c , (1.7)

c2
s =

2T 2−T 2
c

6T 2−T 2
c
. (1.8)

1The assumption that the two-loop pressure is unaffected by the non-perturbative contribution does not correspond
to the models proposed in refs. [3].
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(e−3p)/T 2T 2
c in fact agrees quite well with (pure gauge) lattice data [4, 5] for N = 3,4,6 colors

in the regime T/Tc ' 1.5− 4. One can now obtain the running coupling αs(T ) from the trace
anomaly. To do so, replace the l.h.s. of eq. (1.4) by (1.7):

Nβ (αs(T )) =−
288π2

45
T 2

c

T 2 → Nαs(T ) =
144π2

45
T 2

c

T 2 , β (αs) =−2αs . (1.9)

This result for the running coupling shows explicitly why this illustration is not self consistent:
in eq. (1.6), the contribution to the pressure at order αs is comparable to the leading contribution,
just like the pure perturbative expansion of the pressure. Nevertheless, to complete this toy model
calculation use eq. (1.8) to express 1−3c2

s in terms of αs(T ):

1−3c2
s (T ) =

90Nαs(T )
864−45Nαs(T )

. (1.10)

Hence, at T/Tc = 4, say, where αsN is sufficiently small, 1− 3c2
s would be approximately linear

instead of quadratic in αsN (and linear in −βN).
In a more realistic theory of the deconfined phase one should not expect that 1− 3c2

s (T ) is
given simply by a number times a power of αs(T ). Rather, that “number” presumably would be a
dimensionless function f (T/Tc,T/mD, . . .) of temperature. However, if that theory does not involve
or generate Tc then a fit of the form 1−3c2

s (T ) = const.× (αs(T )N)b(T ) would still be interesting.
In particular, a fit to N f = 2+ 1 three loop HTLpt over T = 0.15→ 1.5 GeV (at µB = 0) with
constant power b gives b≈ 3.3 [6].

For completeness we mention also that in the limit of N→∞ and large ’t Hooft coupling λ� 1
the holographic correspondence for broken conformal invariance suggests ζ/η ∼ 1−3c2

s [7] in 3
spatial dimensions; also see refs [8].

For heavy-ion collisions the most relevant temperature regime is T <∼ 4Tc. The lattice has
shown that the trace anomaly of QCD, expressed as energy density minus three times the pres-
sure, grows large at T ∼ Tc [9]. Thus, it has been suggested in the literature that the bulk viscos-
ity to entropy density ratio should increase, too, as the temperature approaches the confinement-
deconfinement temperature [10]. Here we perform a weak-coupling HTL computation to assess,
at least qualitatively, the impact of bulk-viscous corrections on the heavy-quark potential. This
analysis does not apply for T ' Tc but it provides baseline expectations for bulk-viscous effects on
screening and damping from (resummed) weakly coupled QCD.

Bulk viscous corrections are expected to become important also in the vicinity of a second
order critical point; this could be realized in hot QCD either by tuning of the quark masses [11]
or perhaps by introducing a baryon charge asymmetry [12]. Due to critical slowing down the bulk
viscosity should diverge [13] ζ ∼ ξ z where ξ → ∞ is the correlation length and z is a dynamical
critical exponent. However, since the relaxation time in the critical region of the bulk pressure
diverges as well, in heavy-ion collisions it is not expected to exceed the ideal pressure [14].

2. HTL resummed gluon self energies incl. bulk-viscous corrections

To compute the gluon self energy in the hard loop approximation we require the phase space
distributions of the particles in the medium. In the local rest frame, we take them to be

f (p) = fid(p)+δbulk f (p)+δshear f (p) . (2.1)
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Here, fid(p) is an isotropic reference distribution when non-equilibrium corrections are absent.
This would normally correspond to thermal Fermi-Dirac or Bose-Einstein distributions, respec-
tively, if the “ideal” reference is the thermal fixed point.

The corrections δ f in Eq. (2.1) correspond to non-equilibrium corrections. We take the
isotropic correction δbulk f (p) as a bulk-viscous correction while the anisotropic part δshear f (p)
is analogous to shear. However, we do not assume that these corrections are parametrically sup-
pressed. The corrections to the real and imaginary parts of the HTL resummed gluon propagator
due to δshear f (p) have been worked out in Refs. [15]. Here, we focus on bulk viscous corrections
instead.

To obtain explicit results for the self energies we require a model for δbulk f (k). We assume
that the bulk viscous correction to the local thermal distribution function takes the form

δbulk f (k) =
(

k
T

)a

Φ fid(k)(1± fid(k)) . (2.2)

Φ is proportional to the bulk pressure, which in the Navier-Stokes / Landau approximation is neg-
ative, and a is a constant. We require a > 0 to ensure that the dominant contribution to the retarded
self energy is from hard (gluon) loop momenta, k ∼ T . The bulk viscous correction to the sym-
metric self energy at O(Φ2) involves the fourth power of the distribution function and requires a
more stringent bound, a > 1/2. It should be clear that (2.2) is a generic (and simple) model for
the non-equilibrium correction chosen such as to maintain applicability of HTL power counting
which may in principle be violated in certain non-equilibrium scenarios. Furthermore, we recall
that if δbulk f (k) does not vanish then the hard scale T in the distributions functions is no longer
equal to the temperature which instead must be determined from the Landau matching condition.
However, the hard scale remains on the order of the temperature and we continue to denote it as
T for simplicity of presentation. Finally, we shall further assume that |Φ| � g2 so that two-loop
corrections to the gluon self energy are negligible.

Using standard methods of real-time thermal field theory [16] one can derive [17] the following
expressions for the retarded and symmetric time-ordered (temporal) gluon self energies2:

ΠR(P) =
N f g2

(2π)2

∫
kdk fF(k)

∫
dΩk

1− (k̂ · p̂)2

(k̂ · p̂+ p0+iε

p )2
, (2.3)

ΠF(P) = −i
N f g2

π

2
p

Θ(p2− p2
0)
∫

k2dk fF(k)(1− fF(k)) . (2.4)

The advanced self energy is equal to ΠR(P) with an inverted sign of ε . These expressions account
for the contribution due to N f loops of massless quarks. For the contribution due to a gluon loop
replace the Fermi-Dirac distribution fF(k) by a Bose distribution fB(k), Pauli blocking 1− fF(k)
by Bose enhancement 1+ fB(k), and N f by Nc. Here, f (k) corresponds to the non-equilibrium
distribution function introduced in eqs. (2.1,2.2) above.

It is clear from eqs. (2.3,2.4) that for isotropic δ f the dependence of the self energies on the
external energy/momentum is the same as in equilibrium. However, there is a correction to the

2For brevity we restrict to vanishing quark chemical potential, see ref. [17] for the corresponding expressions at
µ > 0.
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mass scales which appear in ΠR(P) and ΠF(P):

m2
R = (2Nc +N f )

g2T 2

6
→ m2

R +δm2
R =(

2Nc

(
1+ c(g)R (a)Φ

)
+N f

(
1+ c(q)R (a)Φ

)) g2T 2

6
, (2.5)

m2
F = (2Nc +N f )

g2T 2

6
→ m2

F +δm2
F =(

2Nc

(
1+ c(g)F (a)Φ

)
+N f

(
1+ c(q)F (a)Φ

)) g2T 2

6
. (2.6)

In (2.6) only the correction linear in Φ has been given, see ref. [17] for m2
F + δm2

F to order Φ2.
Here,

c(q)R (a) = 2(1−2−a)c(g)R (a) =
12
π2 (1−2−a)Γ(2+a)ζ (1+a) , (2.7)

c(q)F (a) = 2(1−2−a)c(g)F (a) =
6

π2 (1−2−a)Γ(3+a)ζ (1+a) , (2.8)

are pure numbers of order 1. Therefore, a substantial (negative) bulk-viscous pressure Φ could
potentially “short out” the self-energies. It would be interesting to check the values of m2

R and
m2

F obtained in a hydrodynamic simulation which incorporates the critical behavior of the bulk
viscosity (such as presented in ref. [14]). Non-equilibrium effects on the gluon self energies (or the
heavy-quark potential) should also be visible in transport theory approaches [18].

The Schwinger-Dyson equation determines the HTL resummed propagators (in Coulomb gauge),

D∗R(P) =
1

p2−ΠR(P)
=

1

p2−
(

m2
R,D +δm2

R,D

)(
p0
2p ln p0+p+iε

p0−p+iε −1
) , (2.9)

D∗F(P) = D∗R(P)ΠF(P)D∗A(P) . (2.10)

The advanced propagator is equal to D∗R(P) with a reversed sign of ε .

3. Non-equilibrium corrections to the HTL static potential

We can compute the static potential due to one gluon exchange through the Fourier transform
of the physical “11" Schwinger-Keldysh component of the (longitudinal) gluon propagator in the
static limit,

V (r) = (ig)2CF

∫ d3p
(2π)3

(
eip·r−1

)
(D∗(p0 = 0,p))11

= −g2CF

∫ d3p
(2π)3

(
eip·r−1

) 1
2
(D∗R +D∗A +D∗F) . (3.1)

We have also subtracted an r-independent (but T -dependent) self-energy contribution. The Fourier
transform of the sum of retarded and advanced propagators gives a real Debye screened potential,

ReV (r) =−g2CF

4πr
e−r̂ , (3.2)
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where r̂ ≡ r
√

m2
R +δm2

R. The imaginary part of the potential originates from the symmetric prop-
agator D∗F and is due to Landau damping of the gluon exchanged by the static sources [19],

ImV (r) =−g2CFT
4π

m2
F +δm2

F

m2
R +δm2

R
φ(r̂) , (3.3)

with φ(r̂) ∼ r̂2 log1/r̂ when r̂� 1. The imaginary part of the potential generates a thermal width
for quarkonium bound states.

Hence, bulk-viscous corrections in general modify the Debye screening of the 1/r Coulomb
potential. Also, ImV (r) is multiplied by (m2

F +δm2
F)/(m

2
R+δm2

R) which we expect to be less than
1 typically. Thus, a significant bulk pressure should reduce the thermal width of quarkonium states.
The potential written in eqs. (3.2,3.3) is not expected to provide accurate, quantitative predictions of
the properties of quarkonium bound states at finite temperature. However, basic qualitative insight
obtained with the methods described here can be useful for incorporating non-equilibrium effects
into quarkonium potentials derived from lattice QCD [20].
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